1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
|
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"
# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
'searchsorted', 'alen',
'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
'amax', 'amin',
]
import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char
import types
try:
_gentype = types.GeneratorType
except AttributeError:
_gentype = types.NoneType
# save away Python sum
_sum_ = sum
# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
try:
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
result = getattr(asarray(obj),method)(*args, **kwds)
if wrap:
if not isinstance(result, mu.ndarray):
result = asarray(result)
result = wrap(result)
return result
def take(a, indices, axis=None, out=None, mode='raise'):
"""Return an array formed from the elements of a at the given indices.
This function does the same thing as "fancy" indexing; however, it can
be easier to use if you need to specify a given axis.
Parameters
----------
a : array
The source array
indices : int array
The indices of the values to extract.
axis : {None, int}, optional
The axis over which to select values. None signifies that the
operation should be performed over the flattened array.
out : {None, array}, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' -- raise an error
'wrap' -- wrap around
'clip' -- clip to the range
Returns
-------
subarray : array
The returned array has the same type as a.
See Also
--------
ndarray.take : equivalent method
"""
try:
take = a.take
except AttributeError:
return _wrapit(a, 'take', indices, axis, out, mode)
return take(indices, axis, out, mode)
# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
"""Returns an array containing the data of a, but with a new shape.
Parameters
----------
a : array
Array to be reshaped.
newshape : shape tuple or int
The new shape should be compatible with the original shape. If an
integer, then the result will be a 1D array of that length.
order : {'C', 'FORTRAN'}, optional
Determines whether the array data should be viewed as in C
(row-major) order or FORTRAN (column-major) order.
Returns
-------
reshaped_array : array
This will be a new view object if possible; otherwise, it will
be a copy.
See Also
--------
ndarray.reshape : Equivalent method.
"""
try:
reshape = a.reshape
except AttributeError:
return _wrapit(a, 'reshape', newshape, order=order)
return reshape(newshape, order=order)
def choose(a, choices, out=None, mode='raise'):
"""Use an index array to construct a new array from a set of
choices.
Given an array of integers and a set of n choice arrays, this function
will create a new array that merges each of the choice arrays. Where a
value in `a` is i, then the new array will have the value that
choices[i] contains in the same place.
Parameters
----------
a : int array
This array must contain integers in [0, n-1], where n is the number
of choices.
choices : sequence of arrays
Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.
out : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' : raise an error
'wrap' : wrap around
'clip' : clip to the range
Returns
-------
merged_array : array
See Also
--------
ndarray.choose : equivalent method
Examples
--------
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices)
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip')
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='wrap')
array([20, 1, 12, 3])
"""
try:
choose = a.choose
except AttributeError:
return _wrapit(a, 'choose', choices, out=out, mode=mode)
return choose(choices, out=out, mode=mode)
def repeat(a, repeats, axis=None):
"""Repeat elements of an array.
Parameters
----------
a : {array_like}
Input array.
repeats : {integer, integer_array}
The number of repetitions for each element. If a plain integer, then
it is applied to all elements. If an array, it needs to be of the
same length as the chosen axis.
axis : {None, integer}, optional
The axis along which to repeat values. If None, then this function
will operated on the flattened array `a` and return a similarly flat
result.
Returns
-------
repeated_array : array
See Also
--------
ndarray.repeat : equivalent method
tile : tile an array
Examples
--------
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])
"""
try:
repeat = a.repeat
except AttributeError:
return _wrapit(a, 'repeat', repeats, axis)
return repeat(repeats, axis)
def put(a, ind, v, mode='raise'):
"""Set a.flat[n] = v[n] for all n in ind.
If v is shorter than ind, it will repeat.
Parameters
----------
a : array_like (contiguous)
Target array.
ind : array_like
Target indices, interpreted as integers.
v : array_like
Values to place in `a` at target indices.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' -- raise an error
'wrap' -- wrap around
'clip' -- clip to the range
Notes
-----
If v is shorter than mask it will be repeated as necessary. In particular v
can be a scalar or length 1 array. The routine put is the equivalent of the
following (although the loop is in C for speed):
ind = array(indices, copy=False)
v = array(values, copy=False).astype(a.dtype)
for i in ind: a.flat[i] = v[i]
Examples
--------
>>> x = np.arange(5)
>>> np.put(x,[0,2,4],[-1,-2,-3])
>>> print x
[-1 1 -2 3 -3]
"""
return a.put(ind, v, mode)
def swapaxes(a, axis1, axis2):
"""Return a view of array a with axis1 and axis2 interchanged.
Parameters
----------
a : array_like
Input array.
axis1 : int
First axis.
axis2 : int
Second axis.
Examples
--------
>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],
[2],
[3]])
>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> np.swapaxes(x,0,2)
array([[[0, 4],
[2, 6]],
[[1, 5],
[3, 7]]])
"""
try:
swapaxes = a.swapaxes
except AttributeError:
return _wrapit(a, 'swapaxes', axis1, axis2)
return swapaxes(axis1, axis2)
def transpose(a, axes=None):
"""Return a view of the array with dimensions permuted.
Parameters
----------
a : array_like
Input array.
axes : {None, list of int}, optional
If None (the default), reverse dimensions, otherwise permute
axes according to the values given.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.transpose(x)
array([[0, 2],
[1, 3]])
>>> np.transpose(x,(0,1)) # no change, axes are kept in current order
array([[0, 1],
[2, 3]])
"""
try:
transpose = a.transpose
except AttributeError:
return _wrapit(a, 'transpose', axes)
return transpose(axes)
def sort(a, axis=-1, kind='quicksort', order=None):
"""Return copy of 'a' sorted along the given axis.
Perform an inplace sort along the given axis using the algorithm
specified by the kind keyword.
Parameters
----------
a : array
Array to be sorted.
axis : {None, int} optional
Axis along which to sort. None indicates that the flattened
array should be used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm to use.
order : {None, list type}, optional
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
Returns
-------
sorted_array : array of same type as a
See Also
--------
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find keys in sorted array.
Notes
-----
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
=========== ======= ============= ============ =======
kind speed worst case work space stable
=========== ======= ============= ============ =======
'quicksort' 1 O(n^2) 0 no
'mergesort' 2 O(n*log(n)) ~n/2 yes
'heapsort' 3 O(n*log(n)) 0 no
=========== ======= ============= ============ =======
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
if axis is None:
a = asanyarray(a).flatten()
axis = 0
else:
a = asanyarray(a).copy()
a.sort(axis, kind, order)
return a
def argsort(a, axis=-1, kind='quicksort', order=None):
"""Returns array of indices that index 'a' in sorted order.
Perform an indirect sort along the given axis using the algorithm specified
by the kind keyword. It returns an array of indices of the same shape as a
that index data along the given axis in sorted order.
Parameters
----------
a : array
Array to be sorted.
axis : {None, int} optional
Axis along which to sort. None indicates that the flattened
array should be used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm to use.
order : {None, list type}, optional
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
Returns
-------
index_array : {integer_array}
Array of indices that sort 'a' along the specified axis.
See Also
--------
lexsort : Indirect stable sort with multiple keys.
sort : Inplace sort.
Notes
-----
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
+-----------+-------+-------------+------------+-------+
| kind | speed | worst case | work space | stable|
+===========+=======+=============+============+=======+
| quicksort | 1 | O(n^2) | 0 | no |
+-----------+-------+-------------+------------+-------+
| mergesort | 2 | O(n*log(n)) | ~n/2 | yes |
+-----------+-------+-------------+------------+-------+
| heapsort | 3 | O(n*log(n)) | 0 | no |
+-----------+-------+-------------+------------+-------+
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
try:
argsort = a.argsort
except AttributeError:
return _wrapit(a, 'argsort', axis, kind, order)
return argsort(axis, kind, order)
def argmax(a, axis=None):
"""Returns array of indices of the maximum values of along the given axis.
Parameters
----------
a : {array_like}
Array to look in.
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
Returns
-------
index_array : {integer_array}
Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> np.argmax(a)
5
>>> np.argmax(a,0)
array([1, 1, 1])
>>> np.argmax(a,1)
array([2, 2])
"""
try:
argmax = a.argmax
except AttributeError:
return _wrapit(a, 'argmax', axis)
return argmax(axis)
def argmin(a, axis=None):
"""Return array of indices to the minimum values along the given axis.
Parameters
----------
a : {array_like}
Array to look in.
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
Returns
-------
index_array : {integer_array}
Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> np.argmin(a)
0
>>> np.argmin(a,0)
array([0, 0, 0])
>>> np.argmin(a,1)
array([0, 0])
"""
try:
argmin = a.argmin
except AttributeError:
return _wrapit(a, 'argmin', axis)
return argmin(axis)
def searchsorted(a, v, side='left'):
"""Return indices where keys in v should be inserted to maintain order.
Find the indices into a sorted array such that if the corresponding keys in
v were inserted before the indices the order of a would be preserved. If
side='left', then the first such index is returned. If side='right', then
the last such index is returned. If there is no such index because the key
is out of bounds, then the length of a is returned, i.e., the key would need
to be appended. The returned index array has the same shape as v.
Parameters
----------
a : 1-d array
Array must be sorted in ascending order.
v : array or list type
Array of keys to be searched for in a.
side : {'left', 'right'}, optional
If 'left', the index of the first location where the key could be
inserted is found, if 'right', the index of the last such element is
returned. If the is no such element, then either 0 or N is returned,
where N is the size of the array.
Returns
-------
indices : integer array
Array of insertion points with the same shape as v.
See Also
--------
sort : Inplace sort.
histogram : Produce histogram from 1-d data.
Notes
-----
The array a must be 1-d and is assumed to be sorted in ascending
order. Searchsorted uses binary search to find the required
insertion points.
Examples
--------
>>> np.searchsorted([1,2,3,4,5],[6,4,0])
array([5, 3, 0])
"""
try:
searchsorted = a.searchsorted
except AttributeError:
return _wrapit(a, 'searchsorted', v, side)
return searchsorted(v, side)
def resize(a, new_shape):
"""Return a new array with the specified shape.
The original array's total size can be any size. The new array is
filled with repeated copies of a.
Note that a.resize(new_shape) will fill the array with 0's beyond
current definition of a.
Parameters
----------
a : {array_like}
Array to be reshaped.
new_shape : {tuple}
Shape of reshaped array.
Returns
-------
reshaped_array : {array}
The new array is formed from the data in the old array, repeated if
necessary to fill out the required number of elements, with the new
shape.
"""
if isinstance(new_shape, (int, nt.integer)):
new_shape = (new_shape,)
a = ravel(a)
Na = len(a)
if not Na: return mu.zeros(new_shape, a.dtype.char)
total_size = um.multiply.reduce(new_shape)
n_copies = int(total_size / Na)
extra = total_size % Na
if total_size == 0:
return a[:0]
if extra != 0:
n_copies = n_copies+1
extra = Na-extra
a = concatenate( (a,)*n_copies)
if extra > 0:
a = a[:-extra]
return reshape(a, new_shape)
def squeeze(a):
"""Remove single-dimensional entries from the shape of a.
Examples
--------
>>> x = np.array([[[1,1,1],[2,2,2],[3,3,3]]])
>>> x.shape
(1, 3, 3)
>>> np.squeeze(x).shape
(3, 3)
"""
try:
squeeze = a.squeeze
except AttributeError:
return _wrapit(a, 'squeeze')
return squeeze()
def diagonal(a, offset=0, axis1=0, axis2=1):
"""Return specified diagonals.
If a is 2-d, returns the diagonal of self with the given offset, i.e., the
collection of elements of the form a[i,i+offset]. If a has more than two
dimensions, then the axes specified by axis1 and axis2 are used to determine
the 2-d subarray whose diagonal is returned. The shape of the resulting
array can be determined by removing axis1 and axis2 and appending an index
to the right equal to the size of the resulting diagonals.
Parameters
----------
a : {array_like}
Array from whis the diagonals are taken.
offset : {0, integer}, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal.
axis1 : {0, integer}, optional
Axis to be used as the first axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to first axis.
axis2 : {1, integer}, optional
Axis to be used as the second axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to second axis.
Returns
-------
array_of_diagonals : array of same type as a
If a is 2-d, a 1-d array containing the diagonal is
returned. If a has larger dimensions, then an array of
diagonals is returned.
See Also
--------
diag : Matlab workalike for 1-d and 2-d arrays.
diagflat : Create diagonal arrays.
trace : Sum along diagonals.
Examples
--------
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])
>>> a = np.arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
[4, 7]])
"""
return asarray(a).diagonal(offset, axis1, axis2)
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""Return the sum along diagonals of the array.
If a is 2-d, returns the sum along the diagonal of self with the given offset, i.e., the
collection of elements of the form a[i,i+offset]. If a has more than two
dimensions, then the axes specified by axis1 and axis2 are used to determine
the 2-d subarray whose trace is returned. The shape of the resulting
array can be determined by removing axis1 and axis2 and appending an index
to the right equal to the size of the resulting diagonals.
Parameters
----------
a : {array_like}
Array from whis the diagonals are taken.
offset : {0, integer}, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal.
axis1 : {0, integer}, optional
Axis to be used as the first axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to first axis.
axis2 : {1, integer}, optional
Axis to be used as the second axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to second axis.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.
out : {None, array}, optional
Array into which the sum can be placed. Its type is preserved and
it must be of the right shape to hold the output.
Returns
-------
sum_along_diagonals : array
If a is 2-d, a 0-d array containing the diagonal is
returned. If a has larger dimensions, then an array of
diagonals is returned.
Examples
--------
>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])
"""
return asarray(a).trace(offset, axis1, axis2, dtype, out)
def ravel(a, order='C'):
"""Return a 1d array containing the elements of a (copy only if needed).
Returns the elements of a as a 1d array. The elements in the new array
are taken in the order specified by the order keyword. The new array is
a view of a if possible, otherwise it is a copy.
Parameters
----------
a : {array_like}
order : {'C','F'}, optional
If order is 'C' the elements are taken in row major order. If order
is 'F' they are taken in column major order.
Returns
-------
1d_array : {array}
See Also
--------
ndarray.flat : 1d iterator over the array.
ndarray.flatten : 1d array copy of the elements of a in C order.
Examples
--------
>>> x = np.array([[1,2,3],[4,5,6]])
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])
"""
return asarray(a).ravel(order)
def nonzero(a):
"""Return the indices of the elements of a which are not zero.
Parameters
----------
a : {array_like}
Returns
-------
tuple_of_arrays : {tuple}
Examples
--------
>>> np.eye(3)[np.nonzero(np.eye(3))]
array([ 1., 1., 1.])
>>> np.nonzero(np.eye(3))
(array([0, 1, 2]), array([0, 1, 2]))
>>> np.eye(3)[np.nonzero(np.eye(3))]
array([ 1., 1., 1.])
"""
try:
nonzero = a.nonzero
except AttributeError:
res = _wrapit(a, 'nonzero')
else:
res = nonzero()
return res
def shape(a):
"""Return the shape of a.
Parameters
----------
a : {array_like}
Array whose shape is desired. If a is not an array, a conversion is
attempted.
Returns
-------
tuple_of_integers :
The elements of the tuple are the length of the corresponding array
dimension.
Examples
--------
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1,2]])
(1, 2)
"""
try:
result = a.shape
except AttributeError:
result = asarray(a).shape
return result
def compress(condition, a, axis=None, out=None):
"""Return selected slices of an array along given axis.
Parameters
----------
condition : {array}
Boolean 1-d array selecting which entries to return. If len(condition)
is less than the size of a along the axis, then output is truncated
to length of condition array.
a : {array_type}
Array from which to extract a part.
axis : {None, integer}
Axis along which to take slices. If None, work on the flattened array.
out : array, optional
Output array. Its type is preserved and it must be of the right
shape to hold the output.
Returns
-------
compressed_array : array
A copy of a, without the slices along axis for which condition is false.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([1], a, axis=1)
array([[1],
[3]])
>>> np.compress([0,1,1], a)
array([2, 3])
"""
try:
compress = a.compress
except AttributeError:
return _wrapit(a, 'compress', condition, axis, out)
return compress(condition, axis, out)
def clip(a, a_min, a_max, out=None):
"""Return an array whose values are limited to [a_min, a_max].
Parameters
----------
a : {array_like}
Array containing elements to clip.
a_min :
Minimum value
a_max :
Maximum value
out : array, optional
The results will be placed in this array. It may be the input array for
inplace clipping.
Returns
-------
clipped_array : {array}
A new array whose elements are same as for a, but values
< a_min are replaced with a_min, and > a_max with a_max.
Examples
--------
>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
"""
try:
clip = a.clip
except AttributeError:
return _wrapit(a, 'clip', a_min, a_max, out)
return clip(a_min, a_max, out)
def sum(a, axis=None, dtype=None, out=None):
"""Return the sum of the array elements over the given axis
Parameters
----------
a : {array_type}
Array containing elements whose sum is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the sum is taken. If None is used, then the sum is
over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and the
type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Array into which the sum can be placed. Its type is preserved and
it must be of the right shape to hold the output.
Returns
-------
sum_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.sum : equivalent method
Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) # overflow!
-128
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
if isinstance(a, _gentype):
res = _sum_(a)
if out is not None:
out[...] = res
return out
return res
try:
sum = a.sum
except AttributeError:
return _wrapit(a, 'sum', axis, dtype, out)
return sum(axis, dtype, out)
def product (a, axis=None, dtype=None, out=None):
"""Return the product of the array elements over the given axis
Parameters
----------
a : {array_like}
Array containing elements whose product is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the product is taken. If None is used, then the
product is over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
product_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.prod : equivalent method
Examples
--------
>>> np.product([1.,2.])
2.0
>>> np.product([1.,2.], dtype=np.int32)
2
>>> np.product([[1.,2.],[3.,4.]])
24.0
>>> np.product([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def sometrue(a, axis=None, out=None):
"""
Assert whether some values are true.
`sometrue` performs a logical_or over the given axis.
Parameters
----------
a : array_like
Array on which to operate.
axis : {None, integer}
Axis to perform the operation over.
If `None` (default), perform over flattened array.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.any : equivalent method
Examples
--------
>>> b = np.array([True, False, True, True])
>>> np.sometrue(b)
True
>>> a = np.array([1, 5, 2, 7])
>>> np.sometrue(a >= 5)
True
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def alltrue (a, axis=None, out=None):
"""Check if all of the elements of `a` are true.
Performs a logical_and over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.all : equivalent method
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def any(a,axis=None, out=None):
"""Check if any of the elements of `a` are true.
Performs a logical_or over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array and return a scalar.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.any : equivalent method
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def all(a,axis=None, out=None):
"""Check if all of the elements of `a` are true.
Performs a logical_and over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array and return a scalar.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.all : equivalent method
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def cumsum (a, axis=None, dtype=None, out=None):
"""
Return the cumulative sum of the elements along a given axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array.
axis : {None, -1, int}, optional
Axis along which the sum is computed. The default
(`axis` = `None`) is to compute over the flattened array.
dtype : {None, dtype}, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
cumsum : ndarray.
A new array holding the result is returned unless `out` is
specified, in which case a reference to `out` is returned.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a=np.array([[1,2,3],[4,5,6]])
>>> np.cumsum(a) # cumulative sum = intermediate summing results & total sum. Default axis=None results in raveling the array first.
array([ 1, 3, 6, 10, 15, 21])
>>> np.cumsum(a,dtype=float) # specifies type of output value(s)
array([ 1., 3., 6., 10., 15., 21.])
>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],
[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[ 1, 3, 6],
[ 4, 9, 15]])
"""
try:
cumsum = a.cumsum
except AttributeError:
return _wrapit(a, 'cumsum', axis, dtype, out)
return cumsum(axis, dtype, out)
def cumproduct(a, axis=None, dtype=None, out=None):
"""Return the cumulative product over the given axis.
See Also
--------
cumprod
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ptp(a, axis=None, out=None):
"""Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).
Parameters
----------
a : array_like
Input values.
axis : {None, int}, optional
Axis along which to find the peaks. If None (default) the
flattened array is used.
out : array_like
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
ptp : ndarray.
A new array holding the result, unless ``out`` was
specified, in which case a reference to ``out`` is returned.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.ptp(x,0)
array([2, 2])
>>> np.ptp(x,1)
array([1, 1])
"""
try:
ptp = a.ptp
except AttributeError:
return _wrapit(a, 'ptp', axis, out)
return ptp(axis, out)
def amax(a, axis=None, out=None):
"""Return the maximum along a given axis.
Parameters
----------
a : array_like
Input data.
axis : {None, int}, optional
Axis along which to operate. By default, ``axis`` is None and the
flattened input is used.
out : array_like, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
Returns
-------
amax : array_like
New array holding the result, unless ``out`` was specified.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.amax(x,0)
array([2, 3])
>>> np.amax(x,1)
array([1, 3])
"""
try:
amax = a.max
except AttributeError:
return _wrapit(a, 'max', axis, out)
return amax(axis, out)
def amin(a, axis=None, out=None):
"""Return the minimum along a given axis.
Parameters
----------
a : array_like
Input data.
axis : {None, int}, optional
Axis along which to operate. By default, ``axis`` is None and the
flattened input is used.
out : array_like, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
Returns
-------
amin : array_like
New array holding the result, unless ``out`` was specified.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.amin(x,0)
array([0, 1])
>>> np.amin(x,1)
array([0, 2])
"""
try:
amin = a.min
except AttributeError:
return _wrapit(a, 'min', axis, out)
return amin(axis, out)
def alen(a):
"""
Return the length of a Python object interpreted as an array
of at least 1 dimension.
Parameters
----------
a : array_like
Returns
-------
alen : int
Length of the first dimension of `a`.
Examples
--------
>>> z = np.zeros((7,4,5))
>>> z.shape[0]
7
>>> np.alen(z)
7
"""
try:
return len(a)
except TypeError:
return len(array(a,ndmin=1))
def prod(a, axis=None, dtype=None, out=None):
"""Return the product of the array elements over the given axis
Parameters
----------
a : {array_like}
Array containing elements whose product is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the product is taken. If None is used, then the
product is over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
product_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.prod : equivalent method
Examples
--------
>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def cumprod(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array.
axis : {None, -1, int}, optional
Axis along which the product is computed. The default
(`axis` = `None`) is to compute over the flattened array.
dtype : {None, dtype}, optional
Type of the returned array and of the accumulator
where the elements are multiplied. If `dtype` has the value `None` and
the type of `a` is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the `dtype` is the same as that of `a`.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
cumprod : ndarray.
A new array holding the result is returned unless `out` is
specified, in which case a reference to out is returned.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a=np.array([[1,2,3],[4,5,6]])
>>> a=np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a=np.array([[1,2,3],[4,5,6]])
>>> np.cumprod(a,dtype=float) # specify type of output
array([ 1., 2., 6., 24., 120., 720.])
>>> np.cumprod(a,axis=0) # for each of the 3 columns:
... # product and intermediate results
array([[ 1, 2, 3],
[ 4, 10, 18]])
>>> np.cumprod(a,axis=1) # for each of the two rows:
... # product and intermediate results
array([[ 1, 2, 6],
[ 4, 20, 120]])
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ndim(a):
"""Return the number of dimensions of a.
If a is not already an array, a conversion is attempted. Scalars are zero
dimensional.
Parameters
----------
a : {array_like}
Array whose number of dimensions are desired. If a is not an
array, a conversion is attempted.
Returns
-------
number_of_dimensions : {integer}
Returns the number of dimensions.
See Also
--------
rank : equivalent function.
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array
Examples
--------
>>> np.ndim([[1,2,3],[4,5,6]])
2
>>> np.ndim(np.array([[1,2,3],[4,5,6]]))
2
>>> np.ndim(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def rank(a):
"""Return the number of dimensions of a.
In old Numeric, rank was the term used for the number of dimensions. If a is
not already an array, a conversion is attempted. Scalars are zero
dimensional.
Parameters
----------
a : {array_like}
Array whose number of dimensions is desired. If a is not an array, a
conversion is attempted.
Returns
-------
number_of_dimensions : {integer}
Returns the number of dimensions.
See Also
--------
ndim : equivalent function
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array
Examples
--------
>>> np.rank([[1,2,3],[4,5,6]])
2
>>> np.rank(np.array([[1,2,3],[4,5,6]]))
2
>>> np.rank(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def size(a, axis=None):
"""Return the number of elements along given axis.
Parameters
----------
a : {array_like}
Array whose axis size is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}, optional
Axis along which the elements are counted. None means all
elements in the array.
Returns
-------
element_count : {integer}
Count of elements along specified axis.
See Also
--------
shape : dimensions of array
ndarray.shape : dimensions of array
ndarray.size : number of elements in array
Examples
--------
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2
"""
if axis is None:
try:
return a.size
except AttributeError:
return asarray(a).size
else:
try:
return a.shape[axis]
except AttributeError:
return asarray(a).shape[axis]
def around(a, decimals=0, out=None):
"""Round a to the given number of decimals.
The real and imaginary parts of complex numbers are rounded separately. The
result of rounding a float is a float so the type must be cast if integers
are desired. Nothing is done if the input is an integer array and the
decimals parameter has a value >= 0.
Parameters
----------
a : {array_like}
Array containing numbers whose rounded values are desired. If a is
not an array, a conversion is attempted.
decimals : {0, int}, optional
Number of decimal places to round to. When decimals is negative it
specifies the number of positions to the left of the decimal point.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary. Numpy rounds floats to floats by default.
Returns
-------
rounded_array : {array}
If out=None, returns a new array of the same type as a containing
the rounded values, otherwise a reference to the output array is
returned.
See Also
--------
round_ : equivalent function
ndarray.round : equivalent method
Notes
-----
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in IEEE floating point and the
errors introduced when scaling by powers of ten.
Examples
--------
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5])
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1)
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def round_(a, decimals=0, out=None):
"""Round a to the given number of decimals.
The real and imaginary parts of complex numbers are rounded separately. The
result of rounding a float is a float so the type must be cast if integers
are desired. Nothing is done if the input is an integer array and the
decimals parameter has a value >= 0.
Parameters
----------
a : {array_like}
Array containing numbers whose rounded values are desired. If a is
not an array, a conversion is attempted.
decimals : {0, integer}, optional
Number of decimal places to round to. When decimals is negative it
specifies the number of positions to the left of the decimal point.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
rounded_array : {array}
If out=None, returns a new array of the same type as a containing
the rounded values, otherwise a reference to the output array is
returned.
See Also
--------
around : equivalent function
ndarray.round : equivalent method
Notes
-----
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in IEEE floating point and the
errors introduced when scaling by powers of ten.
Examples
--------
>>> np.round_([.5, 1.5, 2.5, 3.5, 4.5])
array([ 0., 2., 2., 4., 4.])
>>> np.round_([1,2,3,11], decimals=1)
array([ 1, 2, 3, 11])
>>> np.round_([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def mean(a, axis=None, dtype=None, out=None):
"""Compute the mean along the specified axis.
Returns the average of the array elements. The average is taken
over the flattened array by default, otherwise over the specified
axis. The dtype returned for integer type arrays is float.
Parameters
----------
a : {array_like}
Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the means are computed. The default is to compute
the mean of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the mean. For arrays of integer type the
default is float32, for arrays of float types it is the same as the
array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
mean : {array, scalar}, see dtype parameter above
If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.
See Also
--------
average : Weighted average
Notes
-----
The mean is the sum of the elements along the axis divided by the
number of elements.
Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.mean(a)
2.5
>>> np.mean(a,0)
array([ 2., 3.])
>>> np.mean(a,1)
array([ 1.5, 3.5])
"""
try:
mean = a.mean
except AttributeError:
return _wrapit(a, 'mean', axis, dtype, out)
return mean(axis, dtype, out)
def std(a, axis=None, dtype=None, out=None, ddof=0):
"""Compute the standard deviation along the specified axis.
Returns the standard deviation of the array elements, a measure of the
spread of a distribution. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.
Parameters
----------
a : {array_like}
Array containing numbers whose standard deviation is desired. If a
is not an array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the standard deviation. For arrays of
integer type the default is float32, for arrays of float types it is
the same as the array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
ddof : {0, integer}
Means Delta Degrees of Freedom. The divisor used in calculations
is N-ddof.
Returns
-------
standard_deviation : {array, scalar}, see dtype parameter above.
If out=None, returns a new array containing the standard deviation,
otherwise a reference to the output array is returned.
See Also
--------
var : Variance
mean : Average
Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).
The computed standard deviation is computed by dividing by the number of
elements, N-ddof. The option ddof defaults to zero, that is, a
biased estimate. Note that for complex numbers std takes the absolute
value before squaring, so that the result is always real and nonnegative.
Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a,0)
array([ 1., 1.])
>>> np.std(a,1)
array([ 0.5, 0.5])
"""
try:
std = a.std
except AttributeError:
return _wrapit(a, 'std', axis, dtype, out, ddof)
return std(axis, dtype, out, ddof)
def var(a, axis=None, dtype=None, out=None, ddof=0):
"""Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by default,
otherwise over the specified axis.
Parameters
----------
a : {array_like}
Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the variance is computed. The default is to compute
the variance of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the variance. For arrays of integer type
the default is float32, for arrays of float types it is the same as
the array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
ddof : {0, integer},
Means Delta Degrees of Freedom. The divisor used in calculation is
N - ddof.
Returns
-------
variance : {array, scalar}, see dtype parameter above
If out=None, returns a new array containing the variance, otherwise
a reference to the output array is returned.
See Also
--------
std : Standard deviation
mean : Average
Notes
-----
The variance is the average of the squared deviations from the mean,
i.e. var = mean(abs(x - x.mean())**2). The computed variance is biased,
i.e., the mean is computed by dividing by the number of elements, N,
rather than by N-1. Note that for complex numbers the absolute value is
taken before squaring, so that the result is always real and nonnegative.
Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a,0)
array([ 1., 1.])
>>> np.var(a,1)
array([ 0.25, 0.25])
"""
try:
var = a.var
except AttributeError:
return _wrapit(a, 'var', axis, dtype, out, ddof)
return var(axis, dtype, out, ddof)
|