summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
blob: 0023c99f05b9d2a176745517ae5a9317bd9b83a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"

# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
           'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
           'searchsorted', 'alen',
           'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
           'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
           'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
           'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
           'amax', 'amin',
          ]

import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char

import types

try:
    _gentype = types.GeneratorType
except AttributeError:
    _gentype = types.NoneType

# save away Python sum
_sum_ = sum

# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
    try:
        wrap = obj.__array_wrap__
    except AttributeError:
        wrap = None
    result = getattr(asarray(obj),method)(*args, **kwds)
    if wrap:
        if not isinstance(result, mu.ndarray):
            result = asarray(result)
        result = wrap(result)
    return result


def take(a, indices, axis=None, out=None, mode='raise'):
    """
    Take elements from an array along an axis.

    This function does the same thing as "fancy" indexing (indexing arrays
    using arrays); however, it can be easier to use if you need elements
    along a given axis.

    Parameters
    ----------
    a : array_like
        The source array.
    indices : array_like, int
        The indices of the values to extract.
    axis : int, optional
        The axis over which to select values.  By default, the
        flattened input array is used.
    out : ndarray, optional
        If provided, the result will be placed in this array. It should
        be of the appropriate shape and dtype.
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.
        'raise' -- raise an error
        'wrap' -- wrap around
        'clip' -- clip to the range

    Returns
    -------
    subarray : ndarray
        The returned array has the same type as `a`.

    See Also
    --------
    ndarray.take : equivalent method

    Examples
    --------
    >>> a = [4, 3, 5, 7, 6, 8]
    >>> indices = [0, 1, 4]
    >>> np.take(a, indices)
    array([4, 3, 6])

    In this example if `a` is a ndarray, "fancy" indexing can be used.
    >>> a = np.array(a)
    >>> a[indices]
    array([4, 3, 6])

    """
    try:
        take = a.take
    except AttributeError:
        return _wrapit(a, 'take', indices, axis, out, mode)
    return take(indices, axis, out, mode)


# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
    """
    Gives a new shape to an array without changing its data.

    Parameters
    ----------
    a : array_like
        Array to be reshaped.
    newshape : {tuple, int}
        The new shape should be compatible with the original shape. If
        an integer, then the result will be a 1-D array of that length.
        One shape dimension can be -1. In this case, the value is inferred
        from the length of the array and remaining dimensions.
    order : {'C', 'F'}, optional
        Determines whether the array data should be viewed as in C
        (row-major) order or FORTRAN (column-major) order.

    Returns
    -------
    reshaped_array : ndarray
        This will be a new view object if possible; otherwise, it will
        be a copy.

    See Also
    --------
    ndarray.reshape : Equivalent method.

    Examples
    --------
    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> np.reshape(a, 6)
    array([1, 2, 3, 4, 5, 6])
    >>> np.reshape(a, 6, order='F')
    array([1, 4, 2, 5, 3, 6])
    >>> np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2
    array([[1, 2],
           [3, 4],
           [5, 6]])

    """
    try:
        reshape = a.reshape
    except AttributeError:
        return _wrapit(a, 'reshape', newshape, order=order)
    return reshape(newshape, order=order)


def choose(a, choices, out=None, mode='raise'):
    """
    Use an index array to construct a new array from a set of choices.

    Given an array of integers and a set of n choice arrays, this function
    will create a new array that merges each of the choice arrays.  Where a
    value in `a` is i, then the new array will have the value that
    choices[i] contains in the same place.

    Parameters
    ----------
    a : int array
        This array must contain integers in [0, n-1], where n is the number
        of choices.
    choices : sequence of arrays
        Choice arrays. The index array and all of the choices should be
        broadcastable to the same shape.
    out : array, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave:

          * 'raise' : raise an error
          * 'wrap' : wrap around
          * 'clip' : clip to the range

    Returns
    -------
    merged_array : array
        The merged results.

    See Also
    --------
    ndarray.choose : equivalent method

    Examples
    --------

    >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
    ...   [20, 21, 22, 23], [30, 31, 32, 33]]
    >>> np.choose([2, 3, 1, 0], choices)
    array([20, 31, 12,  3])
    >>> np.choose([2, 4, 1, 0], choices, mode='clip')
    array([20, 31, 12,  3])
    >>> np.choose([2, 4, 1, 0], choices, mode='wrap')
    array([20,  1, 12,  3])

    """
    try:
        choose = a.choose
    except AttributeError:
        return _wrapit(a, 'choose', choices, out=out, mode=mode)
    return choose(choices, out=out, mode=mode)


def repeat(a, repeats, axis=None):
    """
    Repeat elements of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    repeats : {int, array of ints}
        The number of repetitions for each element.  `repeats` is broadcasted
        to fit the shape of the given axis.
    axis : int, optional
        The axis along which to repeat values.  By default, use the
        flattened input array, and return a flat output array.

    Returns
    -------
    repeated_array : ndarray
        Output array which has the same shape as `a`, except along
        the given axis.

    See Also
    --------
    tile : Tile an array.

    Examples
    --------
    >>> x = np.array([[1,2],[3,4]])
    >>> np.repeat(x, 2)
    array([1, 1, 2, 2, 3, 3, 4, 4])
    >>> np.repeat(x, 3, axis=1)
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])
    >>> np.repeat(x, [1, 2], axis=0)
    array([[1, 2],
           [3, 4],
           [3, 4]])

    """
    try:
        repeat = a.repeat
    except AttributeError:
        return _wrapit(a, 'repeat', repeats, axis)
    return repeat(repeats, axis)


def put(a, ind, v, mode='raise'):
    """
    Changes specific elements of one array by replacing from another array.

    Set `a`.flat[n] = `v`\\[n] for all n in `ind`.  If `v` is shorter than
    `ind`, it will repeat which is different than `a[ind]` = `v`.

    Parameters
    ----------
    a : array_like (contiguous)
        Target array.
    ind : array_like
        Target indices, interpreted as integers.
    v : array_like
        Values to place in `a` at target indices.
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.

    * 'raise' -- raise an error
    * 'wrap' -- wrap around
    * 'clip' -- clip to the range

    Notes
    -----
    If `v` is shorter than `mask` it will be repeated as necessary.  In
    particular `v` can be a scalar or length 1 array.  The routine put
    is the equivalent of the following (although the loop is in C for
    speed):
    ::

        ind = array(indices, copy=False)
        v = array(values, copy=False).astype(a.dtype)
        for i in ind: a.flat[i] = v[i]

    Examples
    --------
    >>> x = np.arange(5)
    >>> np.put(x,[0,2,4],[-1,-2,-3])
    >>> print x
    [-1  1 -2  3 -3]

    """
    return a.put(ind, v, mode)


def swapaxes(a, axis1, axis2):
    """
    Interchange two axes of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    axis1 : int
        First axis.
    axis2 : int
        Second axis.

    Returns
    -------
    a_swapped : ndarray
        If `a` is an ndarray, then a view of `a` is returned; otherwise
        a new array is created.

    Examples
    --------
    >>> x = np.array([[1,2,3]])
    >>> np.swapaxes(x,0,1)
    array([[1],
           [2],
           [3]])

    >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
    >>> x
    array([[[0, 1],
            [2, 3]],
    <BLANKLINE>
           [[4, 5],
            [6, 7]]])

    >>> np.swapaxes(x,0,2)
    array([[[0, 4],
            [2, 6]],
    <BLANKLINE>
           [[1, 5],
            [3, 7]]])

    """
    try:
        swapaxes = a.swapaxes
    except AttributeError:
        return _wrapit(a, 'swapaxes', axis1, axis2)
    return swapaxes(axis1, axis2)


def transpose(a, axes=None):
    """
    Permute the dimensions of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    axes : list of ints, optional
        By default, reverse the dimensions, otherwise permute the axes
        according to the values given.

    Returns
    -------
    p : ndarray
        `a` with its axes permuted.  A view is returned whenever
        possible.

    See Also
    --------
    rollaxis

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.transpose(x)
    array([[0, 2],
           [1, 3]])

    >>> x = np.ones((1, 2, 3))
    >>> np.transpose(x, (1, 0, 2)).shape
    (2, 1, 3)

    """
    try:
        transpose = a.transpose
    except AttributeError:
        return _wrapit(a, 'transpose', axes)
    return transpose(axes)


def sort(a, axis=-1, kind='quicksort', order=None):
    """
    Return a sorted copy of an array.

    Parameters
    ----------
    a : array_like
        Array to be sorted.
    axis : int or None, optional
        Axis along which to sort. If None, the array is flattened before
        sorting. The default is -1, which sorts along the last axis.
    kind : {'quicksort', 'mergesort', 'heapsort'}, optional
        Sorting algorithm. Default is 'quicksort'.
    order : list, optional
        When `a` is a structured array, this argument specifies which fields
        to compare first, second, and so on.  This list does not need to
        include all of the fields.

    Returns
    -------
    sorted_array : ndarray
        Array of the same type and shape as `a`.

    See Also
    --------
    ndarray.sort : Method to sort an array in-place.
    argsort : Indirect sort.
    lexsort : Indirect stable sort on multiple keys.
    searchsorted : Find elements in a sorted array.

    Notes
    -----
    The various sorting algorithms are characterized by their average speed,
    worst case performance, work space size, and whether they are stable. A
    stable sort keeps items with the same key in the same relative
    order. The three available algorithms have the following
    properties:

    =========== ======= ============= ============ =======
       kind      speed   worst case    work space  stable
    =========== ======= ============= ============ =======
    'quicksort'    1     O(n^2)            0          no
    'mergesort'    2     O(n*log(n))      ~n/2        yes
    'heapsort'     3     O(n*log(n))       0          no
    =========== ======= ============= ============ =======

    All the sort algorithms make temporary copies of the data when
    sorting along any but the last axis.  Consequently, sorting along
    the last axis is faster and uses less space than sorting along
    any other axis.

    Examples
    --------
    >>> a = np.array([[1,4],[3,1]])
    >>> np.sort(a)                # sort along the last axis
    array([[1, 4],
           [1, 3]])
    >>> np.sort(a, axis=None)     # sort the flattened array
    array([1, 1, 3, 4])
    >>> np.sort(a, axis=0)        # sort along the first axis
    array([[1, 1],
           [3, 4]])

    Use the `order` keyword to specify a field to use when sorting a
    structured array:

    >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
    >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
    ...           ('Galahad', 1.7, 38)]
    >>> a = np.array(values, dtype=dtype)       # create a structured array
    >>> np.sort(a, order='height')                        # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
           ('Lancelot', 1.8999999999999999, 38)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

    Sort by age, then height if ages are equal:

    >>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
           ('Arthur', 1.8, 41)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

    """
    if axis is None:
        a = asanyarray(a).flatten()
        axis = 0
    else:
        a = asanyarray(a).copy()
    a.sort(axis, kind, order)
    return a


def argsort(a, axis=-1, kind='quicksort', order=None):
    """
    Returns the indices that would sort an array.

    Perform an indirect sort along the given axis using the algorithm specified
    by the `kind` keyword. It returns an array of indices of the same shape as
    `a` that index data along the given axis in sorted order.

    Parameters
    ----------
    a : array_like
        Array to sort.
    axis : int, optional
        Axis along which to sort.  If not given, the flattened array is used.
    kind : {'quicksort', 'mergesort', 'heapsort'}, optional
        Sorting algorithm.
    order : list, optional
        When `a` is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    Returns
    -------
    index_array : ndarray, int
        Array of indices that sort `a` along the specified axis.
        In other words, ``a[index_array]`` yields a sorted `a`.

    See Also
    --------
    sort : Describes sorting algorithms used.
    lexsort : Indirect stable sort with multiple keys.
    ndarray.sort : Inplace sort.

    Notes
    -----
    See `sort` for notes on the different sorting algorithms.

    Examples
    --------
    One dimensional array:

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])

    Two-dimensional array:

    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])

    >>> np.argsort(x, axis=0)
    array([[0, 1],
           [1, 0]])

    >>> np.argsort(x, axis=1)
    array([[0, 1],
           [0, 1]])

    Sorting with keys:

    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])

    >>> np.argsort(x, order=('x','y'))
    array([1, 0])

    >>> np.argsort(x, order=('y','x'))
    array([0, 1])

    """
    try:
        argsort = a.argsort
    except AttributeError:
        return _wrapit(a, 'argsort', axis, kind, order)
    return argsort(axis, kind, order)


def argmax(a, axis=None):
    """
    Indices of the maximum values along an axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        By default, the index is into the flattened array, otherwise
        along the specified axis.

    Returns
    -------
    index_array : ndarray, int
        Array of indices into the array.  It has the same shape as `a`,
        except with `axis` removed.

    See Also
    --------
    argmin : Indices of the minimum values along an axis.
    amax : The maximum value along a given axis.
    unravel_index : Convert a flat index into an index tuple.

    Examples
    --------
    >>> a = np.arange(6).reshape(2,3)
    >>> np.argmax(a)
    5
    >>> np.argmax(a, axis=0)
    array([1, 1, 1])
    >>> np.argmax(a, axis=1)
    array([2, 2])

    """
    try:
        argmax = a.argmax
    except AttributeError:
        return _wrapit(a, 'argmax', axis)
    return argmax(axis)


def argmin(a, axis=None):
    """
    Return the indices of the minimum values along an axis.

    See Also
    --------
    argmax : Similar function.  Please refer to `numpy.argmax` for detailed
        documentation.

    """
    try:
        argmin = a.argmin
    except AttributeError:
        return _wrapit(a, 'argmin', axis)
    return argmin(axis)


def searchsorted(a, v, side='left'):
    """
    Find indices where elements should be inserted to maintain order.

    Find the indices into a sorted array `a` such that, if the corresponding
    elements in `v` were inserted before the indices, the order of `a` would
    be preserved.

    Parameters
    ----------
    a : 1-D array_like of shape (N,)
        Input array, sorted in ascending order.
    v : array_like
        Values to insert into `a`.
    side : {'left', 'right'}, optional
        If 'left', the index of the first suitable location found is given.  If
        'right', return the last such index.  If there is no suitable
        index, return either 0 or N (where N is the length of `a`).

    Returns
    -------
    indices : array of ints
        Array of insertion points with the same shape as `v`.

    See Also
    --------
    sort : In-place sort.
    histogram : Produce histogram from 1-D data.

    Notes
    -----
    Binary search is used to find the required insertion points.

    Examples
    --------
    >>> np.searchsorted([1,2,3,4,5], 3)
    2
    >>> np.searchsorted([1,2,3,4,5], 3, side='right')
    3
    >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
    array([0, 5, 1, 2])

    """
    try:
        searchsorted = a.searchsorted
    except AttributeError:
        return _wrapit(a, 'searchsorted', v, side)
    return searchsorted(v, side)


def resize(a, new_shape):
    """
    Return a new array with the specified shape.

    If the new array is larger than the original array, then the new array
    is filled with repeated copied of `a`. Note that this behavior is different
    from a.resize(new_shape) which fills with zeros instead of repeated
    copies of `a`.

    Parameters
    ----------
    a : array_like
        Array to be resized.

    new_shape : {tuple, int}
        Shape of resized array.

    Returns
    -------
    reshaped_array : ndarray
        The new array is formed from the data in the old array, repeated if
        necessary to fill out the required number of elements.

    See Also
    --------
    ndarray.resize : resize an array in-place.

    Examples
    --------
    >>> a=np.array([[0,1],[2,3]])
    >>> np.resize(a,(1,4))
    array([[0, 1, 2, 3]])
    >>> np.resize(a,(2,4))
    array([[0, 1, 2, 3],
           [0, 1, 2, 3]])

    """
    if isinstance(new_shape, (int, nt.integer)):
        new_shape = (new_shape,)
    a = ravel(a)
    Na = len(a)
    if not Na: return mu.zeros(new_shape, a.dtype.char)
    total_size = um.multiply.reduce(new_shape)
    n_copies = int(total_size / Na)
    extra = total_size % Na

    if total_size == 0:
        return a[:0]

    if extra != 0:
        n_copies = n_copies+1
        extra = Na-extra

    a = concatenate( (a,)*n_copies)
    if extra > 0:
        a = a[:-extra]

    return reshape(a, new_shape)


def squeeze(a):
    """
    Remove single-dimensional entries from the shape of an array.

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    squeezed : ndarray
        The input array, but with with all dimensions of length 1
        removed.  Whenever possible, a view on `a` is returned.

    Examples
    --------
    >>> x = np.array([[[0], [1], [2]]])
    >>> x.shape
    (1, 3, 1)
    >>> np.squeeze(x).shape
    (3,)

    """
    try:
        squeeze = a.squeeze
    except AttributeError:
        return _wrapit(a, 'squeeze')
    return squeeze()


def diagonal(a, offset=0, axis1=0, axis2=1):
    """
    Return specified diagonals.

    If `a` is 2-D, returns the diagonal of `a` with the given offset,
    i.e., the collection of elements of the form `a[i,i+offset]`.
    If `a` has more than two dimensions, then the axes specified
    by `axis1` and `axis2` are used to determine the 2-D subarray
    whose diagonal is returned. The shape of the resulting array
    can be determined by removing `axis1` and `axis2` and appending
    an index to the right equal to the size of the resulting diagonals.

    Parameters
    ----------
    a : array_like
        Array from which the diagonals are taken.
    offset : int, optional
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to main diagonal (0).
    axis1 : int, optional
        Axis to be used as the first axis of the 2-D subarrays from which
        the diagonals should be taken. Defaults to first axis (0).
    axis2 : int, optional
        Axis to be used as the second axis of the 2-D subarrays from which
        the diagonals should be taken. Defaults to second axis (1).

    Returns
    -------
    array_of_diagonals : ndarray
        If `a` is 2-D, a 1-D array containing the diagonal is
        returned.  If `a` has larger dimensions, then an array of
        diagonals is returned.

    Raises
    ------
    ValueError
        If the dimension of `a` is less than 2.

    See Also
    --------
    diag : Matlab workalike for 1-D and 2-D arrays.
    diagflat : Create diagonal arrays.
    trace : Sum along diagonals.

    Examples
    --------
    >>> a = np.arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> a.diagonal()
    array([0, 3])
    >>> a.diagonal(1)
    array([1])

    >>> a = np.arange(8).reshape(2,2,2)
    >>> a
    array([[[0, 1],
            [2, 3]],
    <BLANKLINE>
           [[4, 5],
            [6, 7]]])
    >>> a.diagonal(0,-2,-1)
    array([[0, 3],
           [4, 7]])

    """
    return asarray(a).diagonal(offset, axis1, axis2)


def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
    """
    Return the sum along diagonals of the array.

    If a is 2-d, returns the sum along the diagonal of self with the given
    offset, i.e., the collection of elements of the form a[i,i+offset]. If
    a has more than two dimensions, then the axes specified by axis1 and
    axis2 are used to determine the 2-d subarray whose trace is returned.
    The shape of the resulting array can be determined by removing axis1
    and axis2 and appending an index to the right equal to the size of the
    resulting diagonals.

    Parameters
    ----------
    a : array_like
        Array from whis the diagonals are taken.
    offset : integer, optional
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to main diagonal.
    axis1 : integer, optional
        Axis to be used as the first axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to first axis.
    axis2 : integer, optional
        Axis to be used as the second axis of the 2-d subarrays from which
        the diagonals should be taken. Defaults to second axis.
    dtype : dtype, optional
        Determines the type of the returned array and of the accumulator
        where the elements are summed. If dtype has the value None and a is
        of integer type of precision less than the default integer
        precision, then the default integer precision is used. Otherwise,
        the precision is the same as that of a.
    out : array, optional
        Array into which the sum can be placed. Its type is preserved and
        it must be of the right shape to hold the output.

    Returns
    -------
    sum_along_diagonals : ndarray
        If a is 2-d, a 0-d array containing the diagonal is
        returned.  If a has larger dimensions, then an array of
        diagonals is returned.

    Examples
    --------
    >>> np.trace(np.eye(3))
    3.0
    >>> a = np.arange(8).reshape((2,2,2))
    >>> np.trace(a)
    array([6, 8])

    """
    return asarray(a).trace(offset, axis1, axis2, dtype, out)

def ravel(a, order='C'):
    """
    Return a flattened array.

    A 1-d array, containing the elements of the input, is returned.  A copy is
    made only if needed.

    Parameters
    ----------
    a : array_like
        Input array.  The elements in `a` are read in the order specified by
        `order`, and packed as a 1-dimensional array.
    order : {'C','F'}, optional
        The elements of `a` are read in this order.  It can be either
        'C' for row-major order, or `F` for column-major order.
        By default, row-major order is used.

    Returns
    -------
    1d_array : ndarray
        Output of the same dtype as `a`, and of shape ``(a.size(),)`` (or
        ``(np.prod(a.shape),)``).

    See Also
    --------
    ndarray.flat : 1-D iterator over an array.
    ndarray.flatten : 1-D array copy of the elements of an array
                      in row-major order.

    Notes
    -----
    In row-major order, the row index varies the slowest, and the column
    index the quickest.  This can be generalised to multiple dimensions,
    where row-major order implies that the index along the first axis
    varies slowest, and the index along the last quickest.  The opposite holds
    for Fortran-, or column-major, mode.

    Examples
    --------
    If an array is in C-order (default), then `ravel` is equivalent
    to ``reshape(-1)``:

    >>> x = np.array([[1, 2, 3], [4, 5, 6]])
    >>> print x.reshape(-1)
    [1  2  3  4  5  6]

    >>> print np.ravel(x)
    [1  2  3  4  5  6]

    When flattening using Fortran-order, however, we see

    >>> print np.ravel(x, order='F')
    [1 4 2 5 3 6]

    """
    return asarray(a).ravel(order)


def nonzero(a):
    """
    Return the indices of the elements that are non-zero.

    Returns a tuple of arrays, one for each dimension of `a`, containing
    the indices of the non-zero elements in that dimension. The
    corresponding non-zero values can be obtained with::

        a[nonzero(a)]

    To group the indices by element, rather than dimension, use::

        transpose(nonzero(a))

    The result of this is always a 2-D array, with a row for
    each non-zero element.

    Parameters
    ----------
    a : array_like
        Input array.

    Returns
    -------
    tuple_of_arrays : tuple
        Indices of elements that are non-zero.

    See Also
    --------
    flatnonzero :
        Return indices that are non-zero in the flattened version of the input
        array.
    ndarray.nonzero :
        Equivalent ndarray method.

    Examples
    --------
    >>> x = np.eye(3)
    >>> x
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> np.nonzero(x)
    (array([0, 1, 2]), array([0, 1, 2]))

    >>> x[np.nonzero(x)]
    array([ 1.,  1.,  1.])
    >>> np.transpose(np.nonzero(x))
    array([[0, 0],
           [1, 1],
           [2, 2]])

    """
    try:
        nonzero = a.nonzero
    except AttributeError:
        res = _wrapit(a, 'nonzero')
    else:
        res = nonzero()
    return res


def shape(a):
    """
    Return the shape of an array.

    Parameters
    ----------
    a : array_like
        Input array.

    Returns
    -------
    shape : tuple
        The elements of the tuple give the lengths of the corresponding array
        dimensions.

    See Also
    --------
    alen,
    ndarray.shape : array method

    Examples
    --------
    >>> np.shape(np.eye(3))
    (3, 3)
    >>> np.shape([[1,2]])
    (1, 2)
    >>> np.shape([0])
    (1,)
    >>> np.shape(0)
    ()

    >>> a = np.array([(1,2),(3,4)], dtype=[('x', 'i4'), ('y', 'i4')])
    >>> np.shape(a)
    (2,)
    >>> a.shape
    (2,)

    """
    try:
        result = a.shape
    except AttributeError:
        result = asarray(a).shape
    return result


def compress(condition, a, axis=None, out=None):
    """
    Return selected slices of an array along given axis.

    Parameters
    ----------
    condition : array_like
        Boolean 1-D array selecting which entries to return. If len(condition)
        is less than the size of `a` along the given axis, then output is
        truncated to the length of the condition array.
    a : array_like
        Array from which to extract a part.
    axis : int, optional
        Axis along which to take slices. If None (default), work on the
        flattened array.
    out : ndarray, optional
        Output array.  Its type is preserved and it must be of the right
        shape to hold the output.

    Returns
    -------
    compressed_array : ndarray
        A copy of `a` without the slices along axis for which `condition`
        is false.

    See Also
    --------
    ndarray.compress: Equivalent method.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.compress([0, 1], a, axis=0)
    array([[3, 4]])
    >>> np.compress([1], a, axis=1)
    array([[1],
           [3]])
    >>> np.compress([0,1,1], a)
    array([2, 3])

    """
    try:
        compress = a.compress
    except AttributeError:
        return _wrapit(a, 'compress', condition, axis, out)
    return compress(condition, axis, out)


def clip(a, a_min, a_max, out=None):
    """
    Clip (limit) the values in an array.

    Given an interval, values outside the interval are clipped to
    the interval edges.  For example, if an interval of ``[0, 1]``
    is specified, values smaller than 0 become 0, and values larger
    than 1 become 1.

    Parameters
    ----------
    a : array_like
        Array containing elements to clip.
    a_min : scalar or array_like
        Minimum value.
    a_max : scalar or array_like
        Maximum value.  If `a_min` or `a_max` are array_like, then they will
        be broadcasted to the shape of `a`.
    out : ndarray, optional
        The results will be placed in this array. It may be the input
        array for in-place clipping.  `out` must be of the right shape
        to hold the output.  Its type is preserved.

    Returns
    -------
    clipped_array : ndarray
        An array with the elements of `a`, but where values
        < `a_min` are replaced with `a_min`, and those > `a_max`
        with `a_max`.

    Examples
    --------
    >>> a = np.arange(10)
    >>> np.clip(a, 1, 8)
    array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, 3, 6, out=a)
    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
    >>> a
    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
    >>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
    array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

    """
    try:
        clip = a.clip
    except AttributeError:
        return _wrapit(a, 'clip', a_min, a_max, out)
    return clip(a_min, a_max, out)


def sum(a, axis=None, dtype=None, out=None):
    """
    Return the sum of array elements over a given axis.

    Parameters
    ----------
    a : array_like
        Elements to sum.
    axis : integer, optional
        Axis over which the sum is taken. By default `axis` is None,
        and all elements are summed.
    dtype : dtype, optional
        The type of the returned array and of the accumulator in which
        the elements are summed.  By default, the dtype of `a` is used.
        An exception is when `a` has an integer type with less precision
        than the default platform integer.  In that case, the default
        platform integer is used instead.
    out : ndarray, optional
        Array into which the output is placed.  By default, a new array is
        created.  If `out` is given, it must be of the appropriate shape
        (the shape of `a` with `axis` removed, i.e.,
        ``numpy.delete(a.shape, axis)``).  Its type is preserved.

    Returns
    -------
    sum_along_axis : ndarray
        An array with the same shape as `a`, with the specified
        axis removed.   If `a` is a 0-d array, or if `axis` is None, a scalar
        is returned.  If an output array is specified, a reference to
        `out` is returned.

    See Also
    --------
    ndarray.sum : equivalent method

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> np.sum([0.5, 1.5])
    2.0
    >>> np.sum([0.5, 1.5], dtype=np.int32)
    1
    >>> np.sum([[0, 1], [0, 5]])
    6
    >>> np.sum([[0, 1], [0, 5]], axis=1)
    array([1, 5])

    If the accumulator is too small, overflow occurs:

    >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    -128

    """
    if isinstance(a, _gentype):
        res = _sum_(a)
        if out is not None:
            out[...] = res
            return out
        return res
    try:
        sum = a.sum
    except AttributeError:
        return _wrapit(a, 'sum', axis, dtype, out)
    return sum(axis, dtype, out)


def product (a, axis=None, dtype=None, out=None):
    """
    Return the product of array elements over a given axis.

    See Also
    --------
    prod : equivalent function; see for details.

    """
    try:
        prod = a.prod
    except AttributeError:
        return _wrapit(a, 'prod', axis, dtype, out)
    return prod(axis, dtype, out)


def sometrue(a, axis=None, out=None):
    """
    Check whether some values are true.

    Refer to `any` for full documentation.

    See Also
    --------
    any : equivalent function

    """
    try:
        any = a.any
    except AttributeError:
        return _wrapit(a, 'any', axis, out)
    return any(axis, out)


def alltrue (a, axis=None, out=None):
    """
    Check if all elements of input array are true.

    See Also
    --------
    numpy.all : Equivalent function; see for details.

    """
    try:
        all = a.all
    except AttributeError:
        return _wrapit(a, 'all', axis, out)
    return all(axis, out)


def any(a,axis=None, out=None):
    """
    Test whether any elements of an array evaluate to True along an axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        Axis over which to perform the operation.
        If None, use a flattened input array and return a bool.
    out : ndarray, optional
        Array into which the result is placed. Its type is preserved
        and it must be of the right shape to hold the output.

    Returns
    -------
    out : ndarray
        A logical OR is performed along `axis`, and the result placed
        in `out`.  If `out` was not specified, a new output array is created.

    See Also
    --------
    ndarray.any : equivalent method

    Notes
    -----
    Since NaN is not equal to zero, NaN evaluates to True.

    Examples
    --------
    >>> np.any([[True, False], [True, True]])
    True

    >>> np.any([[True, False], [False, False]], axis=0)
    array([ True, False], dtype=bool)

    >>> np.any([-1, 0, 5])
    True

    >>> np.any(np.nan)
    True

    """
    try:
        any = a.any
    except AttributeError:
        return _wrapit(a, 'any', axis, out)
    return any(axis, out)


def all(a,axis=None, out=None):
    """
    Returns True if all elements evaluate to True.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        Axis over which to perform the operation.
        If None, use a flattened input array and return a bool.
    out : ndarray, optional
        Array into which the result is placed. Its type is preserved
        and it must be of the right shape to hold the output.

    Returns
    -------
    out : ndarray, bool
        A logical AND is performed along `axis`, and the result placed
        in `out`.  If `out` was not specified, a new output array is created.

    See Also
    --------
    ndarray.all : equivalent method

    Notes
    -----
    Since NaN is not equal to zero, NaN evaluates to True.

    Examples
    --------
    >>> np.all([[True,False],[True,True]])
    False

    >>> np.all([[True,False],[True,True]], axis=0)
    array([ True, False], dtype=bool)

    >>> np.all([-1, 4, 5])
    True

    >>> np.all([1.0, np.nan])
    True

    """
    try:
        all = a.all
    except AttributeError:
        return _wrapit(a, 'all', axis, out)
    return all(axis, out)


def cumsum (a, axis=None, dtype=None, out=None):
    """
    Return the cumulative sum of the elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int, optional
        Axis along which the cumulative sum is computed. The default
        (`axis` = `None`) is to compute the cumsum over the flattened
        array. `axis` may be negative, in which case it counts from the
        last to the first axis.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed.  If `dtype` is not specified, it defaults
        to the dtype of `a`, unless `a` has an integer dtype with a
        precision less than that of the default platform integer.  In
        that case, the default platform integer is used.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary.

    Returns
    -------
    cumsum : ndarray.
        A new array holding the result is returned unless `out` is
        specified, in which case a reference to `out` is returned.

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> a = np.array([[1,2,3],[4,5,6]])
    >>> np.cumsum(a)
    array([ 1,  3,  6, 10, 15, 21])
    >>> np.cumsum(a,dtype=float)     # specifies type of output value(s)
    array([  1.,   3.,   6.,  10.,  15.,  21.])
    >>> np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns
    array([[1, 2, 3],
           [5, 7, 9]])
    >>> np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows
    array([[ 1,  3,  6],
           [ 4,  9, 15]])

    """
    try:
        cumsum = a.cumsum
    except AttributeError:
        return _wrapit(a, 'cumsum', axis, dtype, out)
    return cumsum(axis, dtype, out)


def cumproduct(a, axis=None, dtype=None, out=None):
    """
    Return the cumulative product over the given axis.


    See Also
    --------
    cumprod : equivalent function; see for details.

    """
    try:
        cumprod = a.cumprod
    except AttributeError:
        return _wrapit(a, 'cumprod', axis, dtype, out)
    return cumprod(axis, dtype, out)


def ptp(a, axis=None, out=None):
    """
    Range of values (maximum - minimum) along an axis.

    The name of the function comes from the acronym for 'peak to peak'.

    Parameters
    ----------
    a : array_like
        Input values.
    axis : int, optional
        Axis along which to find the peaks.  By default, flatten the
        array.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type of the output values will be cast if necessary.

    Returns
    -------
    ptp : ndarray
        A new array holding the result, unless `out` was
        specified, in which case a reference to `out` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.ptp(x, axis=0)
    array([2, 2])

    >>> np.ptp(x, axis=1)
    array([1, 1])

    """
    try:
        ptp = a.ptp
    except AttributeError:
        return _wrapit(a, 'ptp', axis, out)
    return ptp(axis, out)


def amax(a, axis=None, out=None):
    """
    Return the maximum along an axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default flattened input is used.
    out : ndarray, optional
        Alternative output array in which to place the result.  Must
        be of the same shape and buffer length as the expected output.

    Returns
    -------
    amax : ndarray
        A new array or a scalar with the result, or a reference to `out`
        if it was specified.

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amax(a, axis=0)
    array([2, 3])
    >>> np.amax(a, axis=1)
    array([1, 3])

    """
    try:
        amax = a.max
    except AttributeError:
        return _wrapit(a, 'max', axis, out)
    return amax(axis, out)


def amin(a, axis=None, out=None):
    """
    Return the minimum along an axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default a flattened input is used.
    out : ndarray, optional
        Alternative output array in which to place the result.  Must
        be of the same shape and buffer length as the expected output.

    Returns
    -------
    amin : ndarray
        A new array or a scalar with the result, or a reference to `out` if it
        was specified.

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amin(a)           # Minimum of the flattened array
    0
    >>> np.amin(a, axis=0)         # Minima along the first axis
    array([0, 1])
    >>> np.amin(a, axis=1)         # Minima along the second axis
    array([0, 2])

    """
    try:
        amin = a.min
    except AttributeError:
        return _wrapit(a, 'min', axis, out)
    return amin(axis, out)


def alen(a):
    """
    Return the length of the first dimension of the input array.

    Parameters
    ----------
    a : array_like
       Input array.

    Returns
    -------
    alen : int
       Length of the first dimension of `a`.

    See Also
    --------
    shape

    Examples
    --------
    >>> a = np.zeros((7,4,5))
    >>> a.shape[0]
    7
    >>> np.alen(a)
    7

    """
    try:
        return len(a)
    except TypeError:
        return len(array(a,ndmin=1))


def prod(a, axis=None, dtype=None, out=None):
    """
    Return the product of array elements over a given axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis over which the product is taken.  By default, the product
        of all elements is calculated.
    dtype : data-type, optional
        The data-type of the returned array, as well as of the accumulator
        in which the elements are multiplied.  By default, if `a` is of
        integer type, `dtype` is the default platform integer. (Note: if
        the type of `a` is unsigned, then so is `dtype`.)  Otherwise,
        the dtype is the same as that of `a`.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output, but the type of the
        output values will be cast if necessary.

    Returns
    -------
    product_along_axis : ndarray, see `dtype` parameter above.
        An array shaped as `a` but with the specified axis removed.
        Returns a reference to `out` if specified.

    See Also
    --------
    ndarray.prod : equivalent method

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.  That means that, on a 32-bit platform:

    >>> x = np.array([536870910, 536870910, 536870910, 536870910])
    >>> np.prod(x) #random
    16

    Examples
    --------
    By default, calculate the product of all elements:

    >>> np.prod([1.,2.])
    2.0

    Even when the input array is two-dimensional:

    >>> np.prod([[1.,2.],[3.,4.]])
    24.0

    But we can also specify the axis over which to multiply:

    >>> np.prod([[1.,2.],[3.,4.]], axis=1)
    array([  2.,  12.])

    If the type of `x` is unsigned, then the output type is
    the unsigned platform integer:

    >>> x = np.array([1, 2, 3], dtype=np.uint8)
    >>> np.prod(x).dtype == np.uint
    True

    If `x` is of a signed integer type, then the output type
    is the default platform integer:

    >>> x = np.array([1, 2, 3], dtype=np.int8)
    >>> np.prod(x).dtype == np.int
    True

    """
    try:
        prod = a.prod
    except AttributeError:
        return _wrapit(a, 'prod', axis, dtype, out)
    return prod(axis, dtype, out)


def cumprod(a, axis=None, dtype=None, out=None):
    """
    Return the cumulative product of elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        Axis along which the cumulative product is computed.  By default the
        input is flattened.
    dtype : dtype, optional
        Type of the returned array, as well as of the accumulator in which
        the elements are multiplied.  If dtype is not specified, it defaults
        to the dtype of `a`, unless `a` has an integer dtype with a precision
        less than that of the default platform integer.  In that case, the
        default platform integer is used instead.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type of the resulting values will be cast if necessary.

    Returns
    -------
    cumprod : ndarray
        A new array holding the result is returned unless `out` is
        specified, in which case a reference to out is returned.

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> a = np.array([1,2,3])
    >>> np.cumprod(a) # intermediate results 1, 1*2
    ...               # total product 1*2*3 = 6
    array([1, 2, 6])
    >>> a = np.array([[1, 2, 3], [4, 5, 6]])
    >>> np.cumprod(a, dtype=float) # specify type of output
    array([   1.,    2.,    6.,   24.,  120.,  720.])

    The cumulative product for each column (i.e., over the rows of)
    `a`:

    >>> np.cumprod(a, axis=0)
    array([[ 1,  2,  3],
           [ 4, 10, 18]])

    The cumulative product for each row (i.e. over the columns of)
    `a`:

    >>> np.cumprod(a,axis=1)
    array([[  1,   2,   6],
           [  4,  20, 120]])

    """
    try:
        cumprod = a.cumprod
    except AttributeError:
        return _wrapit(a, 'cumprod', axis, dtype, out)
    return cumprod(axis, dtype, out)


def ndim(a):
    """
    Return the number of dimensions of an array.

    Parameters
    ----------
    a : array_like
        Input array.  If it is not already an ndarray, a conversion is
        attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in `a`.  Scalars are zero-dimensional.

    See Also
    --------
    ndarray.ndim : equivalent method
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Examples
    --------
    >>> np.ndim([[1,2,3],[4,5,6]])
    2
    >>> np.ndim(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.ndim(1)
    0

    """
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim


def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim


def size(a, axis=None):
    """
    Return the number of elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which the elements are counted.  By default, give
        the total number of elements.

    Returns
    -------
    element_count : int
        Number of elements along the specified axis.

    See Also
    --------
    shape : dimensions of array
    ndarray.shape : dimensions of array
    ndarray.size : number of elements in array

    Examples
    --------
    >>> a = np.array([[1,2,3],[4,5,6]])
    >>> np.size(a)
    6
    >>> np.size(a,1)
    3
    >>> np.size(a,0)
    2

    """
    if axis is None:
        try:
            return a.size
        except AttributeError:
            return asarray(a).size
    else:
        try:
            return a.shape[axis]
        except AttributeError:
            return asarray(a).shape[axis]


def around(a, decimals=0, out=None):
    """
    Evenly round to the given number of decimals.

    Parameters
    ----------
    a : array_like
        Input data.
    decimals : int, optional
        Number of decimal places to round to (default: 0).  If
        decimals is negative, it specifies the number of positions to
        the left of the decimal point.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output, but the type of the output
        values will be cast if necessary.

    Returns
    -------
    rounded_array : ndarray
        An array of the same type as `a`, containing the rounded values.
        Unless `out` was specified, a new array is created.  A reference to
        the result is returned.

        The real and imaginary parts of complex numbers are rounded
        separately.  The result of rounding a float is a float.

    See Also
    --------
    ndarray.round : equivalent method

    Notes
    -----
    For values exactly halfway between rounded decimal values, Numpy
    rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
    -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
    to the inexact representation of decimal fractions in the IEEE
    floating point standard [1]_ and errors introduced when scaling
    by powers of ten.

    References
    ----------
    .. [1] "Lecture Notes on the Status of  IEEE 754", William Kahan,
           http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
    .. [2] "How Futile are Mindless Assessments of
           Roundoff in Floating-Point Computation?", William Kahan,
           http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

    Examples
    --------
    >>> np.around([.5, 1.5, 2.5, 3.5, 4.5])
    array([ 0.,  2.,  2.,  4.,  4.])
    >>> np.around([1,2,3,11], decimals=1)
    array([ 1,  2,  3, 11])
    >>> np.around([1,2,3,11], decimals=-1)
    array([ 0,  0,  0, 10])

    """
    try:
        round = a.round
    except AttributeError:
        return _wrapit(a, 'round', decimals, out)
    return round(decimals, out)


def round_(a, decimals=0, out=None):
    """
    Round an array to the given number of decimals.

    Refer to `around` for full documentation.

    See Also
    --------
    around : equivalent function

    """
    try:
        round = a.round
    except AttributeError:
        return _wrapit(a, 'round', decimals, out)
    return round(decimals, out)


def mean(a, axis=None, dtype=None, out=None):
    """
    Compute the arithmetic mean along the specified axis.

    Returns the average of the array elements.  The average is taken
    over the flattened array by default, otherwise over the specified
    axis. float64 intermediate and return values are used for integer
    inputs.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose mean is desired. If `a` is not an
        array, a conversion is attempted.
    axis : int, optional
        Axis along which the means are computed. The default is to compute
        the mean of the flattened array.
    dtype : dtype, optional
        Type to use in computing the mean. For integer inputs, the default
        is float64; for floating point, inputs it is the same as the input
        dtype.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type will be cast if
        necessary.

    Returns
    -------
    mean : ndarray, see dtype parameter above
        If `out=None`, returns a new array containing the mean values,
        otherwise a reference to the output array is returned.

    See Also
    --------
    average : Weighted average

    Notes
    -----
    The arithmetic mean is the sum of the elements along the axis divided
    by the number of elements.

    Examples
    --------
    >>> a = np.array([[1,2],[3,4]])
    >>> np.mean(a)
    2.5
    >>> np.mean(a,0)
    array([ 2.,  3.])
    >>> np.mean(a,1)
    array([ 1.5,  3.5])

    """
    try:
        mean = a.mean
    except AttributeError:
        return _wrapit(a, 'mean', axis, dtype, out)
    return mean(axis, dtype, out)


def std(a, axis=None, dtype=None, out=None, ddof=0):
    """
    Compute the standard deviation along the specified axis.

    Returns the standard deviation, a measure of the spread of a distribution,
    of the array elements. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    a : array_like
        Calculate the standard deviation of these values.
    axis : int, optional
        Axis along which the standard deviation is computed. The default is
        to compute the standard deviation of the flattened array.
    dtype : dtype, optional
        Type to use in computing the standard deviation. For arrays of
        integer type the default is float64, for arrays of float types it is
        the same as the array type.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type (of the calculated
        values) will be cast if necessary.
    ddof : int, optional
        Means Delta Degrees of Freedom.  The divisor used in calculations
        is ``N - ddof``, where ``N`` represents the number of elements.
        By default `ddof` is zero (biased estimate).

    Returns
    -------
    standard_deviation : {ndarray, scalar}; see dtype parameter above.
        If `out` is None, return a new array containing the standard deviation,
        otherwise return a reference to the output array.

    See Also
    --------
    numpy.var : Variance
    numpy.mean : Average

    Notes
    -----
    The standard deviation is the square root of the average of the squared
    deviations from the mean, i.e., ``var = sqrt(mean(abs(x - x.mean())**2))``.

    The mean is normally calculated as ``x.sum() / N``, where
    ``N = len(x)``.  If, however, `ddof` is specified, the divisor ``N - ddof``
    is used instead.

    Note that, for complex numbers, std takes the absolute
    value before squaring, so that the result is always real and nonnegative.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.std(a)
    1.1180339887498949
    >>> np.std(a, 0)
    array([ 1.,  1.])
    >>> np.std(a, 1)
    array([ 0.5,  0.5])

    """
    try:
        std = a.std
    except AttributeError:
        return _wrapit(a, 'std', axis, dtype, out, ddof)
    return std(axis, dtype, out, ddof)


def var(a, axis=None, dtype=None, out=None, ddof=0):
    """
    Compute the variance along the specified axis.

    Returns the variance of the array elements, a measure of the spread of a
    distribution. The variance is computed for the flattened array by default,
    otherwise over the specified axis.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose variance is desired. If `a` is not an
        array, a conversion is attempted.
    axis : int, optional
        Axis along which the variance is computed. The default is to compute
        the variance of the flattened array.
    dtype : dtype, optional
        Type to use in computing the variance. For arrays of integer type
        the default is float32; for arrays of float types it is the same as
        the array type.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type is cast if
        necessary.
    ddof : positive int,optional
        "Delta Degrees of Freedom": the divisor used in calculation is
        N - ddof.

    Returns
    -------
    variance : ndarray, see dtype parameter above
        If out=None, returns a new array containing the variance; otherwise
        a reference to the output array is returned.

    See Also
    --------
    std : Standard deviation
    mean : Average

    Notes
    -----
    The variance is the average of the squared deviations from the mean,
    i.e.,  var = mean(abs(x - x.mean())**2).  The computed variance is biased,
    i.e., the mean is computed by dividing by the number of elements, N,
    rather than by N-1. Note that for complex numbers the absolute value is
    taken before squaring, so that the result is always real and nonnegative.

    Examples
    --------
    >>> a = np.array([[1,2],[3,4]])
    >>> np.var(a)
    1.25
    >>> np.var(a,0)
    array([ 1.,  1.])
    >>> np.var(a,1)
    array([ 0.25,  0.25])

    """
    try:
        var = a.var
    except AttributeError:
        return _wrapit(a, 'var', axis, dtype, out, ddof)
    return var(axis, dtype, out, ddof)