summaryrefslogtreecommitdiff
path: root/numpy/core/memmap.py
blob: 64350614884e08e797231f128e438f51ea6cf199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
__all__ = ['memmap']

import mmap
import warnings
from numeric import uint8, ndarray, dtype

dtypedescr = dtype
valid_filemodes = ["r", "c", "r+", "w+"]
writeable_filemodes = ["r+","w+"]

mode_equivalents = {
    "readonly":"r",
    "copyonwrite":"c",
    "readwrite":"r+",
    "write":"w+"
    }

class memmap(ndarray):
    """
    Create a memory-map to an array stored in a file on disk.

    Memory-mapped files are used for accessing small segments of large files
    on disk, without reading the entire file into memory.  Numpy's
    memmap's are array-like objects.  This differs from Python's ``mmap``
    module, which uses file-like objects.

    Parameters
    ----------
    filename : string or file-like object
        The file name or file object to be used as the array data
        buffer.
    dtype : data-type, optional
        The data-type used to interpret the file contents.
        Default is `uint8`
    mode : {'r+', 'r', 'w+', 'c'}, optional
        The file is opened in this mode:

        +------+-------------------------------------------------------------+
        | 'r'  | Open existing file for reading only.                        |
        +------+-------------------------------------------------------------+
        | 'r+' | Open existing file for reading and writing.                 |
        +------+-------------------------------------------------------------+
        | 'w+' | Create or overwrite existing file for reading and writing.  |
        +------+-------------------------------------------------------------+
        | 'c'  | Copy-on-write: assignments affect data in memory, but       |
        |      | changes are not saved to disk.  The file on disk is         |
        |      | read-only.                                                  |
        +------+-------------------------------------------------------------+

        Default is 'r+'.
    offset : integer, optional
        In the file, array data starts at this offset.  `offset` should be
        a multiple of the byte-size of `dtype`.  Requires `shape=None`.
        The default is 0.
    shape : tuple, optional
        The desired shape of the array. By default, the returned array will be
        1-D with the number of elements determined by file size and data-type.
    order : {'C', 'F'}, optional
        Specify the order of the ndarray memory layout: C (row-major) or
        Fortran (column-major).  This only has an effect if the shape is
        greater than 1-D.  The defaullt order is 'C'.

    Methods
    -------
    close
        Close the memmap file.
    flush
        Flush any changes in memory to file on disk.
        When you delete a memmap object, flush is called first to write
        changes to disk before removing the object.

    Notes
    -----
    The memmap object can be used anywhere an ndarray is accepted.
    Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
    ``True``.

    Examples
    --------
    >>> data = np.arange(12, dtype='float32')
    >>> data.resize((3,4))

    This example uses a temporary file so that doctest doesn't write
    files to your directory. You would use a 'normal' filename.

    >>> from tempfile import mkdtemp
    >>> import os.path as path
    >>> filename = path.join(mkdtemp(), 'newfile.dat')

    Create a memmap with dtype and shape that matches our data:

    >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
    >>> fp
    memmap([[ 0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.]], dtype=float32)

    Write data to memmap array:

    >>> fp[:] = data[:]
    >>> fp
    memmap([[  0.,   1.,   2.,   3.],
            [  4.,   5.,   6.,   7.],
            [  8.,   9.,  10.,  11.]], dtype=float32)

    Deletion flushes memory changes to disk before removing the object:

    >>> del fp

    Load the memmap and verify data was stored:

    >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
    >>> newfp
    memmap([[  0.,   1.,   2.,   3.],
            [  4.,   5.,   6.,   7.],
            [  8.,   9.,  10.,  11.]], dtype=float32)

    Read-only memmap:

    >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
    >>> fpr.flags.writeable
    False

    Cannot assign to read-only, obviously:

    >>> fpr[0, 3] = 56
    Traceback (most recent call last):
        ...
    RuntimeError: array is not writeable

    Copy-on-write memmap:

    >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
    >>> fpc.flags.writeable
    True

    It's possible to assign to copy-on-write array, but values are only
    written into the memory copy of the array, and not written to disk:

    >>> fpc
    memmap([[  0.,   1.,   2.,   3.],
            [  4.,   5.,   6.,   7.],
            [  8.,   9.,  10.,  11.]], dtype=float32)
    >>> fpc[0,:] = 0
    >>> fpc
    memmap([[  0.,   0.,   0.,   0.],
            [  4.,   5.,   6.,   7.],
            [  8.,   9.,  10.,  11.]], dtype=float32)

    File on disk is unchanged:

    >>> fpr
    memmap([[  0.,   1.,   2.,   3.],
            [  4.,   5.,   6.,   7.],
            [  8.,   9.,  10.,  11.]], dtype=float32)

    Offset into a memmap:

    >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
    >>> fpo
    memmap([  4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.], dtype=float32)

    """

    __array_priority__ = -100.0
    def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
                shape=None, order='C'):
        try:
            mode = mode_equivalents[mode]
        except KeyError:
            if mode not in valid_filemodes:
                raise ValueError("mode must be one of %s" % \
                                 (valid_filemodes + mode_equivalents.keys()))

        if hasattr(filename,'read'):
            fid = filename
        else:
            fid = file(filename, (mode == 'c' and 'r' or mode)+'b')

        if (mode == 'w+') and shape is None:
            raise ValueError, "shape must be given"

        fid.seek(0,2)
        flen = fid.tell()
        descr = dtypedescr(dtype)
        _dbytes = descr.itemsize

        if shape is None:
            bytes = flen-offset
            if (bytes % _dbytes):
                fid.close()
                raise ValueError, "Size of available data is not a "\
                      "multiple of data-type size."
            size = bytes // _dbytes
            shape = (size,)
        else:
            if not isinstance(shape, tuple):
                shape = (shape,)
            size = 1
            for k in shape:
                size *= k

        bytes = long(offset + size*_dbytes)

        if mode == 'w+' or (mode == 'r+' and flen < bytes):
            fid.seek(bytes-1,0)
            fid.write(chr(0))
            fid.flush()

        if mode == 'c':
            acc = mmap.ACCESS_COPY
        elif mode == 'r':
            acc = mmap.ACCESS_READ
        else:
            acc = mmap.ACCESS_WRITE

        mm = mmap.mmap(fid.fileno(), bytes, access=acc)

        self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
                               offset=offset, order=order)
        self._mmap = mm
# Should get rid of these...  Are they used?
        self._offset = offset
        self._mode = mode
        self._size = size
        self._name = filename
        return self

    def __array_finalize__(self, obj):
        if hasattr(obj, '_mmap'):
            self._mmap = obj._mmap
        else:
            self._mmap = None

    def flush(self):
        """Flush any changes in the array to the file on disk."""
        if self._mmap is not None:
            self._mmap.flush()

    def sync(self):
        """Flush any changes in the array to the file on disk."""
        warnings.warn("Use ``flush``.", DeprecationWarning)
        self.flush()

    def _close(self):
        """Close the memmap file.  Only do this when deleting the object."""
        if self.base is self._mmap:
            self._mmap.close()
            self._mmap = None

        # DEV NOTE: This error is raised on the deletion of each row
        # in a view of this memmap.  Python traps exceptions in
        # __del__ and prints them to stderr.  Suppressing this for now
        # until memmap code is cleaned up and and better tested for
        # numpy v1.1 Objects that do not have a python mmap instance
        # as their base data array, should not do anything in the
        # close anyway.
        #elif self._mmap is not None:
            #raise ValueError, "Cannot close a memmap that is being used " \
            #      "by another object."

    def close(self):
        """Close the memmap file. Does nothing."""
        warnings.warn("``close`` is deprecated on memmap arrays.  Use del",
                      DeprecationWarning)

    def __del__(self):
        if self._mmap is not None:
            try:
                # First run tell() to see whether file is open
                self._mmap.tell()
            except ValueError:
                pass
            else:
                # flush any changes to disk, even if it's a view
                self.flush()
                self._close()