summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
blob: a891ec387e1c62ed485c4387b2e9617629e7ac72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"

# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
           'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
           'searchsorted', 'alen',
           'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
           'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
           'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
           'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
           'amax', 'amin',
          ]

import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char

import types

try:
    _gentype = types.GeneratorType
except AttributeError:
    _gentype = types.NoneType

# save away Python sum
_sum_ = sum

# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
    try:
        wrap = obj.__array_wrap__
    except AttributeError:
        wrap = None
    result = getattr(asarray(obj),method)(*args, **kwds)
    if wrap and isinstance(result, mu.ndarray):
        if not isinstance(result, mu.ndarray):
            result = asarray(result)
        result = wrap(result)
    return result


def take(a, indices, axis=None, out=None, mode='raise'):
    """Return an array formed from the elements of a at the given indices.

    This function does the same thing as "fancy" indexing; however, it can
    be easier to use if you need to specify a given axis.

    *Parameters*:

        a : array
            The source array

        indices : int array
            The indices of the values to extract.

        axis : {None, int}, optional
            The axis over which to select values. None signifies that the
            operation should be performed over the flattened array.

        out : {None, array}, optional
            If provided, the result will be inserted into this array. It should
            be of the appropriate shape and dtype.

        mode : {'raise', 'wrap', 'clip'}, optional
            Specifies how out-of-bounds indices will behave.
            'raise' -- raise an error
            'wrap' -- wrap around
            'clip' -- clip to the range

    *Returns*:

        subarray : array
            The returned array has the same type as a.

    *See Also*:

       `ndarray.take` : equivalent method

    """
    try:
        take = a.take
    except AttributeError:
        return _wrapit(a, 'take', indices, axis, out, mode)
    return take(indices, axis, out, mode)


# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
    """Returns an array containing the data of a, but with a new shape.

    *Parameters*:

        a : array
            Array to be reshaped.

        newshape : shape tuple or int
           The new shape should be compatible with the original shape. If an
           integer, then the result will be a 1D array of that length.

        order : {'C', 'FORTRAN'}, optional
            Determines whether the array data should be viewed as in C
            (row-major) order or FORTRAN (column-major) order.

    *Returns*:

        reshaped_array : array
            This will be a new view object if possible; otherwise, it will
            return a copy.

    *See Also*:

        `numpy.ndarray.reshape` : Equivalent method.

    """
    try:
        reshape = a.reshape
    except AttributeError:
        return _wrapit(a, 'reshape', newshape, order=order)
    return reshape(newshape, order=order)


def choose(a, choices, out=None, mode='raise'):
    """Use an index array to construct a new array from a set of choices.

    Given an array of integers in {0, 1, ..., n-1} and a set of n choice arrays,
    this function will create a new array that merges each of the choice arrays.
    Where a value in `a` is i, then the new array will have the value that
    choices[i] contains in the same place.

    *Parameters*:

        a : int array
            This array must contain integers in [0, n-1], where n is the number
            of choices.

        choices : sequence of arrays
            Each of the choice arrays should have the same shape as the index
            array.

        out : array, optional
            If provided, the result will be inserted into this array. It should
            be of the appropriate shape and dtype

        mode : {'raise', 'wrap', 'clip'}, optional
            Specifies how out-of-bounds indices will behave.
            'raise' : raise an error
            'wrap' : wrap around
            'clip' : clip to the range

    *Returns*:

        merged_array : array

    *See Also*:

        `numpy.ndarray.choose` : equivalent method

    *Examples*

        >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
        ...   [20, 21, 22, 23], [30, 31, 32, 33]]
        >>> choose([2, 3, 1, 0], choices)
        array([20, 31, 12,  3])
        >>> choose([2, 4, 1, 0], choices, mode='clip')
        array([20, 31, 12,  3])
        >>> choose([2, 4, 1, 0], choices, mode='wrap')
        array([20,  1, 12,  3])

    """
    try:
        choose = a.choose
    except AttributeError:
        return _wrapit(a, 'choose', choices, out=out, mode=mode)
    return choose(choices, out=out, mode=mode)


def repeat(a, repeats, axis=None):
    """Repeat elements of an array.

    *Parameters*:

        a : array

        repeats : int or int array
            The number of repetitions for each element. If a plain integer, then
            it is applied to all elements. If an array, it needs to be of the
            same length as the chosen axis.

        axis : {None, int}, optional
            The axis along which to repeat values. If None, then this function
            will operated on the flattened array `a` and return a similarly flat
            result.

    *Returns*:

        repeated_array : array

    *See Also*:

        `numpy.ndarray.repeat` : equivalent method

    *Examples*

        >>> repeat([0, 1, 2], 2)
        array([0, 0, 1, 1, 2, 2])
        >>> repeat([0, 1, 2], [2, 3, 4])
        array([0, 0, 1, 1, 1, 2, 2, 2, 2])

    """
    try:
        repeat = a.repeat
    except AttributeError:
        return _wrapit(a, 'repeat', repeats, axis)
    return repeat(repeats, axis)


def put (a, ind, v, mode='raise'):
    """Set a[n] = v[n] for all n in ind.

    If v is shorter than mask it will be repeated as necessary.  In particular v
    can be a scalar or length 1 array.  The routine put is the equivalent of the
    following (although the loop is in C for speed):

        ind = array(indices, copy=False)
        v = array(values, copy=False).astype(a.dtype)
        for i in ind: a.flat[i] = v[i]

    a must be a contiguous numpy array.

    """
    return a.put(ind, v, mode)


def swapaxes(a, axis1, axis2):
    """Return array a with axis1 and axis2 interchanged.

    Blah, Blah.

    """
    try:
        swapaxes = a.swapaxes
    except AttributeError:
        return _wrapit(a, 'swapaxes', axis1, axis2)
    return swapaxes(axis1, axis2)


def transpose(a, axes=None):
    """Return a view of the array with dimensions permuted.

    Permutes axis according to list axes.  If axes is None (default) returns
    array with dimensions reversed.

    """
    try:
        transpose = a.transpose
    except AttributeError:
        return _wrapit(a, 'transpose', axes)
    return transpose(axes)


def sort(a, axis=-1, kind='quicksort', order=None):
    """Return copy of 'a' sorted along the given axis.

    Perform an inplace sort along the given axis using the algorithm
    specified by the kind keyword.

    *Parameters*:

        a : array
            Array to be sorted.

        axis : {None, int} optional
            Axis along which to sort. None indicates that the flattened
            array should be used.

        kind : {'quicksort', 'mergesort', 'heapsort'}, optional
            Sorting algorithm to use.

        order : {None, list type}, optional
            When a is an array with fields defined, this argument specifies
            which fields to compare first, second, etc.  Not all fields need be
            specified.

    *Returns*:

        sorted_array : array of same type as a

    *See Also*:

        `argsort` : Indirect sort.

        `lexsort` : Indirect stable sort on multiple keys.

        `searchsorted` : Find keys in sorted array.

    *Notes*

        The various sorts are characterized by average speed, worst case
        performance, need for work space, and whether they are stable. A
        stable sort keeps items with the same key in the same relative
        order. The three available algorithms have the following
        properties:

        +-----------+-------+-------------+------------+-------+
        |    kind   | speed |  worst case | work space | stable|
        +===========+=======+=============+============+=======+
        | quicksort |   1   | O(n^2)      |     0      |   no  |
        +-----------+-------+-------------+------------+-------+
        | mergesort |   2   | O(n*log(n)) |    ~n/2    |   yes |
        +-----------+-------+-------------+------------+-------+
        | heapsort  |   3   | O(n*log(n)) |     0      |   no  |
        +-----------+-------+-------------+------------+-------+

        All the sort algorithms make temporary copies of the data when
        the sort is not along the last axis. Consequently, sorts along
        the last axis are faster and use less space than sorts along
        other axis.

    """
    if axis is None:
        a = asanyarray(a).flatten()
        axis = 0
    else:
        a = asanyarray(a).copy()
    a.sort(axis, kind, order)
    return a


def argsort(a, axis=-1, kind='quicksort', order=None):
    """Returns array of indices that index 'a' in sorted order.

    Perform an indirect sort along the given axis using the algorithm specified
    by the kind keyword. It returns an array of indices of the same shape as a
    that index data along the given axis in sorted order.

    *Parameters*:

        a : array
            Array to be sorted.

        axis : {None, int} optional
            Axis along which to sort. None indicates that the flattened
            array should be used.

        kind : {'quicksort', 'mergesort', 'heapsort'}, optional
            Sorting algorithm to use.

        order : {None, list type}, optional
            When a is an array with fields defined, this argument specifies
            which fields to compare first, second, etc.  Not all fields need be
            specified.

    *Returns*:

        indices : integer array
            Array of indices that sort 'a' along the specified axis.

    *See Also*:

        `lexsort` : Indirect stable sort with multiple keys.

        `sort` : Inplace sort.

    *Notes*

        The various sorts are characterized by average speed, worst case
        performance, need for work space, and whether they are stable. A
        stable sort keeps items with the same key in the same relative
        order. The three available algorithms have the following
        properties:

        +-----------+-------+-------------+------------+-------+
        |    kind   | speed |  worst case | work space | stable|
        +===========+=======+=============+============+=======+
        | quicksort |   1   | O(n^2)      |     0      |   no  |
        +-----------+-------+-------------+------------+-------+
        | mergesort |   2   | O(n*log(n)) |    ~n/2    |   yes |
        +-----------+-------+-------------+------------+-------+
        | heapsort  |   3   | O(n*log(n)) |     0      |   no  |
        +-----------+-------+-------------+------------+-------+

        All the sort algorithms make temporary copies of the data when
        the sort is not along the last axis. Consequently, sorts along
        the last axis are faster and use less space than sorts along
        other axis.

    """
    try:
        argsort = a.argsort
    except AttributeError:
        return _wrapit(a, 'argsort', axis, kind, order)
    return argsort(axis, kind, order)


def argmax(a, axis=None):
    """Returns array of indices of the maximum values of along the given axis.

    *Parameters*:

        a : array
            Array to look in.

        axis : {None, integer}
            If None, the index is into the flattened array, otherwise along
            the specified axis

    *Returns*:

        Array of indices

    *Examples*

        >>> a = arange(6).reshape(2,3)
        >>> argmax(a)
        5
        >>> argmax(a,0)
        array([1, 1, 1])
        >>> argmax(a,1)
        array([2, 2])

    """
    try:
        argmax = a.argmax
    except AttributeError:
        return _wrapit(a, 'argmax', axis)
    return argmax(axis)


def argmin(a, axis=None):
    """Return array of indices to the minimum values along the given axis.

    *Parameters*:

        a : array
            Array to look in.

        axis : {None, integer}
            If None, the index is into the flattened array, otherwise along
            the specified axis

    *Returns*:

        Array of indices

    *Examples*

        >>> a = arange(6).reshape(2,3)
        >>> argmin(a)
        0
        >>> argmin(a,0)
        array([0, 0, 0])
        >>> argmin(a,1)
        array([0, 0])

    """
    try:
        argmin = a.argmin
    except AttributeError:
        return _wrapit(a, 'argmin', axis)
    return argmin(axis)


def searchsorted(a, v, side='left'):
    """Return indices where keys in v should be inserted to maintain order.

    Find the indices into a sorted array such that if the corresponding keys in
    v were inserted before the indices the order of a would be preserved.  If
    side='left', then the first such index is returned. If side='right', then
    the last such index is returned. If there is no such index because the key
    is out of bounds, then the length of a is returned, i.e., the key would need
    to be appended. The returned index array has the same shape as v.

    *Parameters*:

        a : 1-d array
            Array must be sorted in ascending order.

        v : array or list type
            Array of keys to be searched for in a.

        side : {'left', 'right'}, optional
            If 'left', the index of the first location where the key could be
            inserted is found, if 'right', the index of the last such element is
            returned. If the is no such element, then either 0 or N is returned,
            where N is the size of the array.

    *Returns*:

        indices : integer array
            Array of insertion points with the same shape as v.

    *See Also*:

        `sort` : Inplace sort.

        `histogram` : Produce histogram from 1-d data.

    *Notes*

        The array a must be 1-d and is assumed to be sorted in ascending
        order.  Searchsorted uses binary search to find the required
        insertion points.

    *Examples*

        >>> searchsorted([1,2,3,4,5],[6,4,0])
        array([5, 3, 0])

    """
    try:
        searchsorted = a.searchsorted
    except AttributeError:
        return _wrapit(a, 'searchsorted', v, side)
    return searchsorted(v, side)


def resize(a, new_shape):
    """Return a new array with the specified shape.

    The original array's total size can be any size.  The new array is
    filled with repeated copies of a.

    Note that a.resize(new_shape) will fill the array with 0's beyond
    current definition of a.

    *Parameters*:

        a : array_like
            Array to be reshaped.

        new_shape : tuple
            Shape of the new array.

    *Returns*:

        new_array : array
            The new array is formed from the data in the old array, repeated if
            necessary to fill out the required number of elements, with the new
            shape.

    """

    if isinstance(new_shape, (int, nt.integer)):
        new_shape = (new_shape,)
    a = ravel(a)
    Na = len(a)
    if not Na: return mu.zeros(new_shape, a.dtype.char)
    total_size = um.multiply.reduce(new_shape)
    n_copies = int(total_size / Na)
    extra = total_size % Na

    if total_size == 0:
        return a[:0]

    if extra != 0:
        n_copies = n_copies+1
        extra = Na-extra

    a = concatenate( (a,)*n_copies)
    if extra > 0:
        a = a[:-extra]

    return reshape(a, new_shape)


def squeeze(a):
    """Remove single-dimensional entries from the shape of a.

    *Examples*

        >>> x = array([[[1,1,1],[2,2,2],[3,3,3]]])
        >>> x
        array([[[1, 1, 1],
              [2, 2, 2],
              [3, 3, 3]]])
        >>> x.shape
        (1, 3, 3)
        >>> squeeze(x).shape
        (3, 3)

    """
    try:
        squeeze = a.squeeze
    except AttributeError:
        return _wrapit(a, 'squeeze')
    return squeeze()


def diagonal(a, offset=0, axis1=0, axis2=1):
    """Return specified diagonals.

    If a is 2-d, returns the diagonal of self with the given offset, i.e., the
    collection of elements of the form a[i,i+offset]. If a has more than two
    dimensions, then the axes specified by axis1 and axis2 are used to determine
    the 2-d subarray whose diagonal is returned. The shape of the resulting
    array can be determined by removing axis1 and axis2 and appending an index
    to the right equal to the size of the resulting diagonals.

    *Parameters*:

        a : array_like
            Array from whis the diagonals are taken.

        offset : {0, integer}, optional
            Offset of the diagonal from the main diagonal. Can be both positive
            and negative. Defaults to main diagonal.

        axis1 : {0, integer}, optional
            Axis to be used as the first axis of the 2-d subarrays from which
            the diagonals should be taken. Defaults to first axis.

        axis2 : {1, integer}, optional
            Axis to be used as the second axis of the 2-d subarrays from which
            the diagonals should be taken. Defaults to second axis.

    *Returns*:

        array_of_diagonals : array of same type as a
            If a is 2-d, a 1-d array containing the diagonal is
            returned.  If a has larger dimensions, then an array of
            diagonals is returned.

    *See Also*:

        `diag` : Matlab workalike for 1-d and 2-d arrays.

        `diagflat` : Create diagonal arrays.

        `trace` : Sum along diagonals.

    *Examples*

        >>> a = arange(4).reshape(2,2)
        >>> a
        array([[0, 1],
               [2, 3]])
        >>> a.diagonal()
        array([0, 3])
        >>> a.diagonal(1)
        array([1])

        >>> a = arange(8).reshape(2,2,2)
        >>> a
        array([[[0, 1],
                [2, 3]],
               [[4, 5],
                [6, 7]]])
        >>> a.diagonal(0,-2,-1)
        array([[0, 3],
               [4, 7]])

    """
    return asarray(a).diagonal(offset, axis1, axis2)


def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
    """Return the sum along diagonals of the array.

    If a is 2-d, returns the sum along the diagonal of self with the given offset, i.e., the
    collection of elements of the form a[i,i+offset]. If a has more than two
    dimensions, then the axes specified by axis1 and axis2 are used to determine
    the 2-d subarray whose trace is returned. The shape of the resulting
    array can be determined by removing axis1 and axis2 and appending an index
    to the right equal to the size of the resulting diagonals. Arrays of integer
    type are summed

    *Parameters*:

        a : array_like
            Array from whis the diagonals are taken.

        offset : {0, integer}, optional
            Offset of the diagonal from the main diagonal. Can be both positive
            and negative. Defaults to main diagonal.

        axis1 : {0, integer}, optional
            Axis to be used as the first axis of the 2-d subarrays from which
            the diagonals should be taken. Defaults to first axis.

        axis2 : {1, integer}, optional
            Axis to be used as the second axis of the 2-d subarrays from which
            the diagonals should be taken. Defaults to second axis.

        dtype : {None, dtype}, optional
            Determines the type of the returned array and of the accumulator
            where the elements are summed. If dtype has the value None and a is
            of integer type of precision less than the default integer
            precision, then the default integer precision is used. Otherwise,
            the precision is the same as that of a.

        out : {None, array}, optional
            Array into which the sum can be placed. It's type is preserved and
            it must be of the right shape to hold the output.

    *Returns*:

        sum_along_diagonals : array
            If a is 2-d, a 0-d array containing the diagonal is
            returned.  If a has larger dimensions, then an array of
            diagonals is returned.

    *Examples*

        >>> trace(eye(3))
        3.0
        >>> a = arange(8).reshape((2,2,2))
        >>> trace(a)
        array([6, 8])

    """
    return asarray(a).trace(offset, axis1, axis2, dtype, out)

def ravel(a, order='C'):
    """Return a 1d array containing the elements of a.

    Returns the elements of a as a 1d array. The elements in the new array
    are taken in the order specified by the order keyword. The new array is
    a view of a if possible, otherwise it is a copy.

    *Parameters*:

        a : array_like

        order : {'C','F'}, optional
            If order is 'C' the elements are taken in row major order. If order
            is 'F' they are taken in column major order.

    *Returns*:

        1d array of the elements of a.

    *See Also*:

        `ndarray.flat` : 1d iterator over the array.

        `ndarray.flatten` : 1d array copy of the elements of a in C order.

    *Examples*

        >>> x = array([[1,2,3],[4,5,6]])
        >>> x
        array([[1, 2, 3],
              [4, 5, 6]])
        >>> ravel(x)
        array([1, 2, 3, 4, 5, 6])

    """
    return asarray(a).ravel(order)


def nonzero(a):
    """Return the indices of the elements of a which are not zero.

    *Parameters*:

        a : array_like

    *Returns*:

        Tuple of arrays of indices.

    *Examples*

        >>> eye(3)[nonzero(eye(3))]
        array([ 1.,  1.,  1.])
        >>> nonzero(eye(3))
        (array([0, 1, 2]), array([0, 1, 2]))
        >>> eye(3)[nonzero(eye(3))]
        array([ 1.,  1.,  1.])

    """
    try:
        nonzero = a.nonzero
    except AttributeError:
        res = _wrapit(a, 'nonzero')
    else:
        res = nonzero()
    return res


def shape(a):
    """Return the shape of a.

    *Parameters*:

        a : array type

    *Returns*:

        tuple of integers :
            The elements of the tuple are the length of the corresponding array
            dimension.

    *Examples*

        >>> shape(eye(3))
        (3, 3)
        >>> shape([[1,2]])
        (1, 2)

    """
    try:
        result = a.shape
    except AttributeError:
        result = asarray(a).shape
    return result


def compress(condition, a, axis=None, out=None):
    """Return a where condition is true.

    Equivalent to a[condition].

    """
    try:
        compress = a.compress
    except AttributeError:
        return _wrapit(a, 'compress', condition, axis, out)
    return compress(condition, axis, out)


def clip(a, a_min, a_max):
    """Limit the values of a to [a_min, a_max].  Equivalent to

    a[a < a_min] = a_min
    a[a > a_max] = a_max

    """
    try:
        clip = a.clip
    except AttributeError:
        return _wrapit(a, 'clip', a_min, a_max)
    return clip(a_min, a_max)


def sum(a, axis=None, dtype=None, out=None):
    """Sum the array over the given axis.

    *Parameters*:

        a : array_type

        axis : {None, integer}
            Axis over which the sums are taken. If None is used, then the sum is
            over all the array elements.

        dtype : {None, dtype}, optional
            Determines the type of the returned array and of the accumulator
            where the elements are summed. If dtype has the value None and a is
            of integer type of precision less than the default platform integer
            precision, then the default integer precision is used. Otherwise,
            the precision is the same as that of a.

        out : {None, array}, optional
            Array into which the sum can be placed. It's type is preserved and
            it must be of the right shape to hold the output.

    *Returns*:

        Sum along specified axis : {array, scalar}, type as explained above.
            If the sum is along an axis, then an array is returned whose shape
            is the same as a with the specified axis removed. For 1d arrays or
            dtype=None, the result is a 0d array.

    *Examples*

        >>> N.sum([0.5, 1.5])
        2.0
        >>> N.sum([0.5, 1.5], dtype=N.int32)
        1
        >>> N.sum([[0, 1], [0, 5]])
        6
        >>> N.sum([[0, 1], [0, 5]], axis=1)
        array([1, 5])

    """
    if isinstance(a, _gentype):
        res = _sum_(a)
        if out is not None:
            out[...] = res
            return out
        return res
    try:
        sum = a.sum
    except AttributeError:
        return _wrapit(a, 'sum', axis, dtype, out)
    return sum(axis, dtype, out)


def product (a, axis=None, dtype=None, out=None):
    """Product of the array elements over the given axis.

    Blah, Blah.

    """
    try:
        prod = a.prod
    except AttributeError:
        return _wrapit(a, 'prod', axis, dtype, out)
    return prod(axis, dtype, out)


def sometrue (a, axis=None, out=None):
    """Perform a logical_or over the given axis.

    Blah, Blah.

    """
    try:
        any = a.any
    except AttributeError:
        return _wrapit(a, 'any', axis, out)
    return any(axis, out)


def alltrue (a, axis=None, out=None):
    """Perform a logical_and over the given axis.

    Blah, Blah.

    """
    try:
        all = a.all
    except AttributeError:
        return _wrapit(a, 'all', axis, out)
    return all(axis, out)


def any(a,axis=None, out=None):
    """Return true if any elements of x are true.

    Blah, Blah.

    """
    try:
        any = a.any
    except AttributeError:
        return _wrapit(a, 'any', axis, out)
    return any(axis, out)


def all(a,axis=None, out=None):
    """Return true if all elements of x are true:

    Blah, Blah.

    """
    try:
        all = a.all
    except AttributeError:
        return _wrapit(a, 'all', axis, out)
    return all(axis, out)


def cumsum (a, axis=None, dtype=None, out=None):
    """Sum the array over the given axis.

    Blah, Blah.

    """
    try:
        cumsum = a.cumsum
    except AttributeError:
        return _wrapit(a, 'cumsum', axis, dtype, out)
    return cumsum(axis, dtype, out)


def cumproduct (a, axis=None, dtype=None, out=None):
    """Return the cumulative product over the given axis.

    Blah, Blah.

    """
    try:
        cumprod = a.cumprod
    except AttributeError:
        return _wrapit(a, 'cumprod', axis, dtype, out)
    return cumprod(axis, dtype, out)


def ptp(a, axis=None, out=None):
    """Return maximum - minimum along the the given dimension.

    Blah, Blah.

    """
    try:
        ptp = a.ptp
    except AttributeError:
        return _wrapit(a, 'ptp', axis, out)
    return ptp(axis, out)


def amax(a, axis=None, out=None):
    """Return the maximum of 'a' along dimension axis.

    Blah, Blah.

    """
    try:
        amax = a.max
    except AttributeError:
        return _wrapit(a, 'max', axis, out)
    return amax(axis, out)


def amin(a, axis=None, out=None):
    """Return the minimum of a along dimension axis.

    Blah, Blah.

    """
    try:
        amin = a.min
    except AttributeError:
        return _wrapit(a, 'min', axis, out)
    return amin(axis, out)


def alen(a):
    """Return the length of a Python object interpreted as an array
    of at least 1 dimension.

    Blah, Blah.

    """
    try:
        return len(a)
    except TypeError:
        return len(array(a,ndmin=1))


def prod(a, axis=None, dtype=None, out=None):
    """Return the product of the elements along the given axis.

    Blah, Blah.

    """
    try:
        prod = a.prod
    except AttributeError:
        return _wrapit(a, 'prod', axis, dtype, out)
    return prod(axis, dtype, out)


def cumprod(a, axis=None, dtype=None, out=None):
    """Return the cumulative product of the elements along the given axis.

    Blah, Blah.

    """
    try:
        cumprod = a.cumprod
    except AttributeError:
        return _wrapit(a, 'cumprod', axis, dtype, out)
    return cumprod(axis, dtype, out)


def ndim(a):
    """Return the number of dimensions of a.

    Blah, Blah.

    """
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim


def rank(a):
    """Return the rank of sequence a (the number of dimensions, not
    the matrix rank).  The rank of a scalar is zero.

    Blah, Blah.

    """
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim


def size(a, axis=None):
    """Return the number of elements in sequence a, or along a given axis.

    Blah, Blah.

    """

    if axis is None:
        try:
            return a.size
        except AttributeError:
            return asarray(a).size
    else:
        try:
            return a.shape[axis]
        except AttributeError:
            return asarray(a).shape[axis]


def round_(a, decimals=0, out=None):
    """Round a to the given number of decimals.

    The real and imaginary parts of complex numbers are rounded separately.
    Nothing is done if the input is an integer array with decimals >= 0.

    *Parameters*:

        decimals : {0, int}, optional
            Number of decimal places to round to. When decimals is negative it
            specifies the number of positions to the left of the decimal point.
        out : {None, array}, optional
            Existing array to use for output (by default, make a copy of a).

    *Returns*:

        out : array
            May be used to specify a different array to hold the result rather
            than the default a. If the type of the array specified by 'out'
            differs from that of a, the result is cast to the new type,
            otherwise the original type is kept. Floats round to floats by
            default.

    *See Also*:

        `around` : alias of this function

    *Notes*

        Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
        to 0.0, etc. Results may also be surprising due to the inexact
        representation of decimal fractions in IEEE floating point and the
        errors introduced in scaling the numbers when decimals is something
        other than 0.

    """
    try:
        round = a.round
    except AttributeError:
        return _wrapit(a, 'round', decimals, out)
    return round(decimals, out)


def mean(a, axis=None, dtype=None, out=None):
    """Compute the mean along the specified axis.

    Returns the average of the array elements.  The average is taken
    over the flattened array by default, otherwise over the specified
    axis.

    *Parameters*:

        axis : integer
            Axis along which the means are computed. The default is to compute
            the standard deviation of the flattened array.
        dtype : type
            Type to use in computing the means. For arrays of integer type the
            default is float32, for arrays of float types it is the same as the
            array type.
        out : ndarray
            Alternative output array in which to place the result. It must have
            the same shape as the expected output but the type will be cast if
            necessary.

    *Returns*:

        mean : array (see dtype parameter above)
            A new array holding the result is returned unless out is specified,
            in which case a reference to out is returned.

    *See Also*:

        `var` : Variance

        `std` : Standard deviation

    *Notes*

        The mean is the sum of the elements along the axis divided by the number
        of elements.

    """
    try:
        mean = a.mean
    except AttributeError:
        return _wrapit(a, 'mean', axis, dtype, out)
    return mean(axis, dtype, out)


def std(a, axis=None, dtype=None, out=None):
    """Compute the standard deviation along the specified axis.

    Returns the standard deviation of the array elements, a measure of the
    spread of a distribution. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    *Parameters*:

        axis : integer
            Axis along which the standard deviation is computed. The default is
            to compute the standard deviation of the flattened array.
        dtype : type
            Type to use in computing the standard deviation. For arrays of
            integer type the default is float32, for arrays of float types it is
            the same as the array type.
        out : ndarray
            Alternative output array in which to place the result. It must have
            the same shape as the expected output but the type will be cast if
            necessary.

    *Returns*:

        standard_deviation : The return type varies, see above.
            A new array holding the result is returned unless out is specified,
            in which case a reference to out is returned.

    *See Also*:

        `var` : Variance

        `mean` : Average

    *Notes*:

        The standard deviation is the square root of the average of the squared
        deviations from the mean, i.e. var = sqrt(mean((x - x.mean())**2)).  The
        computed standard deviation is biased, i.e., the mean is computed by
        dividing by the number of elements, N, rather than by N-1.

    """
    try:
        std = a.std
    except AttributeError:
        return _wrapit(a, 'std', axis, dtype, out)
    return std(axis, dtype, out)


def var(a, axis=None, dtype=None, out=None):
    """Compute the variance along the specified axis.

    Returns the variance of the array elements, a measure of the spread of a
    distribution.  The variance is computed for the flattened array by default,
    otherwise over the specified axis.

    *Parameters*:

        axis : integer
            Axis along which the variance is computed. The default is to compute
            the variance of the flattened array.
        dtype : type
            Type to use in computing the variance. For arrays of integer type
            the default is float32, for arrays of float types it is the same as
            the array type.
        out : ndarray
            Alternative output array in which to place the result. It must have
            the same shape as the expected output but the type will be cast if
            necessary.

    *Returns*:

        variance : array (see dtype parameter above)
            A new array holding the result is returned unless out is specified,
            in which case a reference to out is returned.

    *See Also*:

        `std` : Standard deviation

        `mean` : Average

    *Notes*:

        The variance is the average of the squared deviations from the mean,
        i.e.  var = mean((x - x.mean())**2).  The computed variance is biased,
        i.e., the mean is computed by dividing by the number of elements, N,
        rather than by N-1.

    """
    try:
        var = a.var
    except AttributeError:
        return _wrapit(a, 'var', axis, dtype, out)
    return var(axis, dtype, out)

# functions that are now aliases

around = round_