summaryrefslogtreecommitdiff
path: root/numpy/core/src/common/half_private.hpp
blob: 7a64eb397beddb79b8a5648f920d116e3da8d1f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#ifndef NUMPY_CORE_SRC_COMMON_HALF_PRIVATE_HPP
#define NUMPY_CORE_SRC_COMMON_HALF_PRIVATE_HPP

#include "npstd.hpp"
#include "float_status.hpp"

/*
 * The following functions that emulating float/double/half conversions
 * are copied from npymath without any changes to its functionalty.
 */
namespace np { namespace half_private {

template<bool gen_overflow=true, bool gen_underflow=true, bool round_even=true>
inline uint16_t FromFloatBits(uint32_t f)
{
    uint32_t f_exp, f_sig;
    uint16_t h_sgn, h_exp, h_sig;

    h_sgn = (uint16_t) ((f&0x80000000u) >> 16);
    f_exp = (f&0x7f800000u);

    /* Exponent overflow/NaN converts to signed inf/NaN */
    if (f_exp >= 0x47800000u) {
        if (f_exp == 0x7f800000u) {
            /* Inf or NaN */
            f_sig = (f&0x007fffffu);
            if (f_sig != 0) {
                /* NaN - propagate the flag in the significand... */
                uint16_t ret = (uint16_t) (0x7c00u + (f_sig >> 13));
                /* ...but make sure it stays a NaN */
                if (ret == 0x7c00u) {
                    ret++;
                }
                return h_sgn + ret;
            } else {
                /* signed inf */
                return (uint16_t) (h_sgn + 0x7c00u);
            }
        } else {
            if constexpr (gen_overflow) {
                /* overflow to signed inf */
                FloatStatus::RaiseOverflow();
            }
            return (uint16_t) (h_sgn + 0x7c00u);
        }
    }

    /* Exponent underflow converts to a subnormal half or signed zero */
    if (f_exp <= 0x38000000u) {
        /*
         * Signed zeros, subnormal floats, and floats with small
         * exponents all convert to signed zero half-floats.
         */
        if (f_exp < 0x33000000u) {
            if constexpr (gen_underflow) {
                /* If f != 0, it underflowed to 0 */
                if ((f&0x7fffffff) != 0) {
                    FloatStatus::RaiseUnderflow();
                }
            }
            return h_sgn;
        }
        /* Make the subnormal significand */
        f_exp >>= 23;
        f_sig = (0x00800000u + (f&0x007fffffu));
        if constexpr (gen_underflow) {
            /* If it's not exactly represented, it underflowed */
            if ((f_sig&(((uint32_t)1 << (126 - f_exp)) - 1)) != 0) {
                FloatStatus::RaiseUnderflow();
            }
        }
        /*
         * Usually the significand is shifted by 13. For subnormals an
         * additional shift needs to occur. This shift is one for the largest
         * exponent giving a subnormal `f_exp = 0x38000000 >> 23 = 112`, which
         * offsets the new first bit. At most the shift can be 1+10 bits.
         */
        f_sig >>= (113 - f_exp);
        /* Handle rounding by adding 1 to the bit beyond half precision */
        if constexpr (round_even) {
            /*
             * If the last bit in the half significand is 0 (already even), and
             * the remaining bit pattern is 1000...0, then we do not add one
             * to the bit after the half significand. However, the (113 - f_exp)
             * shift can lose up to 11 bits, so the || checks them in the original.
             * In all other cases, we can just add one.
             */
            if (((f_sig&0x00003fffu) != 0x00001000u) || (f&0x000007ffu)) {
                f_sig += 0x00001000u;
            }
        }
        else {
            f_sig += 0x00001000u;
        }
        h_sig = (uint16_t) (f_sig >> 13);
        /*
         * If the rounding causes a bit to spill into h_exp, it will
         * increment h_exp from zero to one and h_sig will be zero.
         * This is the correct result.
         */
        return (uint16_t) (h_sgn + h_sig);
    }

    /* Regular case with no overflow or underflow */
    h_exp = (uint16_t) ((f_exp - 0x38000000u) >> 13);
    /* Handle rounding by adding 1 to the bit beyond half precision */
    f_sig = (f&0x007fffffu);
    if constexpr (round_even) {
        /*
         * If the last bit in the half significand is 0 (already even), and
         * the remaining bit pattern is 1000...0, then we do not add one
         * to the bit after the half significand.  In all other cases, we do.
         */
        if ((f_sig&0x00003fffu) != 0x00001000u) {
            f_sig += 0x00001000u;
        }
    }
    else {
        f_sig += 0x00001000u;
    }
    h_sig = (uint16_t) (f_sig >> 13);
    /*
     * If the rounding causes a bit to spill into h_exp, it will
     * increment h_exp by one and h_sig will be zero.  This is the
     * correct result.  h_exp may increment to 15, at greatest, in
     * which case the result overflows to a signed inf.
     */
    if constexpr (gen_overflow) {
        h_sig += h_exp;
        if (h_sig == 0x7c00u) {
            FloatStatus::RaiseOverflow();
        }
        return h_sgn + h_sig;
    }
    else {
        return h_sgn + h_exp + h_sig;
    }
}

template<bool gen_overflow=true, bool gen_underflow=true, bool round_even=true>
inline uint16_t FromDoubleBits(uint64_t d)
{
    uint64_t d_exp, d_sig;
    uint16_t h_sgn, h_exp, h_sig;

    h_sgn = (d&0x8000000000000000ULL) >> 48;
    d_exp = (d&0x7ff0000000000000ULL);

    /* Exponent overflow/NaN converts to signed inf/NaN */
    if (d_exp >= 0x40f0000000000000ULL) {
        if (d_exp == 0x7ff0000000000000ULL) {
            /* Inf or NaN */
            d_sig = (d&0x000fffffffffffffULL);
            if (d_sig != 0) {
                /* NaN - propagate the flag in the significand... */
                uint16_t ret = (uint16_t) (0x7c00u + (d_sig >> 42));
                /* ...but make sure it stays a NaN */
                if (ret == 0x7c00u) {
                    ret++;
                }
                return h_sgn + ret;
            } else {
                /* signed inf */
                return h_sgn + 0x7c00u;
            }
        } else {
            /* overflow to signed inf */
            if constexpr (gen_overflow) {
                FloatStatus::RaiseOverflow();
            }
            return h_sgn + 0x7c00u;
        }
    }

    /* Exponent underflow converts to subnormal half or signed zero */
    if (d_exp <= 0x3f00000000000000ULL) {
        /*
         * Signed zeros, subnormal floats, and floats with small
         * exponents all convert to signed zero half-floats.
         */
        if (d_exp < 0x3e60000000000000ULL) {
            if constexpr (gen_underflow) {
                /* If d != 0, it underflowed to 0 */
                if ((d&0x7fffffffffffffffULL) != 0) {
                    FloatStatus::RaiseUnderflow();
                }
            }
            return h_sgn;
        }
        /* Make the subnormal significand */
        d_exp >>= 52;
        d_sig = (0x0010000000000000ULL + (d&0x000fffffffffffffULL));
        if constexpr (gen_underflow) {
            /* If it's not exactly represented, it underflowed */
            if ((d_sig&(((uint64_t)1 << (1051 - d_exp)) - 1)) != 0) {
                FloatStatus::RaiseUnderflow();
            }
        }
        /*
         * Unlike floats, doubles have enough room to shift left to align
         * the subnormal significand leading to no loss of the last bits.
         * The smallest possible exponent giving a subnormal is:
         * `d_exp = 0x3e60000000000000 >> 52 = 998`. All larger subnormals are
         * shifted with respect to it. This adds a shift of 10+1 bits the final
         * right shift when comparing it to the one in the normal branch.
         */
        assert(d_exp - 998 >= 0);
        d_sig <<= (d_exp - 998);
        /* Handle rounding by adding 1 to the bit beyond half precision */
        if constexpr (round_even) {
            /*
             * If the last bit in the half significand is 0 (already even), and
             * the remaining bit pattern is 1000...0, then we do not add one
             * to the bit after the half significand.  In all other cases, we do.
             */
            if ((d_sig&0x003fffffffffffffULL) != 0x0010000000000000ULL) {
                d_sig += 0x0010000000000000ULL;
            }
        }
        else {
            d_sig += 0x0010000000000000ULL;
        }
        h_sig = (uint16_t) (d_sig >> 53);
        /*
         * If the rounding causes a bit to spill into h_exp, it will
         * increment h_exp from zero to one and h_sig will be zero.
         * This is the correct result.
         */
        return h_sgn + h_sig;
    }

    /* Regular case with no overflow or underflow */
    h_exp = (uint16_t) ((d_exp - 0x3f00000000000000ULL) >> 42);
    /* Handle rounding by adding 1 to the bit beyond half precision */
    d_sig = (d&0x000fffffffffffffULL);
    if constexpr (round_even) {
        /*
         * If the last bit in the half significand is 0 (already even), and
         * the remaining bit pattern is 1000...0, then we do not add one
         * to the bit after the half significand.  In all other cases, we do.
         */
        if ((d_sig&0x000007ffffffffffULL) != 0x0000020000000000ULL) {
            d_sig += 0x0000020000000000ULL;
        }
    }
    else {
        d_sig += 0x0000020000000000ULL;
    }
    h_sig = (uint16_t) (d_sig >> 42);

    /*
     * If the rounding causes a bit to spill into h_exp, it will
     * increment h_exp by one and h_sig will be zero.  This is the
     * correct result.  h_exp may increment to 15, at greatest, in
     * which case the result overflows to a signed inf.
     */
    if constexpr (gen_overflow) {
        h_sig += h_exp;
        if (h_sig == 0x7c00u) {
            FloatStatus::RaiseOverflow();
        }
        return h_sgn + h_sig;
    }
    else {
        return h_sgn + h_exp + h_sig;
    }
}

constexpr uint32_t ToFloatBits(uint16_t h)
{
    uint16_t h_exp = (h&0x7c00u);
    uint32_t f_sgn = ((uint32_t)h&0x8000u) << 16;
    switch (h_exp) {
        case 0x0000u: { // 0 or subnormal
            uint16_t h_sig = (h&0x03ffu);
            // Signed zero
            if (h_sig == 0) {
                return f_sgn;
            }
            // Subnormal
            h_sig <<= 1;
            while ((h_sig&0x0400u) == 0) {
                h_sig <<= 1;
                h_exp++;
            }
            uint32_t f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
            uint32_t f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13;
            return f_sgn + f_exp + f_sig;
        }
        case 0x7c00u: // inf or NaN
            // All-ones exponent and a copy of the significand
            return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13);
        default: // normalized
            // Just need to adjust the exponent and shift
            return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13);
    }
}

constexpr uint64_t ToDoubleBits(uint16_t h)
{
    uint16_t h_exp = (h&0x7c00u);
    uint64_t d_sgn = ((uint64_t)h&0x8000u) << 48;
    switch (h_exp) {
        case 0x0000u: { // 0 or subnormal
            uint16_t h_sig = (h&0x03ffu);
            // Signed zero
            if (h_sig == 0) {
                return d_sgn;
            }
            // Subnormal
            h_sig <<= 1;
            while ((h_sig&0x0400u) == 0) {
                h_sig <<= 1;
                h_exp++;
            }
            uint64_t d_exp = ((uint64_t)(1023 - 15 - h_exp)) << 52;
            uint64_t d_sig = ((uint64_t)(h_sig&0x03ffu)) << 42;
            return d_sgn + d_exp + d_sig;
        }
        case 0x7c00u: // inf or NaN
            // All-ones exponent and a copy of the significand
            return d_sgn + 0x7ff0000000000000ULL + (((uint64_t)(h&0x03ffu)) << 42);
        default: // normalized
            // Just need to adjust the exponent and shift
            return d_sgn + (((uint64_t)(h&0x7fffu) + 0xfc000u) << 42);
    }
}

}} // namespace np::half_private
#endif // NUMPY_CORE_SRC_COMMON_HALF_PRIVATE_HPP