1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
|
__all__ = ['newaxis', 'ndarray', 'flatiter', 'ufunc',
'arange', 'array', 'zeros', 'empty', 'broadcast', 'dtype',
'fromstring', 'fromfile', 'frombuffer','newbuffer',
'getbuffer', 'int_asbuffer', 'where', 'argwhere',
'concatenate', 'fastCopyAndTranspose', 'lexsort',
'set_numeric_ops', 'can_cast',
'asarray', 'asanyarray', 'ascontiguousarray', 'asfortranarray',
'isfortran', 'empty_like', 'zeros_like',
'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot',
'alterdot', 'restoredot', 'roll', 'rollaxis', 'cross', 'tensordot',
'array2string', 'get_printoptions', 'set_printoptions',
'array_repr', 'array_str', 'set_string_function',
'little_endian', 'require',
'fromiter', 'array_equal', 'array_equiv',
'indices', 'fromfunction',
'load', 'loads', 'isscalar', 'binary_repr', 'base_repr',
'ones', 'identity', 'allclose', 'compare_chararrays', 'putmask',
'seterr', 'geterr', 'setbufsize', 'getbufsize',
'seterrcall', 'geterrcall', 'errstate', 'flatnonzero',
'Inf', 'inf', 'infty', 'Infinity',
'nan', 'NaN', 'False_', 'True_', 'bitwise_not',
'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', 'BUFSIZE', 'ALLOW_THREADS']
import sys
import multiarray
import umath
from umath import *
import numerictypes
from numerictypes import *
bitwise_not = invert
CLIP = multiarray.CLIP
WRAP = multiarray.WRAP
RAISE = multiarray.RAISE
MAXDIMS = multiarray.MAXDIMS
ALLOW_THREADS = multiarray.ALLOW_THREADS
BUFSIZE = multiarray.BUFSIZE
ndarray = multiarray.ndarray
flatiter = multiarray.flatiter
broadcast = multiarray.broadcast
dtype = multiarray.dtype
ufunc = type(sin)
# originally from Fernando Perez's IPython
def zeros_like(a):
"""Return an array of zeros of the shape and data-type of a.
If you don't explicitly need the array to be zeroed, you should instead
use empty_like(), which is a bit faster as it only allocates memory.
"""
if isinstance(a, ndarray):
res = ndarray.__new__(type(a), a.shape, a.dtype, order=a.flags.fnc)
res.fill(0)
return res
try:
wrap = a.__array_wrap__
except AttributeError:
wrap = None
a = asarray(a)
res = zeros(a.shape, a.dtype)
if wrap:
res = wrap(res)
return res
def empty_like(a):
"""Return an empty (uninitialized) array of the shape and data-type of a.
Note that this does NOT initialize the returned array. If you require
your array to be initialized, you should use zeros_like().
"""
if isinstance(a, ndarray):
res = ndarray.__new__(type(a), a.shape, a.dtype, order=a.flags.fnc)
return res
try:
wrap = a.__array_wrap__
except AttributeError:
wrap = None
a = asarray(a)
res = empty(a.shape, a.dtype)
if wrap:
res = wrap(res)
return res
# end Fernando's utilities
def extend_all(module):
adict = {}
for a in __all__:
adict[a] = 1
try:
mall = getattr(module, '__all__')
except AttributeError:
mall = [k for k in module.__dict__.keys() if not k.startswith('_')]
for a in mall:
if a not in adict:
__all__.append(a)
extend_all(umath)
extend_all(numerictypes)
newaxis = None
arange = multiarray.arange
array = multiarray.array
zeros = multiarray.zeros
empty = multiarray.empty
fromstring = multiarray.fromstring
fromiter = multiarray.fromiter
fromfile = multiarray.fromfile
frombuffer = multiarray.frombuffer
newbuffer = multiarray.newbuffer
getbuffer = multiarray.getbuffer
int_asbuffer = multiarray.int_asbuffer
where = multiarray.where
concatenate = multiarray.concatenate
fastCopyAndTranspose = multiarray._fastCopyAndTranspose
set_numeric_ops = multiarray.set_numeric_ops
can_cast = multiarray.can_cast
lexsort = multiarray.lexsort
compare_chararrays = multiarray.compare_chararrays
putmask = multiarray.putmask
def asarray(a, dtype=None, order=None):
"""Returns a as an array.
Unlike array(), no copy is performed if a is already an array. Subclasses
are converted to base class ndarray.
"""
return array(a, dtype, copy=False, order=order)
def asanyarray(a, dtype=None, order=None):
"""Returns a as an array, but will pass subclasses through.
"""
return array(a, dtype, copy=False, order=order, subok=True)
def ascontiguousarray(a, dtype=None):
"""Return 'a' as an array contiguous in memory (C order).
"""
return array(a, dtype, copy=False, order='C', ndmin=1)
def asfortranarray(a, dtype=None):
"""Return 'a' as an array laid out in Fortran-order in memory.
"""
return array(a, dtype, copy=False, order='F', ndmin=1)
def require(a, dtype=None, requirements=None):
"""Return an ndarray of the provided type that satisfies requirements.
This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).
Parameters
----------
a : array-like
The object to be converted to a type-and-requirement satisfying array
dtype : data-type
The required data-type (None is the default data-type -- float64)
requirements : list of strings
The requirements list can be any of the
'ENSUREARRAY' ('E') - ensure that a base-class ndarray
'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
'ALIGNED' ('A') - ensure a data-type aligned array
'WRITEABLE' ('W') - ensure a writeable array
'OWNDATA' ('O') - ensure an array that owns its own data
The returned array will be guaranteed to have the listed requirements
by making a copy if needed.
"""
if requirements is None:
requirements = []
else:
requirements = [x.upper() for x in requirements]
if not requirements:
return asanyarray(a, dtype=dtype)
if 'ENSUREARRAY' in requirements or 'E' in requirements:
subok = False
else:
subok = True
arr = array(a, dtype=dtype, copy=False, subok=subok)
copychar = 'A'
if 'FORTRAN' in requirements or \
'F_CONTIGUOUS' in requirements or \
'F' in requirements:
copychar = 'F'
elif 'CONTIGUOUS' in requirements or \
'C_CONTIGUOUS' in requirements or \
'C' in requirements:
copychar = 'C'
for prop in requirements:
if not arr.flags[prop]:
arr = arr.copy(copychar)
break
return arr
def isfortran(a):
"""Returns True if 'a' is arranged in Fortran-order in memory with a.ndim > 1
"""
return a.flags.fnc
def argwhere(a):
"""Return a 2-d array of shape N x a.ndim where each row
is a sequence of indices into a. This sequence must be
converted to a tuple in order to be used to index into a.
>>> np.argwhere(np.ones((2, 2)))
array([[0, 0],
[0, 1],
[1, 0],
[1, 1]])
"""
return asarray(a.nonzero()).T
def flatnonzero(a):
"""Return indicies that are not-zero in flattened version of a
Equivalent to a.ravel().nonzero()[0]
>>> np.arange(-2, 3)
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(np.arange(-2, 3))
array([0, 1, 3, 4])
"""
return a.ravel().nonzero()[0]
_mode_from_name_dict = {'v': 0,
's' : 1,
'f' : 2}
def _mode_from_name(mode):
if isinstance(mode, type("")):
return _mode_from_name_dict[mode.lower()[0]]
return mode
def correlate(a,v,mode='valid'):
"""Return the discrete, linear correlation of 1-D sequences a and v; mode
can be 'valid', 'same', or 'full' to specify the size of the resulting
sequence
"""
mode = _mode_from_name(mode)
return multiarray.correlate(a,v,mode)
def convolve(a,v,mode='full'):
"""Returns the discrete, linear convolution of 1-D sequences a and v; mode
can be 'valid', 'same', or 'full' to specify size of the resulting sequence.
"""
a,v = array(a,ndmin=1),array(v,ndmin=1)
if (len(v) > len(a)):
a, v = v, a
assert len(a) > 0, 'a cannot be empty'
assert len(v) > 0, 'v cannot be empty'
mode = _mode_from_name(mode)
return multiarray.correlate(a,asarray(v)[::-1],mode)
inner = multiarray.inner
dot = multiarray.dot
def outer(a,b):
"""Returns the outer product of two vectors.
result[i,j] = a[i]*b[j] when a and b are vectors.
Will accept any arguments that can be made into vectors.
"""
a = asarray(a)
b = asarray(b)
return a.ravel()[:,newaxis]*b.ravel()[newaxis,:]
def vdot(a, b):
"""Returns the dot product of 2 vectors (or anything that can be made into
a vector).
Note: this is not the same as `dot`, as it takes the conjugate of its first
argument if complex and always returns a scalar."""
return dot(asarray(a).ravel().conj(), asarray(b).ravel())
# try to import blas optimized dot if available
try:
# importing this changes the dot function for basic 4 types
# to blas-optimized versions.
from _dotblas import dot, vdot, inner, alterdot, restoredot
except ImportError:
def alterdot():
"Does Nothing"
pass
def restoredot():
"Does Nothing"
pass
def tensordot(a, b, axes=2):
"""tensordot returns the product for any (ndim >= 1) arrays.
r_{xxx, yyy} = \sum_k a_{xxx,k} b_{k,yyy} where
the axes to be summed over are given by the axes argument.
the first element of the sequence determines the axis or axes
in arr1 to sum over, and the second element in axes argument sequence
determines the axis or axes in arr2 to sum over.
When there is more than one axis to sum over, the corresponding
arguments to axes should be sequences of the same length with the first
axis to sum over given first in both sequences, the second axis second,
and so forth.
If the axes argument is an integer, N, then the last N dimensions of a
and first N dimensions of b are summed over.
"""
try:
iter(axes)
except:
axes_a = range(-axes,0)
axes_b = range(0,axes)
else:
axes_a, axes_b = axes
try:
na = len(axes_a)
axes_a = list(axes_a)
except TypeError:
axes_a = [axes_a]
na = 1
try:
nb = len(axes_b)
axes_b = list(axes_b)
except TypeError:
axes_b = [axes_b]
nb = 1
a, b = asarray(a), asarray(b)
as_ = a.shape
nda = len(a.shape)
bs = b.shape
ndb = len(b.shape)
equal = True
if (na != nb): equal = False
else:
for k in xrange(na):
if as_[axes_a[k]] != bs[axes_b[k]]:
equal = False
break
if axes_a[k] < 0:
axes_a[k] += nda
if axes_b[k] < 0:
axes_b[k] += ndb
if not equal:
raise ValueError, "shape-mismatch for sum"
# Move the axes to sum over to the end of "a"
# and to the front of "b"
notin = [k for k in range(nda) if k not in axes_a]
newaxes_a = notin + axes_a
N2 = 1
for axis in axes_a:
N2 *= as_[axis]
newshape_a = (-1, N2)
olda = [as_[axis] for axis in notin]
notin = [k for k in range(ndb) if k not in axes_b]
newaxes_b = axes_b + notin
N2 = 1
for axis in axes_b:
N2 *= bs[axis]
newshape_b = (N2, -1)
oldb = [bs[axis] for axis in notin]
at = a.transpose(newaxes_a).reshape(newshape_a)
bt = b.transpose(newaxes_b).reshape(newshape_b)
res = dot(at, bt)
return res.reshape(olda + oldb)
def roll(a, shift, axis=None):
"""Roll the elements in the array by 'shift' positions along
the given axis.
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.roll(np.arange(10), 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
"""
a = asanyarray(a)
if axis is None:
n = a.size
reshape = True
else:
n = a.shape[axis]
reshape = False
shift %= n
indexes = concatenate((arange(n-shift,n),arange(n-shift)))
res = a.take(indexes, axis)
if reshape:
return res.reshape(a.shape)
else:
return res
def rollaxis(a, axis, start=0):
"""Return transposed array so that axis is rolled before start.
>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2, 0).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)
"""
n = a.ndim
if axis < 0:
axis += n
if start < 0:
start += n
msg = 'rollaxis: %s (%d) must be >=0 and < %d'
if not (0 <= axis < n):
raise ValueError, msg % ('axis', axis, n)
if not (0 <= start < n+1):
raise ValueError, msg % ('start', start, n+1)
if (axis < start): # it's been removed
start -= 1
if axis==start:
return a
axes = range(0,n)
axes.remove(axis)
axes.insert(start, axis)
return a.transpose(axes)
# fix hack in scipy which imports this function
def _move_axis_to_0(a, axis):
return rollaxis(a, axis, 0)
def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
"""Return the cross product of two (arrays of) vectors.
The cross product is performed over the last axis of a and b by default,
and can handle axes with dimensions 2 and 3. For a dimension of 2,
the z-component of the equivalent three-dimensional cross product is
returned.
"""
if axis is not None:
axisa,axisb,axisc=(axis,)*3
a = asarray(a).swapaxes(axisa, 0)
b = asarray(b).swapaxes(axisb, 0)
msg = "incompatible dimensions for cross product\n"\
"(dimension must be 2 or 3)"
if (a.shape[0] not in [2,3]) or (b.shape[0] not in [2,3]):
raise ValueError(msg)
if a.shape[0] == 2:
if (b.shape[0] == 2):
cp = a[0]*b[1] - a[1]*b[0]
if cp.ndim == 0:
return cp
else:
return cp.swapaxes(0, axisc)
else:
x = a[1]*b[2]
y = -a[0]*b[2]
z = a[0]*b[1] - a[1]*b[0]
elif a.shape[0] == 3:
if (b.shape[0] == 3):
x = a[1]*b[2] - a[2]*b[1]
y = a[2]*b[0] - a[0]*b[2]
z = a[0]*b[1] - a[1]*b[0]
else:
x = -a[2]*b[1]
y = a[2]*b[0]
z = a[0]*b[1] - a[1]*b[0]
cp = array([x,y,z])
if cp.ndim == 1:
return cp
else:
return cp.swapaxes(0,axisc)
#Use numarray's printing function
from arrayprint import array2string, get_printoptions, set_printoptions
_typelessdata = [int_, float_, complex_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
_typelessdata.append(longlong)
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
if arr.size > 0 or arr.shape==(0,):
lst = array2string(arr, max_line_width, precision, suppress_small,
', ', "array(")
else: # show zero-length shape unless it is (0,)
lst = "[], shape=%s" % (repr(arr.shape),)
typeless = arr.dtype.type in _typelessdata
if arr.__class__ is not ndarray:
cName= arr.__class__.__name__
else:
cName = "array"
if typeless and arr.size:
return cName + "(%s)" % lst
else:
typename=arr.dtype.name
lf = ''
if issubclass(arr.dtype.type, flexible):
if arr.dtype.names:
typename = "%s" % str(arr.dtype)
else:
typename = "'%s'" % str(arr.dtype)
lf = '\n'+' '*len("array(")
return cName + "(%s, %sdtype=%s)" % (lst, lf, typename)
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
return array2string(a, max_line_width, precision, suppress_small, ' ', "", str)
set_string_function = multiarray.set_string_function
set_string_function(array_str, 0)
set_string_function(array_repr, 1)
little_endian = (sys.byteorder == 'little')
def indices(dimensions, dtype=int):
"""Returns an array representing a grid of indices with row-only, and
column-only variation.
"""
dimensions = tuple(dimensions)
N = len(dimensions)
if N == 0:
return array([],dtype=dtype)
res = empty((N,)+dimensions, dtype=dtype)
for i, dim in enumerate(dimensions):
tmp = arange(dim,dtype=dtype)
tmp.shape = (1,)*i + (dim,)+(1,)*(N-i-1)
newdim = dimensions[:i] + (1,)+ dimensions[i+1:]
val = zeros(newdim, dtype)
add(tmp, val, res[i])
return res
def fromfunction(function, shape, **kwargs):
"""Returns an array constructed by calling a function on a tuple of number
grids.
The function should accept as many arguments as the length of shape and
work on array inputs. The shape argument is a sequence of numbers
indicating the length of the desired output for each axis.
The function can also accept keyword arguments (except dtype), which will
be passed through fromfunction to the function itself. The dtype argument
(default float) determines the data-type of the index grid passed to the
function.
"""
dtype = kwargs.pop('dtype', float)
args = indices(shape, dtype=dtype)
return function(*args,**kwargs)
def isscalar(num):
"""Returns True if the type of num is a scalar type.
"""
if isinstance(num, generic):
return True
else:
return type(num) in ScalarType
_lkup = {
'0':'0000',
'1':'0001',
'2':'0010',
'3':'0011',
'4':'0100',
'5':'0101',
'6':'0110',
'7':'0111',
'8':'1000',
'9':'1001',
'a':'1010',
'b':'1011',
'c':'1100',
'd':'1101',
'e':'1110',
'f':'1111',
'A':'1010',
'B':'1011',
'C':'1100',
'D':'1101',
'E':'1110',
'F':'1111',
'L':''}
def binary_repr(num, width=None):
"""Return the binary representation of the input number as a string.
This is equivalent to using base_repr with base 2, but about 25x
faster.
For negative numbers, if width is not given, a - sign is added to the
front. If width is given, the two's complement of the number is
returned, with respect to that width.
"""
sign = ''
if num < 0:
if width is None:
sign = '-'
num = -num
else:
# replace num with its 2-complement
num = 2**width + num
elif num == 0:
return '0'*(width or 1)
ostr = hex(num)
bin = ''.join([_lkup[ch] for ch in ostr[2:]])
bin = bin.lstrip('0')
if width is not None:
bin = bin.zfill(width)
return sign + bin
def base_repr (number, base=2, padding=0):
"""Return the representation of a number in the given base.
Base can't be larger than 36.
"""
if number < 0:
raise ValueError("negative numbers not handled in base_repr")
if base > 36:
raise ValueError("bases greater than 36 not handled in base_repr")
chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
import math
lnb = math.log(base)
res = padding*chars[0]
if number == 0:
return res + chars[0]
exponent = int (math.log (number)/lnb)
while(exponent >= 0):
term = long(base)**exponent
lead_digit = int(number / term)
res += chars[lead_digit]
number -= term*lead_digit
exponent -= 1
return res
from cPickle import load, loads
_cload = load
_file = file
def load(file):
"""Wrapper around cPickle.load which accepts either a file-like object or
a filename.
"""
if isinstance(file, type("")):
file = _file(file,"rb")
return _cload(file)
# These are all essentially abbreviations
# These might wind up in a special abbreviations module
def _maketup(descr, val):
dt = dtype(descr)
# Place val in all scalar tuples:
fields = dt.fields
if fields is None:
return val
else:
res = [_maketup(fields[name][0],val) for name in dt.names]
return tuple(res)
def ones(shape, dtype=None, order='C'):
"""Returns an array of the given dimensions which is initialized to all
ones.
"""
a = empty(shape, dtype, order)
try:
a.fill(1)
# Above is faster now after addition of fast loops.
#a = zeros(shape, dtype, order)
#a+=1
except TypeError:
obj = _maketup(dtype, 1)
a.fill(obj)
return a
def identity(n, dtype=None):
"""Returns the identity 2-d array of shape n x n.
identity(n)[i,j] == 1 for all i == j
== 0 for all i != j
"""
a = array([1]+n*[0],dtype=dtype)
b = empty((n,n),dtype=dtype)
# Note that this assignment depends on the convention that since the a
# array is shorter than the flattened b array, then the a array will
# be repeated until it is the appropriate size. Given a's construction,
# this nicely sets the diagonal to all ones.
b.flat = a
return b
def allclose(a, b, rtol=1.e-5, atol=1.e-8):
"""Returns True if all components of a and b are equal subject to given
tolerances.
The relative error rtol must be positive and << 1.0
The absolute error atol usually comes into play for those elements of b that
are very small or zero; it says how small a must be also.
"""
x = array(a, copy=False)
y = array(b, copy=False)
xinf = isinf(x)
if not all(xinf == isinf(y)):
return False
if not any(xinf):
return all(less_equal(absolute(x-y), atol + rtol * absolute(y)))
if not all(x[xinf] == y[xinf]):
return False
x = x[~xinf]
y = y[~xinf]
return all(less_equal(absolute(x-y), atol + rtol * absolute(y)))
def array_equal(a1, a2):
"""Returns True if a1 and a2 have identical shapes
and all elements equal and False otherwise.
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return False
if a1.shape != a2.shape:
return False
return bool(logical_and.reduce(equal(a1,a2).ravel()))
def array_equiv(a1, a2):
"""Returns True if a1 and a2 are shape consistent
(mutually broadcastable) and have all elements equal and False
otherwise.
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return False
try:
return bool(logical_and.reduce(equal(a1,a2).ravel()))
except ValueError:
return False
_errdict = {"ignore":ERR_IGNORE,
"warn":ERR_WARN,
"raise":ERR_RAISE,
"call":ERR_CALL,
"print":ERR_PRINT,
"log":ERR_LOG}
_errdict_rev = {}
for key in _errdict.keys():
_errdict_rev[_errdict[key]] = key
del key
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
"""Set how floating-point errors are handled.
Valid values for each type of error are the strings
"ignore", "warn", "raise", and "call". Returns the old settings.
If 'all' is specified, values that are not otherwise specified
will be set to 'all', otherwise they will retain their old
values.
Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.
Example:
>>> seterr(over='raise') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
>>> seterr(all='warn', over='raise') # doctest: +SKIP
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
>>> int16(32000) * int16(3) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in ?
FloatingPointError: overflow encountered in short_scalars
>>> seterr(all='ignore') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
"""
pyvals = umath.geterrobj()
old = geterr()
if divide is None: divide = all or old['divide']
if over is None: over = all or old['over']
if under is None: under = all or old['under']
if invalid is None: invalid = all or old['invalid']
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
(_errdict[over] << SHIFT_OVERFLOW ) +
(_errdict[under] << SHIFT_UNDERFLOW) +
(_errdict[invalid] << SHIFT_INVALID))
pyvals[1] = maskvalue
umath.seterrobj(pyvals)
return old
def geterr():
"""Get the current way of handling floating-point errors.
Returns a dictionary with entries "divide", "over", "under", and
"invalid", whose values are from the strings
"ignore", "print", "log", "warn", "raise", and "call".
"""
maskvalue = umath.geterrobj()[1]
mask = 7
res = {}
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
res['divide'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_OVERFLOW) & mask
res['over'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
res['under'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_INVALID) & mask
res['invalid'] = _errdict_rev[val]
return res
def setbufsize(size):
"""Set the size of the buffer used in ufuncs.
"""
if size > 10e6:
raise ValueError, "Buffer size, %s, is too big." % size
if size < 5:
raise ValueError, "Buffer size, %s, is too small." %size
if size % 16 != 0:
raise ValueError, "Buffer size, %s, is not a multiple of 16." %size
pyvals = umath.geterrobj()
old = getbufsize()
pyvals[0] = size
umath.seterrobj(pyvals)
return old
def getbufsize():
"""Return the size of the buffer used in ufuncs.
"""
return umath.geterrobj()[0]
def seterrcall(func):
"""Set the callback function used when a floating-point error handler
is set to 'call' or the object with a write method for use when
the floating-point error handler is set to 'log'
'func' should be a function that takes two arguments. The first is
type of error ("divide", "over", "under", or "invalid"), and the second
is the status flag (= divide + 2*over + 4*under + 8*invalid).
Returns the old handler.
"""
if func is not None and not callable(func):
if not hasattr(func, 'write') or not callable(func.write):
raise ValueError, "Only callable can be used as callback"
pyvals = umath.geterrobj()
old = geterrcall()
pyvals[2] = func
umath.seterrobj(pyvals)
return old
def geterrcall():
"""Return the current callback function used on floating-point errors.
"""
return umath.geterrobj()[2]
class _unspecified(object):
pass
_Unspecified = _unspecified()
class errstate(object):
"""with errstate(**state): --> operations in following block use given state.
# Set error handling to known state.
>>> _ = np.seterr(invalid='raise', divide='raise', over='raise',
... under='ignore')
>>> a = -np.arange(3)
>>> with np.errstate(invalid='ignore'): # doctest: +SKIP
... print np.sqrt(a) # with statement requires Python 2.5
[ 0. -1.#IND -1.#IND]
>>> print np.sqrt(a.astype(complex))
[ 0.+0.j 0.+1.j 0.+1.41421356j]
>>> print np.sqrt(a)
Traceback (most recent call last):
...
FloatingPointError: invalid value encountered in sqrt
>>> with np.errstate(divide='ignore'): # doctest: +SKIP
... print a/0
[0 0 0]
>>> print a/0
Traceback (most recent call last):
...
FloatingPointError: divide by zero encountered in divide
"""
# Note that we don't want to run the above doctests because they will fail
# without a from __future__ import with_statement
def __init__(self, **kwargs):
self.call = kwargs.pop('call',_Unspecified)
self.kwargs = kwargs
def __enter__(self):
self.oldstate = seterr(**self.kwargs)
if self.call is not _Unspecified:
self.oldcall = seterrcall(self.call)
def __exit__(self, *exc_info):
seterr(**self.oldstate)
if self.call is not _Unspecified:
seterrcall(self.oldcall)
def _setdef():
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT2, None]
umath.seterrobj(defval)
# set the default values
_setdef()
Inf = inf = infty = Infinity = PINF
nan = NaN = NAN
False_ = bool_(False)
True_ = bool_(True)
import fromnumeric
from fromnumeric import *
extend_all(fromnumeric)
|