summaryrefslogtreecommitdiff
path: root/numpy/core/defmatrix.py
blob: 37cef8fc04c297cce4959467c76b138a3e27fb82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
__all__ = ['matrix', 'bmat', 'mat', 'asmatrix']

import sys
import numeric as N
from numeric import concatenate, isscalar, binary_repr

# make translation table
_table = [None]*256
for k in range(256):
    _table[k] = chr(k)
_table = ''.join(_table)

_numchars = '0123456789.-+jeEL'
_todelete = []
for k in _table:
    if k not in _numchars:
        _todelete.append(k)
_todelete = ''.join(_todelete)
del k

def _eval(astr):
    return eval(astr.translate(_table,_todelete))

def _convert_from_string(data):
    rows = data.split(';')
    newdata = []
    count = 0
    for row in rows:
        trow = row.split(',')
        newrow = []
        for col in trow:
            temp = col.split()
            newrow.extend(map(_eval,temp))
        if count == 0:
            Ncols = len(newrow)
        elif len(newrow) != Ncols:
            raise ValueError, "Rows not the same size."
        count += 1
        newdata.append(newrow)
    return newdata

def asmatrix(data, dtype=None):
    """ Returns 'data' as a matrix.  Unlike matrix(), no copy is performed
    if 'data' is already a matrix or array.  Equivalent to:
    matrix(data, copy=False)
    """
    return matrix(data, dtype=dtype, copy=False)



class matrix(N.ndarray):
    __array_priority__ = 10.0
    def __new__(subtype, data, dtype=None, copy=True):
        if isinstance(data, matrix):
            dtype2 = data.dtype
            if (dtype is None):
                dtype = dtype2
            if (dtype2 == dtype) and (not copy):
                return data
            return data.astype(dtype)

        if isinstance(data, N.ndarray):
            if dtype is None:
                intype = data.dtype
            else:
                intype = N.dtype(dtype)
            new = data.view(subtype)
            if intype != data.dtype:
                return new.astype(intype)
            if copy: return new.copy()
            else: return new

        if isinstance(data, str):
            data = _convert_from_string(data)

        # now convert data to an array
        arr = N.array(data, dtype=dtype, copy=copy)
        ndim = arr.ndim
        shape = arr.shape
        if (ndim > 2):
            raise ValueError, "matrix must be 2-dimensional"
        elif ndim == 0:
            shape = (1,1)
        elif ndim == 1:
            shape = (1,shape[0])

        order = False
        if (ndim == 2) and arr.flags.fortran:
            order = True

        if not (order or arr.flags.contiguous):
            arr = arr.copy()

        ret = N.ndarray.__new__(subtype, shape, arr.dtype,
                                buffer=arr,
                                order=order)
        return ret

    def __array_finalize__(self, obj):
        self._getitem = False
        if (isinstance(obj, matrix) and obj._getitem): return
        ndim = self.ndim
        if (ndim == 2):
            return
        if (ndim > 2):
            newshape = tuple([x for x in self.shape if x > 1])
            ndim = len(newshape)
            if ndim == 2:
                self.shape = newshape
                return
            elif (ndim > 2):
                raise ValueError, "shape too large to be a matrix."
        else:
            newshape = self.shape
        if ndim == 0:
            self.shape = (1,1)
        elif ndim == 1:
            self.shape = (1,newshape[0])
        return

    def __getitem__(self, index):
        self._getitem = True
        try:
            out = N.ndarray.__getitem__(self, index)
        finally:
            self._getitem = False

        if not isinstance(out, N.ndarray):
            return out

        if out.ndim == 0:
            return out[()]
        if out.ndim == 1:
            sh = out.shape[0]
            # Determine when we should have a column array
            try:
                n = len(index)
            except:
                n = 0
            if n > 1 and isscalar(index[1]):
                out.shape = (sh,1)
            else:
                out.shape = (1,sh)
        return out

    def _get_truendim(self):
        shp = self.shape
        truend = 0
        for val in shp:
            if (val > 1): truend += 1
        return truend


    def __mul__(self, other):
        if isinstance(other,(N.ndarray, list, tuple)) :
            # This promotes 1-D vectors to row vectors
            return N.dot(self, asmatrix(other))
        if N.isscalar(other) or not hasattr(other, '__rmul__') :
            return N.dot(self, other)
        return NotImplemented

    def __rmul__(self, other):
        return N.dot(other, self)

    def __imul__(self, other):
        self[:] = self * other
        return self

    def __pow__(self, other):
        shape = self.shape
        if len(shape) != 2 or shape[0] != shape[1]:
            raise TypeError, "matrix is not square"
        if type(other) in (type(1), type(1L)):
            if other==0:
                return matrix(N.identity(shape[0]))
            if other<0:
                x = self.I
                other=-other
            else:
                x=self
            result = x
            if other <= 3:
                while(other>1):
                    result=result*x
                    other=other-1
                return result
            # binary decomposition to reduce the number of Matrix
            #  Multiplies for other > 3.
            beta = binary_repr(other)
            t = len(beta)
            Z,q = x.copy(),0
            while beta[t-q-1] == '0':
                Z *= Z
                q += 1
            result = Z.copy()
            for k in range(q+1,t):
                Z *= Z
                if beta[t-k-1] == '1':
                    result *= Z
            return result
        else:
            raise TypeError, "exponent must be an integer"

    def __rpow__(self, other):
        return NotImplemented

    def __repr__(self):
        s = repr(self.__array__()).replace('array', 'matrix')
        # now, 'matrix' has 6 letters, and 'array' 5, so the columns don't
        # line up anymore. We need to add a space.
        l = s.splitlines()
        for i in range(1, len(l)):
            if l[i]:
                l[i] = ' ' + l[i]
        return '\n'.join(l)

    def __str__(self):
        return str(self.__array__())

    def _align(self, axis):
        """A convenience function for operations that need to preserve axis
        orientation.
        """
        if axis is None:
            return self[0,0]
        elif axis==0:
            return self
        elif axis==1:
            return self.transpose()
        else:
            raise ValueError, "unsupported axis"

    # To preserve orientation of result...
    def sum(self, axis=None, dtype=None, out=None):
        """Sum the matrix over the given axis.  If the axis is None, sum
        over all dimensions.  This preserves the orientation of the
        result as a row or column.
        """
        return N.ndarray.sum(self, axis, dtype, out)._align(axis)

    def mean(self, axis=None, out=None):
        """Compute the mean along the specified axis.

        Returns the average of the array elements.  The average is taken over
        the flattened array by default, otherwise over the specified axis.

        :Parameters:

            axis : integer
                Axis along which the means are computed. The default is
                to compute the standard deviation of the flattened array.

            dtype : type
                Type to use in computing the means. For arrays of integer type
                the default is float32, for arrays of float types it is the
                same as the array type.

            out : ndarray
                Alternative output array in which to place the result. It must
                have the same shape as the expected output but the type will be
                cast if necessary.

        :Returns:

            mean : The return type varies, see above.
                A new array holding the result is returned unless out is
                specified, in which case a reference to out is returned.

        :SeeAlso:

            - var : variance
            - std : standard deviation

        Notes
        -----

            The mean is the sum of the elements along the axis divided by the
            number of elements.

        """
        return N.ndarray.mean(self, axis, out)._align(axis)

    def std(self, axis=None, dtype=None, out=None):
        """Compute the standard deviation along the specified axis.

        Returns the standard deviation of the array elements, a measure of the
        spread of a distribution. The standard deviation is computed for the
        flattened array by default, otherwise over the specified axis.

        :Parameters:

            axis : integer
                Axis along which the standard deviation is computed. The
                default is to compute the standard deviation of the flattened
                array.

            dtype : type
                Type to use in computing the standard deviation. For arrays of
                integer type the default is float32, for arrays of float types
                it is the same as the array type.

            out : ndarray
                Alternative output array in which to place the result. It must
                have the same shape as the expected output but the type will be
                cast if necessary.

        :Returns:

            standard deviation : The return type varies, see above.
                A new array holding the result is returned unless out is
                specified, in which case a reference to out is returned.

        :SeeAlso:

            - var : variance
            - mean : average

        Notes
        -----

          The standard deviation is the square root of the average of the
          squared deviations from the mean, i.e. var = sqrt(mean((x -
          x.mean())**2)).  The computed standard deviation is biased, i.e., the
          mean is computed by dividing by the number of elements, N, rather
          than by N-1.

        """
        return N.ndarray.std(self, axis, dtype, out)._align(axis)

    def var(self, axis=None, dtype=None, out=None):
        """Compute the variance along the specified axis.

        Returns the variance of the array elements, a measure of the spread of
        a distribution.  The variance is computed for the flattened array by
        default, otherwise over the specified axis.

        :Parameters:

            axis : integer
                Axis along which the variance is computed. The default is to
                compute the variance of the flattened array.

            dtype : type
                Type to use in computing the variance. For arrays of integer
                type the default is float32, for arrays of float types it is
                the same as the array type.

            out : ndarray
                Alternative output array in which to place the result. It must
                have the same shape as the expected output but the type will be
                cast if necessary.

        :Returns:

            variance : depends, see above
                A new array holding the result is returned unless out is
                specified, in which case a reference to out is returned.

        :SeeAlso:

            - std : standard deviation
            - mean : average

        Notes
        -----

          The variance is the average of the squared deviations from the mean,
          i.e.  var = mean((x - x.mean())**2).  The computed variance is
          biased, i.e., the mean is computed by dividing by the number of
          elements, N, rather than by N-1.

        """
        return N.ndarray.var(self, axis, dtype, out)._align(axis)

    def prod(self, axis=None, dtype=None, out=None):
        return N.ndarray.prod(self, axis, dtype, out)._align(axis)

    def any(self, axis=None, out=None):
        return N.ndarray.any(self, axis, out)._align(axis)

    def all(self, axis=None, out=None):
        return N.ndarray.all(self, axis, out)._align(axis)

    def max(self, axis=None, out=None):
        return N.ndarray.max(self, axis, out)._align(axis)

    def argmax(self, axis=None, out=None):
        return N.ndarray.argmax(self, axis, out)._align(axis)

    def min(self, axis=None, out=None):
        return N.ndarray.min(self, axis, out)._align(axis)

    def argmin(self, axis=None, out=None):
        return N.ndarray.argmin(self, axis, out)._align(axis)

    def ptp(self, axis=None, out=None):
        return N.ndarray.ptp(self, axis, out)._align(axis)

    # Needed becase tolist method expects a[i]
    #  to have dimension a.ndim-1
    def tolist(self):
        return self.__array__().tolist()

    def getI(self):
        M,N = self.shape
        if M == N:
            from numpy.dual import inv as func
        else:
            from numpy.dual import pinv as func
        return asmatrix(func(self))

    def getA(self):
        return self.__array__()

    def getA1(self):
        return self.__array__().ravel()

    def getT(self):
        return self.transpose()

    def getH(self):
        if issubclass(self.dtype.type, N.complexfloating):
            return self.transpose().conjugate()
        else:
            return self.transpose()

    T = property(getT, None, doc="transpose")
    A = property(getA, None, doc="base array")
    A1 = property(getA1, None, doc="1-d base array")
    H = property(getH, None, doc="hermitian (conjugate) transpose")
    I = property(getI, None, doc="inverse")

def _from_string(str,gdict,ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError, "%s not found" % (col,)

            coltup.append(thismat)
        rowtup.append(concatenate(coltup,axis=-1))
    return concatenate(rowtup,axis=0)


def bmat(obj, ldict=None, gdict=None):
    """Build a matrix object from string, nested sequence, or array.

    Ex:  F = bmat('A, B; C, D')
         F = bmat([[A,B],[C,D]])
         F = bmat(r_[c_[A,B],c_[C,D]])

        all produce the same Matrix Object    [ A  B ]
                                              [ C  D ]

        if A, B, C, and D are appropriately shaped 2-d arrays.
    """
    if isinstance(obj, str):
        if gdict is None:
            # get previous frame
            frame = sys._getframe().f_back
            glob_dict = frame.f_globals
            loc_dict = frame.f_locals
        else:
            glob_dict = gdict
            loc_dict = ldict

        return matrix(_from_string(obj, glob_dict, loc_dict))

    if isinstance(obj, (tuple, list)):
        # [[A,B],[C,D]]
        arr_rows = []
        for row in obj:
            if isinstance(row, N.ndarray):  # not 2-d
                return matrix(concatenate(obj,axis=-1))
            else:
                arr_rows.append(concatenate(row,axis=-1))
        return matrix(concatenate(arr_rows,axis=0))
    if isinstance(obj, N.ndarray):
        return matrix(obj)

mat = asmatrix