1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
|
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"
# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
'searchsorted', 'alen',
'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
'amax', 'amin',
]
import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char
import types
try:
_gentype = types.GeneratorType
except AttributeError:
_gentype = types.NoneType
# save away Python sum
_sum_ = sum
# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
try:
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
result = getattr(asarray(obj),method)(*args, **kwds)
if wrap:
if not isinstance(result, mu.ndarray):
result = asarray(result)
result = wrap(result)
return result
def take(a, indices, axis=None, out=None, mode='raise'):
"""
Take elements from an array along an axis.
This function does the same thing as "fancy" indexing (indexing arrays
using arrays); however, it can be easier to use if you need elements
along a given axis.
Parameters
----------
a : array_like
The source array.
indices : array_like
The indices of the values to extract.
axis : int, optional
The axis over which to select values. By default, the flattened
input array is used.
out : ndarray, optional
If provided, the result will be placed in this array. It should
be of the appropriate shape and dtype.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
* 'raise' -- raise an error (default)
* 'wrap' -- wrap around
* 'clip' -- clip to the range
'clip' mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.
Returns
-------
subarray : ndarray
The returned array has the same type as `a`.
See Also
--------
ndarray.take : equivalent method
Examples
--------
>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])
In this example if `a` is an ndarray, "fancy" indexing can be used.
>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])
"""
try:
take = a.take
except AttributeError:
return _wrapit(a, 'take', indices, axis, out, mode)
return take(indices, axis, out, mode)
# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
"""
Gives a new shape to an array without changing its data.
Parameters
----------
a : array_like
Array to be reshaped.
newshape : int or tuple of ints
The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.
order : {'C', 'F'}, optional
Determines whether the array data should be viewed as in C
(row-major) order or FORTRAN (column-major) order.
Returns
-------
reshaped_array : ndarray
This will be a new view object if possible; otherwise, it will
be a copy.
See Also
--------
ndarray.reshape : Equivalent method.
Examples
--------
>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])
>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],
[3, 4],
[5, 6]])
"""
try:
reshape = a.reshape
except AttributeError:
return _wrapit(a, 'reshape', newshape, order=order)
return reshape(newshape, order=order)
def choose(a, choices, out=None, mode='raise'):
"""
Construct an array from an index array and a set of arrays to choose from.
First of all, if confused or uncertain, definitely look at the Examples -
in its full generality, this function is less simple than it might
seem from the following code description (below ndi =
`numpy.lib.index_tricks`):
``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``.
But this omits some subtleties. Here is a fully general summary:
Given an "index" array (`a`) of integers and a sequence of `n` arrays
(`choices`), `a` and each choice array are first broadcast, as necessary,
to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =
0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape``
for each `i`. Then, a new array with shape ``Ba.shape`` is created as
follows:
* if ``mode=raise`` (the default), then, first of all, each element of
`a` (and thus `Ba`) must be in the range `[0, n-1]`; now, suppose that
`i` (in that range) is the value at the `(j0, j1, ..., jm)` position
in `Ba` - then the value at the same position in the new array is the
value in `Bchoices[i]` at that same position;
* if ``mode=wrap``, values in `a` (and thus `Ba`) may be any (signed)
integer; modular arithmetic is used to map integers outside the range
`[0, n-1]` back into that range; and then the new array is constructed
as above;
* if ``mode=clip``, values in `a` (and thus `Ba`) may be any (signed)
integer; negative integers are mapped to 0; values greater than `n-1`
are mapped to `n-1`; and then the new array is constructed as above.
Parameters
----------
a : int array
This array must contain integers in `[0, n-1]`, where `n` is the number
of choices, unless ``mode=wrap`` or ``mode=clip``, in which cases any
integers are permissible.
choices : sequence of arrays
Choice arrays. `a` and all of the choices must be broadcastable to the
same shape. If `choices` is itself an array (not recommended), then
its outermost dimension (i.e., the one corresponding to
``choices.shape[0]``) is taken as defining the "sequence".
out : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.
mode : {'raise' (default), 'wrap', 'clip'}, optional
Specifies how indices outside `[0, n-1]` will be treated:
* 'raise' : an exception is raised
* 'wrap' : value becomes value mod `n`
* 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1
Returns
-------
merged_array : array
The merged result.
Raises
------
ValueError: shape mismatch
If `a` and each choice array are not all broadcastable to the same
shape.
See Also
--------
ndarray.choose : equivalent method
Notes
-----
To reduce the chance of misinterpretation, even though the following
"abuse" is nominally supported, `choices` should neither be, nor be
thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.
Examples
--------
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,
... # 31, etc.
... )
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20, 1, 12, 3])
>>> # i.e., 0
A couple examples illustrating how choose broadcasts:
>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[ 10, -10, 10],
[-10, 10, -10],
[ 10, -10, 10]])
>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1))
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[ 1, 1, 1, 1, 1],
[ 2, 2, 2, 2, 2],
[ 3, 3, 3, 3, 3]],
[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])
"""
try:
choose = a.choose
except AttributeError:
return _wrapit(a, 'choose', choices, out=out, mode=mode)
return choose(choices, out=out, mode=mode)
def repeat(a, repeats, axis=None):
"""
Repeat elements of an array.
Parameters
----------
a : array_like
Input array.
repeats : {int, array of ints}
The number of repetitions for each element. `repeats` is broadcasted
to fit the shape of the given axis.
axis : int, optional
The axis along which to repeat values. By default, use the
flattened input array, and return a flat output array.
Returns
-------
repeated_array : ndarray
Output array which has the same shape as `a`, except along
the given axis.
See Also
--------
tile : Tile an array.
Examples
--------
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])
"""
try:
repeat = a.repeat
except AttributeError:
return _wrapit(a, 'repeat', repeats, axis)
return repeat(repeats, axis)
def put(a, ind, v, mode='raise'):
"""
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. `put` is roughly
equivalent to:
::
a.flat[ind] = v
Parameters
----------
a : ndarray
Target array.
ind : array_like
Target indices, interpreted as integers.
v : array_like
Values to place in `a` at target indices. If `v` is shorter than
`ind` it will be repeated as necessary.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
* 'raise' -- raise an error (default)
* 'wrap' -- wrap around
* 'clip' -- clip to the range
'clip' mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.
See Also
--------
putmask, place
Examples
--------
>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a
array([-44, 1, -55, 3, 4])
>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> a
array([ 0, 1, 2, 3, -5])
"""
return a.put(ind, v, mode)
def swapaxes(a, axis1, axis2):
"""
Interchange two axes of an array.
Parameters
----------
a : array_like
Input array.
axis1 : int
First axis.
axis2 : int
Second axis.
Returns
-------
a_swapped : ndarray
If `a` is an ndarray, then a view of `a` is returned; otherwise
a new array is created.
Examples
--------
>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],
[2],
[3]])
>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> np.swapaxes(x,0,2)
array([[[0, 4],
[2, 6]],
[[1, 5],
[3, 7]]])
"""
try:
swapaxes = a.swapaxes
except AttributeError:
return _wrapit(a, 'swapaxes', axis1, axis2)
return swapaxes(axis1, axis2)
def transpose(a, axes=None):
"""
Permute the dimensions of an array.
Parameters
----------
a : array_like
Input array.
axes : list of ints, optional
By default, reverse the dimensions, otherwise permute the axes
according to the values given.
Returns
-------
p : ndarray
`a` with its axes permuted. A view is returned whenever
possible.
See Also
--------
rollaxis
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.transpose(x)
array([[0, 2],
[1, 3]])
>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)
"""
try:
transpose = a.transpose
except AttributeError:
return _wrapit(a, 'transpose', axes)
return transpose(axes)
def sort(a, axis=-1, kind='quicksort', order=None):
"""
Return a sorted copy of an array.
Parameters
----------
a : array_like
Array to be sorted.
axis : int or None, optional
Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm. Default is 'quicksort'.
order : list, optional
When `a` is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.
Returns
-------
sorted_array : ndarray
Array of the same type and shape as `a`.
See Also
--------
ndarray.sort : Method to sort an array in-place.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in a sorted array.
Notes
-----
The various sorting algorithms are characterized by their average speed,
worst case performance, work space size, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
=========== ======= ============= ============ =======
kind speed worst case work space stable
=========== ======= ============= ============ =======
'quicksort' 1 O(n^2) 0 no
'mergesort' 2 O(n*log(n)) ~n/2 yes
'heapsort' 3 O(n*log(n)) 0 no
=========== ======= ============= ============ =======
All the sort algorithms make temporary copies of the data when
sorting along any but the last axis. Consequently, sorting along
the last axis is faster and uses less space than sorting along
any other axis.
The sort order for complex numbers is lexicographic. If both the real
and imaginary parts are non-nan then the order is determined by the
real parts except when they are equal, in which case the order is
determined by the imaginary parts.
Previous to numpy 1.4.0 sorting real and complex arrays containing nan
values led to undefined behaviour. In numpy versions >= 1.4.0 nan
values are sorted to the end. The extended sort order is:
* Real: [R, nan]
* Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]
where R is a non-nan real value. Complex values with the same nan
placements are sorted according to the non-nan part if it exists.
Non-nan values are sorted as before.
Examples
--------
>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],
[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],
[3, 4]])
Use the `order` keyword to specify a field to use when sorting a
structured array:
>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height') # doctest: +SKIP
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
('Lancelot', 1.8999999999999999, 38)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
Sort by age, then height if ages are equal:
>>> np.sort(a, order=['age', 'height']) # doctest: +SKIP
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
('Arthur', 1.8, 41)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
"""
if axis is None:
a = asanyarray(a).flatten()
axis = 0
else:
a = asanyarray(a).copy()
a.sort(axis, kind, order)
return a
def argsort(a, axis=-1, kind='quicksort', order=None):
"""
Returns the indices that would sort an array.
Perform an indirect sort along the given axis using the algorithm specified
by the `kind` keyword. It returns an array of indices of the same shape as
`a` that index data along the given axis in sorted order.
Parameters
----------
a : array_like
Array to sort.
axis : int or None, optional
Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm.
order : list, optional
When `a` is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
Returns
-------
index_array : ndarray, int
Array of indices that sort `a` along the specified axis.
In other words, ``a[index_array]`` yields a sorted `a`.
See Also
--------
sort : Describes sorting algorithms used.
lexsort : Indirect stable sort with multiple keys.
ndarray.sort : Inplace sort.
Notes
-----
See `sort` for notes on the different sorting algorithms.
As of NumPy 1.4.0 `argsort` works with real/complex arrays containing
nan values. The enhanced sort order is documented in `sort`.
Examples
--------
One dimensional array:
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])
Two-dimensional array:
>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
[2, 2]])
>>> np.argsort(x, axis=0)
array([[0, 1],
[1, 0]])
>>> np.argsort(x, axis=1)
array([[0, 1],
[0, 1]])
Sorting with keys:
>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
dtype=[('x', '<i4'), ('y', '<i4')])
>>> np.argsort(x, order=('x','y'))
array([1, 0])
>>> np.argsort(x, order=('y','x'))
array([0, 1])
"""
try:
argsort = a.argsort
except AttributeError:
return _wrapit(a, 'argsort', axis, kind, order)
return argsort(axis, kind, order)
def argmax(a, axis=None):
"""
Indices of the maximum values along an axis.
Parameters
----------
a : array_like
Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise
along the specified axis.
Returns
-------
index_array : ndarray of ints
Array of indices into the array. It has the same shape as `a.shape`
with the dimension along `axis` removed.
See Also
--------
ndarray.argmax, argmin
amax : The maximum value along a given axis.
unravel_index : Convert a flat index into an index tuple.
Notes
-----
In case of multiple occurrences of the maximum values, the indices
corresponding to the first occurrence are returned.
Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])
>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1
"""
try:
argmax = a.argmax
except AttributeError:
return _wrapit(a, 'argmax', axis)
return argmax(axis)
def argmin(a, axis=None):
"""
Return the indices of the minimum values along an axis.
See Also
--------
argmax : Similar function. Please refer to `numpy.argmax` for detailed
documentation.
"""
try:
argmin = a.argmin
except AttributeError:
return _wrapit(a, 'argmin', axis)
return argmin(axis)
def searchsorted(a, v, side='left'):
"""
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted array `a` such that, if the corresponding
elements in `v` were inserted before the indices, the order of `a` would
be preserved.
Parameters
----------
a : 1-D array_like
Input array, sorted in ascending order.
v : array_like
Values to insert into `a`.
side : {'left', 'right'}, optional
If 'left', the index of the first suitable location found is given. If
'right', return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of `a`).
Returns
-------
indices : array of ints
Array of insertion points with the same shape as `v`.
See Also
--------
sort : Return a sorted copy of an array.
histogram : Produce histogram from 1-D data.
Notes
-----
Binary search is used to find the required insertion points.
As of Numpy 1.4.0 `searchsorted` works with real/complex arrays containing
`nan` values. The enhanced sort order is documented in `sort`.
Examples
--------
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])
"""
try:
searchsorted = a.searchsorted
except AttributeError:
return _wrapit(a, 'searchsorted', v, side)
return searchsorted(v, side)
def resize(a, new_shape):
"""
Return a new array with the specified shape.
If the new array is larger than the original array, then the new array
is filled with repeated copied of `a`. Note that this behavior is different
from a.resize(new_shape) which fills with zeros instead of repeated
copies of `a`.
Parameters
----------
a : array_like
Array to be resized.
new_shape : {tuple, int}
Shape of resized array.
Returns
-------
reshaped_array : ndarray
The new array is formed from the data in the old array, repeated
if necessary to fill out the required number of elements. The data
are repeated in the order that the data are stored in memory.
See Also
--------
ndarray.resize : resize an array in-place.
Examples
--------
>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],
[0, 1, 2, 3]])
"""
if isinstance(new_shape, (int, nt.integer)):
new_shape = (new_shape,)
a = ravel(a)
Na = len(a)
if not Na: return mu.zeros(new_shape, a.dtype.char)
total_size = um.multiply.reduce(new_shape)
n_copies = int(total_size / Na)
extra = total_size % Na
if total_size == 0:
return a[:0]
if extra != 0:
n_copies = n_copies+1
extra = Na-extra
a = concatenate( (a,)*n_copies)
if extra > 0:
a = a[:-extra]
return reshape(a, new_shape)
def squeeze(a):
"""
Remove single-dimensional entries from the shape of an array.
Parameters
----------
a : array_like
Input data.
Returns
-------
squeezed : ndarray
The input array, but with with all dimensions of length 1
removed. Whenever possible, a view on `a` is returned.
Examples
--------
>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
"""
try:
squeeze = a.squeeze
except AttributeError:
return _wrapit(a, 'squeeze')
return squeeze()
def diagonal(a, offset=0, axis1=0, axis2=1):
"""
Return specified diagonals.
If `a` is 2-D, returns the diagonal of `a` with the given offset,
i.e., the collection of elements of the form `a[i,i+offset]`.
If `a` has more than two dimensions, then the axes specified
by `axis1` and `axis2` are used to determine the 2-D subarray
whose diagonal is returned. The shape of the resulting array
can be determined by removing `axis1` and `axis2` and appending
an index to the right equal to the size of the resulting diagonals.
Parameters
----------
a : array_like
Array from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal (0).
axis1 : int, optional
Axis to be used as the first axis of the 2-D subarrays from which
the diagonals should be taken. Defaults to first axis (0).
axis2 : int, optional
Axis to be used as the second axis of the 2-D subarrays from which
the diagonals should be taken. Defaults to second axis (1).
Returns
-------
array_of_diagonals : ndarray
If `a` is 2-D, a 1-D array containing the diagonal is
returned. If `a` has larger dimensions, then an array of
diagonals is returned.
Raises
------
ValueError
If the dimension of `a` is less than 2.
See Also
--------
diag : Matlab workalike for 1-D and 2-D arrays.
diagflat : Create diagonal arrays.
trace : Sum along diagonals.
Examples
--------
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])
>>> a = np.arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
[4, 7]])
"""
return asarray(a).diagonal(offset, axis1, axis2)
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""
Return the sum along diagonals of the array.
If `a` is 2-D, the sum along its diagonal with the given offset
is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.
If `a` has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-D sub-arrays whose traces are returned.
The shape of the resulting array is the same as that of `a` with `axis1`
and `axis2` removed.
Parameters
----------
a : array_like
Input array, from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to 0.
axis1, axis2 : int, optional
Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two
axes of `a`.
dtype : dtype, optional
Determines the data-type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and `a` is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of `a`.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and
it must be of the right shape to hold the output.
Returns
-------
sum_along_diagonals : ndarray
If `a` is 2-D, the sum along the diagonal is returned. If `a` has
larger dimensions, then an array of sums along diagonals is returned.
See Also
--------
diag, diagonal, diagflat
Examples
--------
>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])
>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)
"""
return asarray(a).trace(offset, axis1, axis2, dtype, out)
def ravel(a, order='C'):
"""
Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is
made only if needed.
Parameters
----------
a : array_like
Input array. The elements in `a` are read in the order specified by
`order`, and packed as a 1-D array.
order : {'C','F'}, optional
The elements of `a` are read in this order. It can be either
'C' for row-major order, or `F` for column-major order.
By default, row-major order is used.
Returns
-------
1d_array : ndarray
Output of the same dtype as `a`, and of shape ``(a.size(),)``.
See Also
--------
ndarray.flat : 1-D iterator over an array.
ndarray.flatten : 1-D array copy of the elements of an array
in row-major order.
Notes
-----
In row-major order, the row index varies the slowest, and the column
index the quickest. This can be generalized to multiple dimensions,
where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds
for Fortran-, or column-major, mode.
Examples
--------
If an array is in C-order (default), then `ravel` is equivalent
to ``reshape(-1)``:
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print x.reshape(-1)
[1 2 3 4 5 6]
>>> print np.ravel(x)
[1 2 3 4 5 6]
When flattening using Fortran-order, however, we see
>>> print np.ravel(x, order='F')
[1 4 2 5 3 6]
"""
return asarray(a).ravel(order)
def nonzero(a):
"""
Return the indices of the elements that are non-zero.
Returns a tuple of arrays, one for each dimension of `a`, containing
the indices of the non-zero elements in that dimension. The
corresponding non-zero values can be obtained with::
a[nonzero(a)]
To group the indices by element, rather than dimension, use::
transpose(nonzero(a))
The result of this is always a 2-D array, with a row for
each non-zero element.
Parameters
----------
a : array_like
Input array.
Returns
-------
tuple_of_arrays : tuple
Indices of elements that are non-zero.
See Also
--------
flatnonzero :
Return indices that are non-zero in the flattened version of the input
array.
ndarray.nonzero :
Equivalent ndarray method.
Examples
--------
>>> x = np.eye(3)
>>> x
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> np.nonzero(x)
(array([0, 1, 2]), array([0, 1, 2]))
>>> x[np.nonzero(x)]
array([ 1., 1., 1.])
>>> np.transpose(np.nonzero(x))
array([[0, 0],
[1, 1],
[2, 2]])
A common use for ``nonzero`` is to find the indices of an array, where
a condition is True. Given an array `a`, the condition `a` > 3 is a
boolean array and since False is interpreted as 0, np.nonzero(a > 3)
yields the indices of the `a` where the condition is true.
>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
array([[False, False, False],
[ True, True, True],
[ True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
The ``nonzero`` method of the boolean array can also be called.
>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
"""
try:
nonzero = a.nonzero
except AttributeError:
res = _wrapit(a, 'nonzero')
else:
res = nonzero()
return res
def shape(a):
"""
Return the shape of an array.
Parameters
----------
a : array_like
Input array.
Returns
-------
shape : tuple of ints
The elements of the shape tuple give the lengths of the
corresponding array dimensions.
See Also
--------
alen
ndarray.shape : Equivalent array method.
Examples
--------
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()
>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)
"""
try:
result = a.shape
except AttributeError:
result = asarray(a).shape
return result
def compress(condition, a, axis=None, out=None):
"""
Return selected slices of an array along given axis.
When working along a given axis, a slice along that axis is returned in
`output` for each index where `condition` evaluates to True. When
working on a 1-D array, `compress` is equivalent to `extract`.
Parameters
----------
condition : 1-D array of bools
Array that selects which entries to return. If len(condition)
is less than the size of `a` along the given axis, then output is
truncated to the length of the condition array.
a : array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the
flattened array.
out : ndarray, optional
Output array. Its type is preserved and it must be of the right
shape to hold the output.
Returns
-------
compressed_array : ndarray
A copy of `a` without the slices along axis for which `condition`
is false.
See Also
--------
take, choose, diag, diagonal, select
ndarray.compress : Equivalent method.
numpy.doc.ufuncs : Section "Output arguments"
Examples
--------
>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],
[5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],
[4],
[6]])
Working on the flattened array does not return slices along an axis but
selects elements.
>>> np.compress([False, True], a)
array([2])
"""
try:
compress = a.compress
except AttributeError:
return _wrapit(a, 'compress', condition, axis, out)
return compress(condition, axis, out)
def clip(a, a_min, a_max, out=None):
"""
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to
the interval edges. For example, if an interval of ``[0, 1]``
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.
Parameters
----------
a : array_like
Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like
Maximum value. If `a_min` or `a_max` are array_like, then they will
be broadcasted to the shape of `a`.
out : ndarray, optional
The results will be placed in this array. It may be the input
array for in-place clipping. `out` must be of the right shape
to hold the output. Its type is preserved.
Returns
-------
clipped_array : ndarray
An array with the elements of `a`, but where values
< `a_min` are replaced with `a_min`, and those > `a_max`
with `a_max`.
See Also
--------
numpy.doc.ufuncs : Section "Output arguments"
Examples
--------
>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
"""
try:
clip = a.clip
except AttributeError:
return _wrapit(a, 'clip', a_min, a_max, out)
return clip(a_min, a_max, out)
def sum(a, axis=None, dtype=None, out=None):
"""
Sum of array elements over a given axis.
Parameters
----------
a : array_like
Elements to sum.
axis : integer, optional
Axis over which the sum is taken. By default `axis` is None,
and all elements are summed.
dtype : dtype, optional
The type of the returned array and of the accumulator in which
the elements are summed. By default, the dtype of `a` is used.
An exception is when `a` has an integer type with less precision
than the default platform integer. In that case, the default
platform integer is used instead.
out : ndarray, optional
Array into which the output is placed. By default, a new array is
created. If `out` is given, it must be of the appropriate shape
(the shape of `a` with `axis` removed, i.e.,
``numpy.delete(a.shape, axis)``). Its type is preserved. See
`doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
sum_along_axis : ndarray
An array with the same shape as `a`, with the specified
axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar
is returned. If an output array is specified, a reference to
`out` is returned.
See Also
--------
ndarray.sum : Equivalent method.
cumsum : Cumulative sum of array elements.
trapz : Integration of array values using the composite trapezoidal rule.
mean, average
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
If the accumulator is too small, overflow occurs:
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128
"""
if isinstance(a, _gentype):
res = _sum_(a)
if out is not None:
out[...] = res
return out
return res
try:
sum = a.sum
except AttributeError:
return _wrapit(a, 'sum', axis, dtype, out)
return sum(axis, dtype, out)
def product (a, axis=None, dtype=None, out=None):
"""
Return the product of array elements over a given axis.
See Also
--------
prod : equivalent function; see for details.
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def sometrue(a, axis=None, out=None):
"""
Check whether some values are true.
Refer to `any` for full documentation.
See Also
--------
any : equivalent function
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def alltrue (a, axis=None, out=None):
"""
Check if all elements of input array are true.
See Also
--------
numpy.all : Equivalent function; see for details.
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def any(a,axis=None, out=None):
"""
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless `axis` is not ``None``
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int, optional
Axis along which a logical OR is performed.
The default (`axis` = `None`) is to perform a logical OR
over a flattened input array. `axis` may be negative, in which
case it counts from the last to the first axis.
out : ndarray, optional
Alternative output array in which to place the result.
It must have the same shape as the expected output and
the type is preserved. See `doc.ufuncs` (Section
"Output arguments") for details.
Returns
-------
any : bool, ndarray
A new boolean or `ndarray` is returned unless `out` is
specified, in which case a reference to `out` is returned.
See Also
--------
ndarray.any : equivalent method
all : Test whether all array elements along a given axis evaluate
to True.
Notes
-----
Not a Number (NaN), positive infinity and negative infinity
evaluate to `True` because these are not equal to zero.
Examples
--------
>>> np.any([[True, False], [True, True]])
True
>>> np.any([[True, False], [False, False]], axis=0)
array([ True, False], dtype=bool)
>>> np.any([-1, 0, 5])
True
>>> np.any(np.nan)
True
>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array([ True], dtype=bool), array([ True], dtype=bool))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o # doctest: +SKIP
(191614240, 191614240)
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def all(a,axis=None, out=None):
"""
Test whether all array elements along a given axis evaluate to True.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int, optional
Axis along which a logical AND is performed.
The default (`axis` = `None`) is to perform a logical AND
over a flattened input array. `axis` may be negative, in which
case it counts from the last to the first axis.
out : ndarray, optional
Alternative output array in which to place the result.
It must have the same shape as the expected output and
the type is preserved. See `doc.ufuncs` (Section "Output
arguments") for more details.
Returns
-------
all : ndarray, bool
A new boolean or array is returned unless `out` is
specified, in which case a reference to `out` is returned.
See Also
--------
ndarray.all : equivalent method
any : Test whether any array element along a given axis evaluates to True.
Notes
-----
Not a Number (NaN), positive infinity and negative infinity
evaluate to `True` because these are not equal to zero.
Examples
--------
>>> np.all([[True,False],[True,True]])
False
>>> np.all([[True,False],[True,True]], axis=0)
array([ True, False], dtype=bool)
>>> np.all([-1, 4, 5])
True
>>> np.all([1.0, np.nan])
True
>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z # doctest: +SKIP
(28293632, 28293632, array([ True], dtype=bool))
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def cumsum (a, axis=None, dtype=None, out=None):
"""
Return the cumulative sum of the elements along a given axis.
Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened array.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See `doc.ufuncs`
(Section "Output arguments") for more details.
Returns
-------
cumsum_along_axis : ndarray.
A new array holding the result is returned unless `out` is
specified, in which case a reference to `out` is returned. The
result has the same size as `a`, and the same shape as `a` if
`axis` is not None or `a` is a 1-d array.
See Also
--------
sum : Sum array elements.
trapz : Integration of array values using the composite trapezoidal rule.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> np.cumsum(a)
array([ 1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([ 1., 3., 6., 10., 15., 21.])
>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],
[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[ 1, 3, 6],
[ 4, 9, 15]])
"""
try:
cumsum = a.cumsum
except AttributeError:
return _wrapit(a, 'cumsum', axis, dtype, out)
return cumsum(axis, dtype, out)
def cumproduct(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product over the given axis.
See Also
--------
cumprod : equivalent function; see for details.
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ptp(a, axis=None, out=None):
"""
Range of values (maximum - minimum) along an axis.
The name of the function comes from the acronym for 'peak to peak'.
Parameters
----------
a : array_like
Input values.
axis : int, optional
Axis along which to find the peaks. By default, flatten the
array.
out : array_like
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type of the output values will be cast if necessary.
Returns
-------
ptp : ndarray
A new array holding the result, unless `out` was
specified, in which case a reference to `out` is returned.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.ptp(x, axis=0)
array([2, 2])
>>> np.ptp(x, axis=1)
array([1, 1])
"""
try:
ptp = a.ptp
except AttributeError:
return _wrapit(a, 'ptp', axis, out)
return ptp(axis, out)
def amax(a, axis=None, out=None):
"""
Return the maximum along an axis.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default flattened input is used.
out : ndarray, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
See `doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
amax : ndarray
A new array or a scalar with the result, or a reference to `out`
if it was specified.
See Also
--------
nanmax : nan values are ignored instead of being propagated
fmax : same behavior as the C99 fmax function
argmax : Indices of the maximum values.
Notes
-----
NaN values are propagated, that is if at least one item is nan, the
corresponding max value will be nan as well. To ignore NaN values (matlab
behavior), please use nanmax.
Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
[2, 3]])
>>> np.amax(a)
3
>>> np.amax(a, axis=0)
array([2, 3])
>>> np.amax(a, axis=1)
array([1, 3])
>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amax(b)
nan
>>> np.nanmax(b)
4.0
"""
try:
amax = a.max
except AttributeError:
return _wrapit(a, 'max', axis, out)
return amax(axis, out)
def amin(a, axis=None, out=None):
"""
Return the minimum along an axis.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default a flattened input is used.
out : ndarray, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
See `doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
amin : ndarray
A new array or a scalar with the result, or a reference to `out` if it
was specified.
See Also
--------
nanmin: nan values are ignored instead of being propagated
fmin: same behavior as the C99 fmin function
argmin: Return the indices of the minimum values.
amax, nanmax, fmax
Notes
-----
NaN values are propagated, that is if at least one item is nan, the
corresponding min value will be nan as well. To ignore NaN values (matlab
behavior), please use nanmin.
Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
[2, 3]])
>>> np.amin(a) # Minimum of the flattened array
0
>>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])
>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amin(b)
nan
>>> np.nanmin(b)
0.0
"""
try:
amin = a.min
except AttributeError:
return _wrapit(a, 'min', axis, out)
return amin(axis, out)
def alen(a):
"""
Return the length of the first dimension of the input array.
Parameters
----------
a : array_like
Input array.
Returns
-------
l : int
Length of the first dimension of `a`.
See Also
--------
shape, size
Examples
--------
>>> a = np.zeros((7,4,5))
>>> a.shape[0]
7
>>> np.alen(a)
7
"""
try:
return len(a)
except TypeError:
return len(array(a,ndmin=1))
def prod(a, axis=None, dtype=None, out=None):
"""
Return the product of array elements over a given axis.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis over which the product is taken. By default, the product
of all elements is calculated.
dtype : data-type, optional
The data-type of the returned array, as well as of the accumulator
in which the elements are multiplied. By default, if `a` is of
integer type, `dtype` is the default platform integer. (Note: if
the type of `a` is unsigned, then so is `dtype`.) Otherwise,
the dtype is the same as that of `a`.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output, but the type of the
output values will be cast if necessary.
Returns
-------
product_along_axis : ndarray, see `dtype` parameter above.
An array shaped as `a` but with the specified axis removed.
Returns a reference to `out` if specified.
See Also
--------
ndarray.prod : equivalent method
numpy.doc.ufuncs : Section "Output arguments"
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow. That means that, on a 32-bit platform:
>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16
Examples
--------
By default, calculate the product of all elements:
>>> np.prod([1.,2.])
2.0
Even when the input array is two-dimensional:
>>> np.prod([[1.,2.],[3.,4.]])
24.0
But we can also specify the axis over which to multiply:
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
If the type of `x` is unsigned, then the output type is
the unsigned platform integer:
>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True
If `x` is of a signed integer type, then the output type
is the default platform integer:
>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == np.int
True
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def cumprod(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product of elements along a given axis.
Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative product is computed. By default the
input is flattened.
dtype : dtype, optional
Type of the returned array, as well as of the accumulator in which
the elements are multiplied. If dtype is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a precision
less than that of the default platform integer. In that case, the
default platform integer is used instead.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.
Returns
-------
cumprod : ndarray
A new array holding the result is returned unless `out` is
specified, in which case a reference to out is returned.
See Also
--------
numpy.doc.ufuncs : Section "Output arguments"
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([ 1., 2., 6., 24., 120., 720.])
The cumulative product for each column (i.e., over the rows of)
`a`:
>>> np.cumprod(a, axis=0)
array([[ 1, 2, 3],
[ 4, 10, 18]])
The cumulative product for each row (i.e. over the columns of)
`a`:
>>> np.cumprod(a,axis=1)
array([[ 1, 2, 6],
[ 4, 20, 120]])
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ndim(a):
"""
Return the number of dimensions of an array.
Parameters
----------
a : array_like
Input array. If it is not already an ndarray, a conversion is
attempted.
Returns
-------
number_of_dimensions : int
The number of dimensions in `a`. Scalars are zero-dimensional.
See Also
--------
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array
Examples
--------
>>> np.ndim([[1,2,3],[4,5,6]])
2
>>> np.ndim(np.array([[1,2,3],[4,5,6]]))
2
>>> np.ndim(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def rank(a):
"""
Return the number of dimensions of an array.
If `a` is not already an array, a conversion is attempted.
Scalars are zero dimensional.
Parameters
----------
a : array_like
Array whose number of dimensions is desired. If `a` is not an array,
a conversion is attempted.
Returns
-------
number_of_dimensions : int
The number of dimensions in the array.
See Also
--------
ndim : equivalent function
ndarray.ndim : equivalent property
shape : dimensions of array
ndarray.shape : dimensions of array
Notes
-----
In the old Numeric package, `rank` was the term used for the number of
dimensions, but in Numpy `ndim` is used instead.
Examples
--------
>>> np.rank([1,2,3])
1
>>> np.rank(np.array([[1,2,3],[4,5,6]]))
2
>>> np.rank(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def size(a, axis=None):
"""
Return the number of elements along a given axis.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which the elements are counted. By default, give
the total number of elements.
Returns
-------
element_count : int
Number of elements along the specified axis.
See Also
--------
shape : dimensions of array
ndarray.shape : dimensions of array
ndarray.size : number of elements in array
Examples
--------
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2
"""
if axis is None:
try:
return a.size
except AttributeError:
return asarray(a).size
else:
try:
return a.shape[axis]
except AttributeError:
return asarray(a).shape[axis]
def around(a, decimals=0, out=None):
"""
Evenly round to the given number of decimals.
Parameters
----------
a : array_like
Input data.
decimals : int, optional
Number of decimal places to round to (default: 0). If
decimals is negative, it specifies the number of positions to
the left of the decimal point.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary. See `doc.ufuncs` (Section
"Output arguments") for details.
Returns
-------
rounded_array : ndarray
An array of the same type as `a`, containing the rounded values.
Unless `out` was specified, a new array is created. A reference to
the result is returned.
The real and imaginary parts of complex numbers are rounded
separately. The result of rounding a float is a float.
See Also
--------
ndarray.round : equivalent method
ceil, fix, floor, rint, trunc
Notes
-----
For values exactly halfway between rounded decimal values, Numpy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
to the inexact representation of decimal fractions in the IEEE
floating point standard [1]_ and errors introduced when scaling
by powers of ten.
References
----------
.. [1] "Lecture Notes on the Status of IEEE 754", William Kahan,
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
.. [2] "How Futile are Mindless Assessments of
Roundoff in Floating-Point Computation?", William Kahan,
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
Examples
--------
>>> np.around([0.37, 1.64])
array([ 0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([ 0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def round_(a, decimals=0, out=None):
"""
Round an array to the given number of decimals.
Refer to `around` for full documentation.
See Also
--------
around : equivalent function
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def mean(a, axis=None, dtype=None, out=None):
"""
Compute the arithmetic mean along the specified axis.
Returns the average of the array elements. The average is taken
over the flattened array by default, otherwise over the specified
axis. float64 intermediate and return values are used for integer
inputs.
Parameters
----------
a : array_like
Array containing numbers whose mean is desired. If `a` is not an
array, a conversion is attempted.
axis : int, optional
Axis along which the means are computed. The default is to compute
the mean of the flattened array.
dtype : dtype, optional
Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary. See `doc.ufuncs` for details.
Returns
-------
m : ndarray, see dtype parameter above
If `out=None`, returns a new array containing the mean values,
otherwise a reference to the output array is returned.
See Also
--------
average : Weighted average
Notes
-----
The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.
Note that for floating-point input, the mean is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the `dtype` keyword can
alleviate this issue.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2., 3.])
>>> np.mean(a, axis=1)
array([ 1.5, 3.5])
In single precision, `mean` can be inaccurate:
>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875
Computing the mean in float64 is more accurate:
>>> np.mean(a, dtype=np.float64)
0.55000000074505806
"""
try:
mean = a.mean
except AttributeError:
return _wrapit(a, 'mean', axis, dtype, out)
return mean(axis, dtype, out)
def std(a, axis=None, dtype=None, out=None, ddof=0):
"""
Compute the standard deviation along the specified axis.
Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.
Parameters
----------
a : array_like
Calculate the standard deviation of these values.
axis : int, optional
Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.
dtype : dtype, optional
Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.
ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations
is ``N - ddof``, where ``N`` represents the number of elements.
By default `ddof` is zero.
Returns
-------
standard_deviation : ndarray, see dtype parameter above.
If `out` is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.
See Also
--------
var, mean
numpy.doc.ufuncs : Section "Output arguments"
Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``.
The mean is normally calculated as ``x.sum() / N``, where
``N = len(x)``. If, however, `ddof` is specified, the divisor ``N - ddof``
is used instead. In standard statistical practice, ``ddof=1`` provides an
unbiased estimator of the variance of the infinite population. ``ddof=0``
provides a maximum likelihood estimate of the variance for normally
distributed variables. The standard deviation computed in this function
is the square root of the estimated variance, so even with ``ddof=1``, it
will not be an unbiased estimate of the standard deviation per se.
Note that, for complex numbers, `std` takes the absolute
value before squaring, so that the result is always real and nonnegative.
For floating-point input, the *std* is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the `dtype` keyword can
alleviate this issue.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([ 1., 1.])
>>> np.std(a, axis=1)
array([ 0.5, 0.5])
In single precision, std() can be inaccurate:
>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706
Computing the standard deviation in float64 is more accurate:
>>> np.std(a, dtype=np.float64)
0.44999999925552653
"""
try:
std = a.std
except AttributeError:
return _wrapit(a, 'std', axis, dtype, out, ddof)
return std(axis, dtype, out, ddof)
def var(a, axis=None, dtype=None, out=None, ddof=0):
"""
Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by default,
otherwise over the specified axis.
Parameters
----------
a : array_like
Array containing numbers whose variance is desired. If `a` is not an
array, a conversion is attempted.
axis : int, optional
Axis along which the variance is computed. The default is to compute
the variance of the flattened array.
dtype : dtype, optional
Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type is cast if
necessary.
ddof : int, optional
"Delta Degrees of Freedom": the divisor used in calculation is
``N - ddof``, where ``N`` represents the number of elements. By
default `ddof` is zero.
Returns
-------
variance : ndarray, see dtype parameter above
If out=None, returns a new array containing the variance; otherwise
a reference to the output array is returned.
See Also
--------
std : Standard deviation
mean : Average
numpy.doc.ufuncs : Section "Output arguments"
Notes
-----
The variance is the average of the squared deviations from the mean,
i.e., ``var = mean(abs(x - x.mean())**2)``.
The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``.
If, however, `ddof` is specified, the divisor ``N - ddof`` is used
instead. In standard statistical practice, ``ddof=1`` provides an
unbiased estimator of the variance of the infinite population. ``ddof=0``
provides a maximum likelihood estimate of the variance for normally
distributed variables.
Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.
For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the `dtype` keyword can
alleviate this issue.
Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a,0)
array([ 1., 1.])
>>> np.var(a,1)
array([ 0.25, 0.25])
In single precision, var() can be inaccurate:
>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096
Computing the standard deviation in float64 is more accurate:
>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001
"""
try:
var = a.var
except AttributeError:
return _wrapit(a, 'var', axis, dtype, out, ddof)
return var(axis, dtype, out, ddof)
|