1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
"""Preliminary implementation of NEP-18
TODO: rewrite this in C for performance.
"""
import collections
import functools
import os
from numpy.core._multiarray_umath import add_docstring, ndarray
from numpy.compat._inspect import getargspec
_NDARRAY_ARRAY_FUNCTION = ndarray.__array_function__
_NDARRAY_ONLY = [ndarray]
ENABLE_ARRAY_FUNCTION = bool(
int(os.environ.get('NUMPY_EXPERIMENTAL_ARRAY_FUNCTION', 0)))
def get_overloaded_types_and_args(relevant_args):
"""Returns a list of arguments on which to call __array_function__.
Parameters
----------
relevant_args : iterable of array-like
Iterable of array-like arguments to check for __array_function__
methods.
Returns
-------
overloaded_types : collection of types
Types of arguments from relevant_args with __array_function__ methods.
overloaded_args : list
Arguments from relevant_args on which to call __array_function__
methods, in the order in which they should be called.
"""
# Runtime is O(num_arguments * num_unique_types)
overloaded_types = []
overloaded_args = []
for arg in relevant_args:
arg_type = type(arg)
# We only collect arguments if they have a unique type, which ensures
# reasonable performance even with a long list of possibly overloaded
# arguments.
if (arg_type not in overloaded_types and
hasattr(arg_type, '__array_function__')):
# Create lists explicitly for the first type (usually the only one
# done) to avoid setting up the iterator for overloaded_args.
if overloaded_types:
overloaded_types.append(arg_type)
# By default, insert argument at the end, but if it is
# subclass of another argument, insert it before that argument.
# This ensures "subclasses before superclasses".
index = len(overloaded_args)
for i, old_arg in enumerate(overloaded_args):
if issubclass(arg_type, type(old_arg)):
index = i
break
overloaded_args.insert(index, arg)
else:
overloaded_types = [arg_type]
overloaded_args = [arg]
# Short-cut for the common case of only ndarray.
if overloaded_types == _NDARRAY_ONLY:
return overloaded_types, []
# Special handling for ndarray.__array_function__
overloaded_args = [
arg for arg in overloaded_args
if type(arg).__array_function__ is not _NDARRAY_ARRAY_FUNCTION
]
return overloaded_types, overloaded_args
def array_function_implementation_or_override(
implementation, public_api, relevant_args, args, kwargs):
"""Implement a function with checks for __array_function__ overrides.
Arguments
---------
implementation : function
Function that implements the operation on NumPy array without
overrides when called like ``implementation(*args, **kwargs)``.
public_api : function
Function exposed by NumPy's public API originally called like
``public_api(*args, **kwargs)`` on which arguments are now being
checked.
relevant_args : iterable
Iterable of arguments to check for __array_function__ methods.
args : tuple
Arbitrary positional arguments originally passed into ``public_api``.
kwargs : tuple
Arbitrary keyword arguments originally passed into ``public_api``.
Returns
-------
Result from calling `implementation()` or an `__array_function__`
method, as appropriate.
Raises
------
TypeError : if no implementation is found.
"""
# Check for __array_function__ methods.
types, overloaded_args = get_overloaded_types_and_args(relevant_args)
if not overloaded_args:
return implementation(*args, **kwargs)
# Call overrides
for overloaded_arg in overloaded_args:
# Use `public_api` instead of `implemenation` so __array_function__
# implementations can do equality/identity comparisons.
result = overloaded_arg.__array_function__(
public_api, types, args, kwargs)
if result is not NotImplemented:
return result
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
raise TypeError("no implementation found for '{}' on types that implement "
'__array_function__: {}'
.format(func_name, list(map(type, overloaded_args))))
ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults')
def verify_matching_signatures(implementation, dispatcher):
"""Verify that a dispatcher function has the right signature."""
implementation_spec = ArgSpec(*getargspec(implementation))
dispatcher_spec = ArgSpec(*getargspec(dispatcher))
if (implementation_spec.args != dispatcher_spec.args or
implementation_spec.varargs != dispatcher_spec.varargs or
implementation_spec.keywords != dispatcher_spec.keywords or
(bool(implementation_spec.defaults) !=
bool(dispatcher_spec.defaults)) or
(implementation_spec.defaults is not None and
len(implementation_spec.defaults) !=
len(dispatcher_spec.defaults))):
raise RuntimeError('implementation and dispatcher for %s have '
'different function signatures' % implementation)
if implementation_spec.defaults is not None:
if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults):
raise RuntimeError('dispatcher functions can only use None for '
'default argument values')
def set_module(module):
"""Decorator for overriding __module__ on a function or class.
Example usage::
@set_module('numpy')
def example():
pass
assert example.__module__ == 'numpy'
"""
def decorator(func):
if module is not None:
func.__module__ = module
return func
return decorator
def array_function_dispatch(dispatcher, module=None, verify=True,
docs_from_dispatcher=False):
"""Decorator for adding dispatch with the __array_function__ protocol.
See NEP-18 for example usage.
Parameters
----------
dispatcher : callable
Function that when called like ``dispatcher(*args, **kwargs)`` with
arguments from the NumPy function call returns an iterable of
array-like arguments to check for ``__array_function__``.
module : str, optional
__module__ attribute to set on new function, e.g., ``module='numpy'``.
By default, module is copied from the decorated function.
verify : bool, optional
If True, verify the that the signature of the dispatcher and decorated
function signatures match exactly: all required and optional arguments
should appear in order with the same names, but the default values for
all optional arguments should be ``None``. Only disable verification
if the dispatcher's signature needs to deviate for some particular
reason, e.g., because the function has a signature like
``func(*args, **kwargs)``.
docs_from_dispatcher : bool, optional
If True, copy docs from the dispatcher function onto the dispatched
function, rather than from the implementation. This is useful for
functions defined in C, which otherwise don't have docstrings.
Returns
-------
Function suitable for decorating the implementation of a NumPy function.
"""
if not ENABLE_ARRAY_FUNCTION:
# __array_function__ requires an explicit opt-in for now
def decorator(implementation):
if module is not None:
implementation.__module__ = module
if docs_from_dispatcher:
add_docstring(implementation, dispatcher.__doc__)
return implementation
return decorator
def decorator(implementation):
if verify:
verify_matching_signatures(implementation, dispatcher)
if docs_from_dispatcher:
add_docstring(implementation, dispatcher.__doc__)
@functools.wraps(implementation)
def public_api(*args, **kwargs):
relevant_args = dispatcher(*args, **kwargs)
return array_function_implementation_or_override(
implementation, public_api, relevant_args, args, kwargs)
if module is not None:
public_api.__module__ = module
# TODO: remove this when we drop Python 2 support (functools.wraps
# adds __wrapped__ automatically in later versions)
public_api.__wrapped__ = implementation
return public_api
return decorator
def array_function_from_dispatcher(
implementation, module=None, verify=True, docs_from_dispatcher=True):
"""Like array_function_dispatcher, but with function arguments flipped."""
def decorator(dispatcher):
return array_function_dispatch(
dispatcher, module, verify=verify,
docs_from_dispatcher=docs_from_dispatcher)(implementation)
return decorator
|