1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
__all__ = ['matrix', 'bmat', 'mat', 'asmatrix']
import sys
import numeric as N
from numeric import concatenate, isscalar, binary_repr
# make translation table
_table = [None]*256
for k in range(256):
_table[k] = chr(k)
_table = ''.join(_table)
_numchars = '0123456789.-+jeEL'
_todelete = []
for k in _table:
if k not in _numchars:
_todelete.append(k)
_todelete = ''.join(_todelete)
del k
def _eval(astr):
return eval(astr.translate(_table,_todelete))
def _convert_from_string(data):
rows = data.split(';')
newdata = []
count = 0
for row in rows:
trow = row.split(',')
newrow = []
for col in trow:
temp = col.split()
newrow.extend(map(_eval,temp))
if count == 0:
Ncols = len(newrow)
elif len(newrow) != Ncols:
raise ValueError, "Rows not the same size."
count += 1
newdata.append(newrow)
return newdata
def asmatrix(data, dtype=None):
""" Returns 'data' as a matrix. Unlike matrix(), no copy is performed
if 'data' is already a matrix or array. Equivalent to:
matrix(data, copy=False)
"""
return matrix(data, dtype=dtype, copy=False)
class matrix(N.ndarray):
"""mat = matrix(data, dtype=None, copy=True)
Returns a matrix from an array-like object, or a string of
data. A matrix is a specialized 2-d array that retains
it's 2-d nature through operations and where '*' means matrix
multiplication and '**' means matrix power.
Parameters
----------
data : array-like or string
If data is a string, then interpret the string as a matrix
with commas or spaces separating columns and semicolons
separating rows.
If data is array-like than convert the array to a matrix.
dtype : data-type
Anything that can be interpreted as a NumPy datatype.
copy : bool
If data is already an ndarray, then this flag determines whether
or not the data will be copied
Examples
--------
>>> import numpy as np
>>> a = np.matrix('1 2; 3 4')
>>> print a
[[1 2]
[3 4]]
"""
__array_priority__ = 10.0
def __new__(subtype, data, dtype=None, copy=True):
if isinstance(data, matrix):
dtype2 = data.dtype
if (dtype is None):
dtype = dtype2
if (dtype2 == dtype) and (not copy):
return data
return data.astype(dtype)
if isinstance(data, N.ndarray):
if dtype is None:
intype = data.dtype
else:
intype = N.dtype(dtype)
new = data.view(subtype)
if intype != data.dtype:
return new.astype(intype)
if copy: return new.copy()
else: return new
if isinstance(data, str):
data = _convert_from_string(data)
# now convert data to an array
arr = N.array(data, dtype=dtype, copy=copy)
ndim = arr.ndim
shape = arr.shape
if (ndim > 2):
raise ValueError, "matrix must be 2-dimensional"
elif ndim == 0:
shape = (1,1)
elif ndim == 1:
shape = (1,shape[0])
order = False
if (ndim == 2) and arr.flags.fortran:
order = True
if not (order or arr.flags.contiguous):
arr = arr.copy()
ret = N.ndarray.__new__(subtype, shape, arr.dtype,
buffer=arr,
order=order)
return ret
def __array_finalize__(self, obj):
self._getitem = False
if (isinstance(obj, matrix) and obj._getitem): return
ndim = self.ndim
if (ndim == 2):
return
if (ndim > 2):
newshape = tuple([x for x in self.shape if x > 1])
ndim = len(newshape)
if ndim == 2:
self.shape = newshape
return
elif (ndim > 2):
raise ValueError, "shape too large to be a matrix."
else:
newshape = self.shape
if ndim == 0:
self.shape = (1,1)
elif ndim == 1:
self.shape = (1,newshape[0])
return
def __getitem__(self, index):
self._getitem = True
try:
out = N.ndarray.__getitem__(self, index)
finally:
self._getitem = False
if not isinstance(out, N.ndarray):
return out
if out.ndim == 0:
return out[()]
if out.ndim == 1:
sh = out.shape[0]
# Determine when we should have a column array
try:
n = len(index)
except:
n = 0
if n > 1 and isscalar(index[1]):
out.shape = (sh,1)
else:
out.shape = (1,sh)
return out
def _get_truendim(self):
shp = self.shape
truend = 0
for val in shp:
if (val > 1): truend += 1
return truend
def __mul__(self, other):
if isinstance(other,(N.ndarray, list, tuple)) :
# This promotes 1-D vectors to row vectors
return N.dot(self, asmatrix(other))
if N.isscalar(other) or not hasattr(other, '__rmul__') :
return N.dot(self, other)
return NotImplemented
def __rmul__(self, other):
return N.dot(other, self)
def __imul__(self, other):
self[:] = self * other
return self
def __pow__(self, other):
shape = self.shape
if len(shape) != 2 or shape[0] != shape[1]:
raise TypeError, "matrix is not square"
if type(other) in (type(1), type(1L)):
if other==0:
return matrix(N.identity(shape[0]))
if other<0:
x = self.I
other=-other
else:
x=self
result = x
if other <= 3:
while(other>1):
result=result*x
other=other-1
return result
# binary decomposition to reduce the number of Matrix
# Multiplies for other > 3.
beta = binary_repr(other)
t = len(beta)
Z,q = x.copy(),0
while beta[t-q-1] == '0':
Z *= Z
q += 1
result = Z.copy()
for k in range(q+1,t):
Z *= Z
if beta[t-k-1] == '1':
result *= Z
return result
else:
raise TypeError, "exponent must be an integer"
def __rpow__(self, other):
return NotImplemented
def __repr__(self):
s = repr(self.__array__()).replace('array', 'matrix')
# now, 'matrix' has 6 letters, and 'array' 5, so the columns don't
# line up anymore. We need to add a space.
l = s.splitlines()
for i in range(1, len(l)):
if l[i]:
l[i] = ' ' + l[i]
return '\n'.join(l)
def __str__(self):
return str(self.__array__())
def _align(self, axis):
"""A convenience function for operations that need to preserve axis
orientation.
"""
if axis is None:
return self[0,0]
elif axis==0:
return self
elif axis==1:
return self.transpose()
else:
raise ValueError, "unsupported axis"
# To preserve orientation of result...
def sum(self, axis=None, dtype=None, out=None):
"""Sum the matrix over the given axis. If the axis is None, sum
over all dimensions. This preserves the orientation of the
result as a row or column.
"""
return N.ndarray.sum(self, axis, dtype, out)._align(axis)
def mean(self, axis=None, dtype=None, out=None):
"""Compute the mean along the specified axis.
Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
Parameters
----------
axis : integer
Axis along which the means are computed. The default is
to compute the standard deviation of the flattened array.
dtype : type
Type to use in computing the means. For arrays of integer type
the default is float32, for arrays of float types it is the
same as the array type.
out : ndarray
Alternative output array in which to place the result. It must
have the same shape as the expected output but the type will be
cast if necessary.
Returns
-------
mean : The return type varies, see above.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
SeeAlso
-------
var : variance
std : standard deviation
Notes
-----
The mean is the sum of the elements along the axis divided by the
number of elements.
"""
return N.ndarray.mean(self, axis, dtype, out)._align(axis)
def std(self, axis=None, dtype=None, out=None):
"""Compute the standard deviation along the specified axis.
Returns the standard deviation of the array elements, a measure of the
spread of a distribution. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.
Parameters
----------
axis : integer
Axis along which the standard deviation is computed. The
default is to compute the standard deviation of the flattened
array.
dtype : type
Type to use in computing the standard deviation. For arrays of
integer type the default is float32, for arrays of float types
it is the same as the array type.
out : ndarray
Alternative output array in which to place the result. It must
have the same shape as the expected output but the type will be
cast if necessary.
Returns
-------
standard deviation : The return type varies, see above.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
SeeAlso
-------
var : variance
mean : average
Notes
-----
The standard deviation is the square root of the
average of the squared deviations from the mean, i.e. var =
sqrt(mean((x - x.mean())**2)). The computed standard
deviation is biased, i.e., the mean is computed by dividing by
the number of elements, N, rather than by N-1.
"""
return N.ndarray.std(self, axis, dtype, out)._align(axis)
def var(self, axis=None, dtype=None, out=None):
"""Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of
a distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.
Parameters
----------
axis : integer
Axis along which the variance is computed. The default is to
compute the variance of the flattened array.
dtype : data-type
Type to use in computing the variance. For arrays of integer
type the default is float32, for arrays of float types it is
the same as the array type.
out : ndarray
Alternative output array in which to place the result. It must
have the same shape as the expected output but the type will be
cast if necessary.
Returns
-------
variance : depends, see above
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
SeeAlso
-------
std : standard deviation
mean : average
Notes
-----
The variance is the average of the squared deviations from the
mean, i.e. var = mean((x - x.mean())**2). The computed
variance is biased, i.e., the mean is computed by dividing by
the number of elements, N, rather than by N-1.
"""
return N.ndarray.var(self, axis, dtype, out)._align(axis)
def prod(self, axis=None, dtype=None, out=None):
return N.ndarray.prod(self, axis, dtype, out)._align(axis)
def any(self, axis=None, out=None):
return N.ndarray.any(self, axis, out)._align(axis)
def all(self, axis=None, out=None):
return N.ndarray.all(self, axis, out)._align(axis)
def max(self, axis=None, out=None):
return N.ndarray.max(self, axis, out)._align(axis)
def argmax(self, axis=None, out=None):
return N.ndarray.argmax(self, axis, out)._align(axis)
def min(self, axis=None, out=None):
return N.ndarray.min(self, axis, out)._align(axis)
def argmin(self, axis=None, out=None):
return N.ndarray.argmin(self, axis, out)._align(axis)
def ptp(self, axis=None, out=None):
return N.ndarray.ptp(self, axis, out)._align(axis)
# Needed becase tolist method expects a[i]
# to have dimension a.ndim-1
def tolist(self):
return self.__array__().tolist()
def getI(self):
M,N = self.shape
if M == N:
from numpy.dual import inv as func
else:
from numpy.dual import pinv as func
return asmatrix(func(self))
def getA(self):
return self.__array__()
def getA1(self):
return self.__array__().ravel()
def getT(self):
return self.transpose()
def getH(self):
if issubclass(self.dtype.type, N.complexfloating):
return self.transpose().conjugate()
else:
return self.transpose()
T = property(getT, None, doc="transpose")
A = property(getA, None, doc="base array")
A1 = property(getA1, None, doc="1-d base array")
H = property(getH, None, doc="hermitian (conjugate) transpose")
I = property(getI, None, doc="inverse")
def _from_string(str,gdict,ldict):
rows = str.split(';')
rowtup = []
for row in rows:
trow = row.split(',')
newrow = []
for x in trow:
newrow.extend(x.split())
trow = newrow
coltup = []
for col in trow:
col = col.strip()
try:
thismat = ldict[col]
except KeyError:
try:
thismat = gdict[col]
except KeyError:
raise KeyError, "%s not found" % (col,)
coltup.append(thismat)
rowtup.append(concatenate(coltup,axis=-1))
return concatenate(rowtup,axis=0)
def bmat(obj, ldict=None, gdict=None):
"""Build a matrix object from string, nested sequence, or array.
Example
--------
F = bmat('A, B; C, D')
F = bmat([[A,B],[C,D]])
F = bmat(r_[c_[A,B],c_[C,D]])
all produce the same Matrix Object [ A B ]
[ C D ]
if A, B, C, and D are appropriately shaped 2-d arrays.
"""
if isinstance(obj, str):
if gdict is None:
# get previous frame
frame = sys._getframe().f_back
glob_dict = frame.f_globals
loc_dict = frame.f_locals
else:
glob_dict = gdict
loc_dict = ldict
return matrix(_from_string(obj, glob_dict, loc_dict))
if isinstance(obj, (tuple, list)):
# [[A,B],[C,D]]
arr_rows = []
for row in obj:
if isinstance(row, N.ndarray): # not 2-d
return matrix(concatenate(obj,axis=-1))
else:
arr_rows.append(concatenate(row,axis=-1))
return matrix(concatenate(arr_rows,axis=0))
if isinstance(obj, N.ndarray):
return matrix(obj)
mat = asmatrix
|