1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
|
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"
# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
'searchsorted', 'alen',
'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
'amax', 'amin',
]
import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char
import types
try:
_gentype = types.GeneratorType
except AttributeError:
_gentype = types.NoneType
# save away Python sum
_sum_ = sum
# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
try:
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
result = getattr(asarray(obj),method)(*args, **kwds)
if wrap and isinstance(result, mu.ndarray):
if not isinstance(result, mu.ndarray):
result = asarray(result)
result = wrap(result)
return result
def take(a, indices, axis=None, out=None, mode='raise'):
"""Return an array with values pulled from the given array at the given
indices.
This function does the same thing as "fancy" indexing; however, it can
be easier to use if you need to specify a given axis.
:Parameters:
- `a` : array
The source array
- `indices` : int array
The indices of the values to extract.
- `axis` : None or int, optional (default=None)
The axis over which to select values. None signifies that the
operation should be performed over the flattened array.
- `out` : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.
- `mode` : one of 'raise', 'wrap', or 'clip', optional
(default='raise')
Specifies how out-of-bounds indices will behave.
- 'raise' : raise an error
- 'wrap' : wrap around
- 'clip' : clip to the range
:Returns:
- `subarray` : array
:See also:
numpy.ndarray.take() is the equivalent method.
"""
try:
take = a.take
except AttributeError:
return _wrapit(a, 'take', indices, axis, out, mode)
return take(indices, axis, out, mode)
# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
"""Return an array that uses the data of the given array, but with a new
shape.
:Parameters:
- `a` : array
- `newshape` : shape tuple or int
The new shape should be compatible with the original shape. If an
integer, then the result will be a 1D array of that length.
- `order` : 'C' or 'FORTRAN', optional (default='C')
Whether the array data should be viewed as in C (row-major) order or
FORTRAN (column-major) order.
:Returns:
- `reshaped_array` : array
This will be a new view object if possible; otherwise, it will
return a copy.
:See also:
numpy.ndarray.reshape() is the equivalent method.
"""
try:
reshape = a.reshape
except AttributeError:
return _wrapit(a, 'reshape', newshape, order=order)
return reshape(newshape, order=order)
def choose(a, choices, out=None, mode='raise'):
"""Use an index array to construct a new array from a set of choices.
Given an array of integers in {0, 1, ..., n-1} and a set of n choice
arrays, this function will create a new array that merges each of the
choice arrays. Where a value in `a` is i, then the new array will have
the value that choices[i] contains in the same place.
:Parameters:
- `a` : int array
This array must contain integers in [0, n-1], where n is the number
of choices.
- `choices` : sequence of arrays
Each of the choice arrays should have the same shape as the index
array.
- `out` : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype
- `mode` : one of 'raise', 'wrap', or 'clip', optional (default='raise')
Specifies how out-of-bounds indices will behave.
- 'raise' : raise an error
- 'wrap' : wrap around
- 'clip' : clip to the range
:Returns:
- `merged_array` : array
:See also:
numpy.ndarray.choose() is the equivalent method.
:Example:
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> choose([2, 3, 1, 0], choices)
array([20, 31, 12, 3])
>>> choose([2, 4, 1, 0], choices, mode='clip')
array([20, 31, 12, 3])
>>> choose([2, 4, 1, 0], choices, mode='wrap')
array([20, 1, 12, 3])
"""
try:
choose = a.choose
except AttributeError:
return _wrapit(a, 'choose', choices, out=out, mode=mode)
return choose(choices, out=out, mode=mode)
def repeat(a, repeats, axis=None):
"""Repeat elements of an array.
:Parameters:
- `a` : array
- `repeats` : int or int array
The number of repetitions for each element. If a plain integer, then
it is applied to all elements. If an array, it needs to be of the
same length as the chosen axis.
- `axis` : None or int, optional (default=None)
The axis along which to repeat values. If None, then this function
will operated on the flattened array `a` and return a similarly flat
result.
:Returns:
- `repeated_array` : array
:See also:
numpy.ndarray.repeat() is the equivalent method.
:Example:
>>> repeat([0, 1, 2], 2)
array([0, 0, 1, 1, 2, 2])
>>> repeat([0, 1, 2], [2, 3, 4])
array([0, 0, 1, 1, 1, 2, 2, 2, 2])
"""
try:
repeat = a.repeat
except AttributeError:
return _wrapit(a, 'repeat', repeats, axis)
return repeat(repeats, axis)
def put (a, ind, v, mode='raise'):
"""put(a, ind, v) results in a[n] = v[n] for all n in ind. If v is
shorter than mask it will be repeated as necessary. In particular v can
be a scalar or length 1 array. The routine put is the equivalent of the
following (although the loop is in C for speed):
ind = array(indices, copy=False)
v = array(values, copy=False).astype(a.dtype)
for i in ind: a.flat[i] = v[i]
a must be a contiguous numpy array.
"""
return a.put(ind, v, mode)
def swapaxes(a, axis1, axis2):
"""swapaxes(a, axis1, axis2) returns array a with axis1 and axis2
interchanged.
"""
try:
swapaxes = a.swapaxes
except AttributeError:
return _wrapit(a, 'swapaxes', axis1, axis2)
return swapaxes(axis1, axis2)
def transpose(a, axes=None):
"""transpose(a, axes=None) returns a view of the array with dimensions
permuted according to axes. If axes is None (default) returns array
with dimensions reversed.
"""
try:
transpose = a.transpose
except AttributeError:
return _wrapit(a, 'transpose', axes)
return transpose(axes)
def sort(a, axis=-1, kind='quicksort', order=None):
"""Return copy of 'a' sorted along the given axis.
*Description*
Perform an inplace sort along the given axis using the algorithm
specified by the kind keyword.
*Parameters*:
a : array type
Array to be sorted.
axis : integer
Axis to be sorted along. None indicates that the flattened
array should be used. Default is -1.
kind : string
Sorting algorithm to use. Possible values are 'quicksort',
'mergesort', or 'heapsort'. Default is 'quicksort'.
order : list type or None
When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. Not
all fields need be specified.
*Returns*:
sorted_array : type is unchanged.
*SeeAlso*:
argsort
Indirect sort
lexsort
Indirect stable sort on multiple keys
searchsorted
Find keys in sorted array
*Notes*
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
+-----------+-------+-------------+------------+-------+
| kind | speed | worst case | work space | stable|
+===========+=======+=============+============+=======+
| quicksort | 1 | O(n^2) | 0 | no |
+-----------+-------+-------------+------------+-------+
| mergesort | 2 | O(n*log(n)) | ~n/2 | yes |
+-----------+-------+-------------+------------+-------+
| heapsort | 3 | O(n*log(n)) | 0 | no |
+-----------+-------+-------------+------------+-------+
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
if axis is None:
a = asanyarray(a).flatten()
axis = 0
else:
a = asanyarray(a).copy()
a.sort(axis, kind, order)
return a
def argsort(a, axis=-1, kind='quicksort', order=None):
"""Returns array of indices that index 'a' in sorted order.
*Description*
Perform an indirect sort along the given axis using the algorithm
specified by the kind keyword. It returns an array of indices of the
same shape as a that index data along the given axis in sorted order.
*Parameters*:
a : array type
Array containing values that the returned indices should
sort.
axis : integer
Axis to be indirectly sorted. None indicates that the
flattened array should be used. Default is -1.
kind : string
Sorting algorithm to use. Possible values are 'quicksort',
'mergesort', or 'heapsort'. Default is 'quicksort'.
order : list type or None
When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. Not
all fields need be specified.
*Returns*:
indices : integer array
Array of indices that sort 'a' along the specified axis.
*SeeAlso*:
lexsort
Indirect stable sort with multiple keys
sort
Inplace sort
*Notes*
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
+-----------+-------+-------------+------------+-------+
| kind | speed | worst case | work space | stable|
+===========+=======+=============+============+=======+
| quicksort | 1 | O(n^2) | 0 | no |
+-----------+-------+-------------+------------+-------+
| mergesort | 2 | O(n*log(n)) | ~n/2 | yes |
+-----------+-------+-------------+------------+-------+
| heapsort | 3 | O(n*log(n)) | 0 | no |
+-----------+-------+-------------+------------+-------+
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
try:
argsort = a.argsort
except AttributeError:
return _wrapit(a, 'argsort', axis, kind, order)
return argsort(axis, kind, order)
def argmax(a, axis=None):
"""argmax(a,axis=None) returns the indices to the maximum value of the
1-D arrays along the given axis.
"""
try:
argmax = a.argmax
except AttributeError:
return _wrapit(a, 'argmax', axis)
return argmax(axis)
def argmin(a, axis=None):
"""argmin(a,axis=None) returns the indices to the minimum value of the
1-D arrays along the given axis.
"""
try:
argmin = a.argmin
except AttributeError:
return _wrapit(a, 'argmin', axis)
return argmin(axis)
def searchsorted(a, v, side='left'):
"""Returns indices where keys in v should be inserted to maintain order.
*Description*
Find the indices into a sorted array such that if the
corresponding keys in v were inserted before the indices the
order of a would be preserved. If side='left', then the first
such index is returned. If side='right', then the last such index
is returned. If there is no such index because the key is out of
bounds, then the length of a is returned, i.e., the key would
need to be appended. The returned index array has the same shape
as v.
*Parameters*:
a : array
1-d array sorted in ascending order.
v : array or list type
Array of keys to be searched for in a.
side : string
Possible values are : 'left', 'right'. Default is 'left'.
Return the first or last index where the key could be
inserted.
*Returns*:
indices : integer array
Array of insertion points with the same shape as v.
*SeeAlso*:
sort
Inplace sort
histogram
Produce histogram from 1-d data
*Notes*
The array a must be 1-d and is assumed to be sorted in ascending
order. Searchsorted uses binary search to find the required
insertion points.
"""
try:
searchsorted = a.searchsorted
except AttributeError:
return _wrapit(a, 'searchsorted', v, side)
return searchsorted(v, side)
def resize(a, new_shape):
"""resize(a,new_shape) returns a new array with the specified shape.
The original array's total size can be any size. It fills the new
array with repeated copies of a.
Note that a.resize(new_shape) will fill array with 0's beyond current
definition of a.
"""
if isinstance(new_shape, (int, nt.integer)):
new_shape = (new_shape,)
a = ravel(a)
Na = len(a)
if not Na: return mu.zeros(new_shape, a.dtype.char)
total_size = um.multiply.reduce(new_shape)
n_copies = int(total_size / Na)
extra = total_size % Na
if total_size == 0:
return a[:0]
if extra != 0:
n_copies = n_copies+1
extra = Na-extra
a = concatenate( (a,)*n_copies)
if extra > 0:
a = a[:-extra]
return reshape(a, new_shape)
def squeeze(a):
"Returns a with any ones from the shape of a removed"
try:
squeeze = a.squeeze
except AttributeError:
return _wrapit(a, 'squeeze')
return squeeze()
def diagonal(a, offset=0, axis1=0, axis2=1):
"""Return specified diagonals. Uses first two indices by default.
*Description*
If a is 2-d, returns the diagonal of self with the given offset,
i.e., the collection of elements of the form a[i,i+offset]. If a is
n-d with n > 2, then the axes specified by axis1 and axis2 are used
to determine the 2-d subarray whose diagonal is returned. The shape
of the resulting array can be determined by removing axis1 and axis2
and appending an index to the right equal to the size of the
resulting diagonals.
*Parameters*:
offset : integer
Offset of the diagonal from the main diagonal. Can be both
positive and negative. Defaults to main diagonal.
axis1 : integer
Axis to be used as the first axis of the 2-d subarrays from
which the diagonals should be taken. Defaults to first axis.
axis2 : integer
Axis to be used as the second axis of the 2-d subarrays from
which the diagonals should be taken. Defaults to second axis.
*Returns*:
array_of_diagonals : type of original array
If a is 2-d, then a 1-d array containing the diagonal is
returned.
If a is n-d, n > 2, then an array of diagonals is returned.
*SeeAlso*:
diag :
Matlab workalike for 1-d and 2-d arrays
diagflat :
creates diagonal arrays
trace :
sum along diagonals
*Examples*:
>>> a = arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])
>>> a = arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
[4, 7]])
"""
return asarray(a).diagonal(offset, axis1, axis2)
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals
(defined by the last two dimenions) of the array.
"""
return asarray(a).trace(offset, axis1, axis2, dtype, out)
def ravel(m,order='C'):
"""ravel(m) returns a 1d array corresponding to all the elements of
its argument. The new array is a view of m if possible, otherwise it
is a copy.
"""
a = asarray(m)
return a.ravel(order)
def nonzero(a):
"""nonzero(a) returns the indices of the elements of a which are not zero
"""
try:
nonzero = a.nonzero
except AttributeError:
res = _wrapit(a, 'nonzero')
else:
res = nonzero()
return res
def shape(a):
"""shape(a) returns the shape of a (as a function call which also
works on nested sequences).
"""
try:
result = a.shape
except AttributeError:
result = asarray(a).shape
return result
def compress(condition, m, axis=None, out=None):
"""compress(condition, x, axis=None) = those elements of x corresponding
to those elements of condition that are "true". condition must be the
same size as the given dimension of x."""
try:
compress = m.compress
except AttributeError:
return _wrapit(m, 'compress', condition, axis, out)
return compress(condition, axis, out)
def clip(m, m_min, m_max):
"""clip(m, m_min, m_max) = every entry in m that is less than m_min is
replaced by m_min, and every entry greater than m_max is replaced by
m_max.
"""
try:
clip = m.clip
except AttributeError:
return _wrapit(m, 'clip', m_min, m_max)
return clip(m_min, m_max)
def sum(x, axis=None, dtype=None, out=None):
"""Sum the array over the given axis. The optional dtype argument
is the data type for intermediate calculations.
The default is to upcast (promote) smaller integer types to the
platform-dependent Int. For example, on 32-bit platforms:
x.dtype default sum() dtype
---------------------------------------------------
bool, int8, int16, int32 int32
Examples:
>>> N.sum([0.5, 1.5])
2.0
>>> N.sum([0.5, 1.5], dtype=N.int32)
1
>>> N.sum([[0, 1], [0, 5]])
6
>>> N.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
"""
if isinstance(x, _gentype):
res = _sum_(x)
if out is not None:
out[...] = res
return out
return res
try:
sum = x.sum
except AttributeError:
return _wrapit(x, 'sum', axis, dtype, out)
return sum(axis, dtype, out)
def product (x, axis=None, dtype=None, out=None):
"""Product of the array elements over the given axis."""
try:
prod = x.prod
except AttributeError:
return _wrapit(x, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def sometrue (x, axis=None, out=None):
"""Perform a logical_or over the given axis."""
try:
any = x.any
except AttributeError:
return _wrapit(x, 'any', axis, out)
return any(axis, out)
def alltrue (x, axis=None, out=None):
"""Perform a logical_and over the given axis."""
try:
all = x.all
except AttributeError:
return _wrapit(x, 'all', axis, out)
return all(axis, out)
def any(x,axis=None, out=None):
"""Return true if any elements of x are true:
"""
try:
any = x.any
except AttributeError:
return _wrapit(x, 'any', axis, out)
return any(axis, out)
def all(x,axis=None, out=None):
"""Return true if all elements of x are true:
"""
try:
all = x.all
except AttributeError:
return _wrapit(x, 'all', axis, out)
return all(axis, out)
def cumsum (x, axis=None, dtype=None, out=None):
"""Sum the array over the given axis."""
try:
cumsum = x.cumsum
except AttributeError:
return _wrapit(x, 'cumsum', axis, dtype, out)
return cumsum(axis, dtype, out)
def cumproduct (x, axis=None, dtype=None, out=None):
"""Sum the array over the given axis."""
try:
cumprod = x.cumprod
except AttributeError:
return _wrapit(x, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ptp(a, axis=None, out=None):
"""Return maximum - minimum along the the given dimension
"""
try:
ptp = a.ptp
except AttributeError:
return _wrapit(a, 'ptp', axis, out)
return ptp(axis, out)
def amax(a, axis=None, out=None):
"""Return the maximum of 'a' along dimension axis.
"""
try:
amax = a.max
except AttributeError:
return _wrapit(a, 'max', axis, out)
return amax(axis, out)
def amin(a, axis=None, out=None):
"""Return the minimum of a along dimension axis.
"""
try:
amin = a.min
except AttributeError:
return _wrapit(a, 'min', axis, out)
return amin(axis, out)
def alen(a):
"""Return the length of a Python object interpreted as an array
of at least 1 dimension.
"""
try:
return len(a)
except TypeError:
return len(array(a,ndmin=1))
def prod(a, axis=None, dtype=None, out=None):
"""Return the product of the elements along the given axis
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def cumprod(a, axis=None, dtype=None, out=None):
"""Return the cumulative product of the elments along the given axis
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ndim(a):
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def rank(a):
"""Get the rank of sequence a (the number of dimensions, not a matrix rank)
The rank of a scalar is zero.
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def size (a, axis=None):
"Get the number of elements in sequence a, or along a certain axis."
if axis is None:
try:
return a.size
except AttributeError:
return asarray(a).size
else:
try:
return a.shape[axis]
except AttributeError:
return asarray(a).shape[axis]
def round_(a, decimals=0, out=None):
"""Returns reference to result. Copies a and rounds to 'decimals' places.
Keyword arguments:
decimals -- number of decimal places to round to (default 0).
out -- existing array to use for output (default copy of a).
Returns:
Reference to out, where None specifies a copy of the original
array a.
Round to the specified number of decimals. When 'decimals' is
negative it specifies the number of positions to the left of the
decimal point. The real and imaginary parts of complex numbers are
rounded separately. Nothing is done if the array is not of float
type and 'decimals' is greater than or equal to 0.
The keyword 'out' may be used to specify a different array to hold
the result rather than the default 'a'. If the type of the array
specified by 'out' differs from that of 'a', the result is cast to
the new type, otherwise the original type is kept. Floats round to
floats by default.
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5
round to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in IEEE floating point and the
errors introduced in scaling the numbers when 'decimals' is something
other than 0.
The function around is an alias for round_.
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
around = round_
def mean(a, axis=None, dtype=None, out=None):
"""Compute the mean along the specified axis.
*Description*
Returns the average of the array elements. The average is taken
over the flattened array by default, otherwise over the specified
axis.
*Parameters*:
axis : integer
Axis along which the means are computed. The default is
to compute the standard deviation of the flattened array.
dtype : type
Type to use in computing the means. For arrays of integer
type the default is float32, for arrays of float types it is
the same as the array type.
out : ndarray
Alternative output array in which to place the result. It
must have the same shape as the expected output but the type
will be cast if necessary.
*Returns*:
mean : The return type varies, see above.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
*SeeAlso*:
var
Variance
std
Standard deviation
*Notes*
The mean is the sum of the elements along the axis divided by the
number of elements.
"""
try:
mean = a.mean
except AttributeError:
return _wrapit(a, 'mean', axis, dtype, out)
return mean(axis, dtype, out)
def std(a, axis=None, dtype=None, out=None):
"""Compute the standard deviation along the specified axis.
*Description*
Returns the standard deviation of the array elements, a measure
of the spread of a distribution. The standard deviation is
computed for the flattened array by default, otherwise over the
specified axis.
*Parameters*:
axis : integer
Axis along which the standard deviation is computed. The
default is to compute the standard deviation of the flattened
array.
dtype : type
Type to use in computing the standard deviation. For arrays
of integer type the default is float32, for arrays of float
types it is the same as the array type.
out : ndarray
Alternative output array in which to place the result. It
must have the same shape as the expected output but the type
will be cast if necessary.
*Returns*:
standard_deviation : The return type varies, see above.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
*SeeAlso*:
var
Variance
mean
Average
*Notes*
The standard deviation is the square root of the average of the
squared deviations from the mean, i.e. var = sqrt(mean((x -
x.mean())**2)). The computed standard deviation is biased, i.e.,
the mean is computed by dividing by the number of elements, N,
rather than by N-1.
"""
try:
std = a.std
except AttributeError:
return _wrapit(a, 'std', axis, dtype, out)
return std(axis, dtype, out)
def var(a, axis=None, dtype=None, out=None):
"""Compute the variance along the specified axis.
*Description*
Returns the variance of the array elements, a measure of the
spread of a distribution. The variance is computed for the
flattened array by default, otherwise over the specified axis.
*Parameters*:
axis : integer
Axis along which the variance is computed. The default is to
compute the variance of the flattened array.
dtype : type
Type to use in computing the variance. For arrays of integer
type the default is float32, for arrays of float types it is
the same as the array type.
out : ndarray
Alternative output array in which to place the result. It
must have the same shape as the expected output but the type
will be cast if necessary.
*Returns*:
variance : depends, see above
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
*SeeAlso*:
std
Standard deviation
mean
Average
*Notes*
The variance is the average of the squared deviations from the
mean, i.e. var = mean((x - x.mean())**2). The computed variance
is biased, i.e., the mean is computed by dividing by the number
of elements, N, rather than by N-1.
"""
try:
var = a.var
except AttributeError:
return _wrapit(a, 'var', axis, dtype, out)
return var(axis, dtype, out)
|