summaryrefslogtreecommitdiff
path: root/numpy/core/src/multiarray/arrayobject.c
blob: 46c4d90c9e0027b19265050f01ce8331892da0ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
/*
  Provide multidimensional arrays as a basic object type in python.

  Based on Original Numeric implementation
  Copyright (c) 1995, 1996, 1997 Jim Hugunin, hugunin@mit.edu

  with contributions from many Numeric Python developers 1995-2004

  Heavily modified in 2005 with inspiration from Numarray

  by

  Travis Oliphant,  oliphant@ee.byu.edu
  Brigham Young University


maintainer email:  oliphant.travis@ieee.org

  Numarray design (which provided guidance) by
  Space Science Telescope Institute
  (J. Todd Miller, Perry Greenfield, Rick White)
*/
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
#define _MULTIARRAYMODULE

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <structmember.h>

#include "numpy/arrayobject.h"
#include "numpy/arrayscalars.h"

#include "npy_config.h"

#include "npy_pycompat.h"

#include "common.h"

#include "number.h"
#include "usertypes.h"
#include "arraytypes.h"
#include "scalartypes.h"
#include "arrayobject.h"
#include "convert_datatype.h"
#include "conversion_utils.h"
#include "ctors.h"
#include "dtypemeta.h"
#include "methods.h"
#include "descriptor.h"
#include "iterators.h"
#include "mapping.h"
#include "getset.h"
#include "sequence.h"
#include "npy_buffer.h"
#include "array_assign.h"
#include "alloc.h"
#include "mem_overlap.h"
#include "numpyos.h"
#include "refcount.h"
#include "strfuncs.h"

#include "binop_override.h"
#include "array_coercion.h"

/*NUMPY_API
  Compute the size of an array (in number of items)
*/
NPY_NO_EXPORT npy_intp
PyArray_Size(PyObject *op)
{
    if (PyArray_Check(op)) {
        return PyArray_SIZE((PyArrayObject *)op);
    }
    else {
        return 0;
    }
}

/*NUMPY_API */
NPY_NO_EXPORT int
PyArray_SetUpdateIfCopyBase(PyArrayObject *arr, PyArrayObject *base)
{
    /* 2021-Dec-15 1.23*/
    PyErr_SetString(PyExc_RuntimeError,
        "PyArray_SetUpdateIfCopyBase is disabled, use "
        "PyArray_SetWritebackIfCopyBase instead, and be sure to call "
        "PyArray_ResolveWritebackIfCopy before the array is deallocated, "
        "i.e. before the last call to Py_DECREF. If cleaning up from an "
        "error, PyArray_DiscardWritebackIfCopy may be called instead to "
        "throw away the scratch buffer.");
    return -1;
}

/*NUMPY_API
 *
 * Precondition: 'arr' is a copy of 'base' (though possibly with different
 * strides, ordering, etc.). This function sets the WRITEBACKIFCOPY flag and the
 * ->base pointer on 'arr', call PyArray_ResolveWritebackIfCopy to copy any
 * changes back to 'base' before deallocating the array.
 *
 * Steals a reference to 'base'.
 *
 * Returns 0 on success, -1 on failure.
 */
NPY_NO_EXPORT int
PyArray_SetWritebackIfCopyBase(PyArrayObject *arr, PyArrayObject *base)
{
    if (base == NULL) {
        PyErr_SetString(PyExc_ValueError,
                  "Cannot WRITEBACKIFCOPY to NULL array");
        return -1;
    }
    if (PyArray_BASE(arr) != NULL) {
        PyErr_SetString(PyExc_ValueError,
                  "Cannot set array with existing base to WRITEBACKIFCOPY");
        goto fail;
    }
    if (PyArray_FailUnlessWriteable(base, "WRITEBACKIFCOPY base") < 0) {
        goto fail;
    }

    /*
     * Any writes to 'arr' will magically turn into writes to 'base', so we
     * should warn if necessary.
     */
    if (PyArray_FLAGS(base) & NPY_ARRAY_WARN_ON_WRITE) {
        PyArray_ENABLEFLAGS(arr, NPY_ARRAY_WARN_ON_WRITE);
    }

    /*
     * Unlike PyArray_SetBaseObject, we do not compress the chain of base
     * references.
     */
    ((PyArrayObject_fields *)arr)->base = (PyObject *)base;
    PyArray_ENABLEFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY);
    PyArray_CLEARFLAGS(base, NPY_ARRAY_WRITEABLE);

    return 0;

  fail:
    Py_DECREF(base);
    return -1;
}

/*NUMPY_API
 * Sets the 'base' attribute of the array. This steals a reference
 * to 'obj'.
 *
 * Returns 0 on success, -1 on failure.
 */
NPY_NO_EXPORT int
PyArray_SetBaseObject(PyArrayObject *arr, PyObject *obj)
{
    if (obj == NULL) {
        PyErr_SetString(PyExc_ValueError,
                "Cannot set the NumPy array 'base' "
                "dependency to NULL after initialization");
        return -1;
    }
    /*
     * Allow the base to be set only once. Once the object which
     * owns the data is set, it doesn't make sense to change it.
     */
    if (PyArray_BASE(arr) != NULL) {
        Py_DECREF(obj);
        PyErr_SetString(PyExc_ValueError,
                "Cannot set the NumPy array 'base' "
                "dependency more than once");
        return -1;
    }

    /*
     * Don't allow infinite chains of views, always set the base
     * to the first owner of the data.
     * That is, either the first object which isn't an array,
     * or the first object which owns its own data.
     */

    while (PyArray_Check(obj) && (PyObject *)arr != obj) {
        PyArrayObject *obj_arr = (PyArrayObject *)obj;
        PyObject *tmp;

        /* Propagate WARN_ON_WRITE through views. */
        if (PyArray_FLAGS(obj_arr) & NPY_ARRAY_WARN_ON_WRITE) {
            PyArray_ENABLEFLAGS(arr, NPY_ARRAY_WARN_ON_WRITE);
        }

        /* If this array owns its own data, stop collapsing */
        if (PyArray_CHKFLAGS(obj_arr, NPY_ARRAY_OWNDATA)) {
            break;
        }

        tmp = PyArray_BASE(obj_arr);
        /* If there's no base, stop collapsing */
        if (tmp == NULL) {
            break;
        }
        /* Stop the collapse new base when the would not be of the same
         * type (i.e. different subclass).
         */
        if (Py_TYPE(tmp) != Py_TYPE(arr)) {
            break;
        }


        Py_INCREF(tmp);
        Py_DECREF(obj);
        obj = tmp;
    }

    /* Disallow circular references */
    if ((PyObject *)arr == obj) {
        Py_DECREF(obj);
        PyErr_SetString(PyExc_ValueError,
                "Cannot create a circular NumPy array 'base' dependency");
        return -1;
    }

    ((PyArrayObject_fields *)arr)->base = obj;

    return 0;
}


/**
 * Assign an arbitrary object a NumPy array. This is largely basically
 * identical to PyArray_FromAny, but assigns directly to the output array.
 *
 * @param dest Array to be written to
 * @param src_object Object to be assigned, array-coercion rules apply.
 * @return 0 on success -1 on failures.
 */
/*NUMPY_API*/
NPY_NO_EXPORT int
PyArray_CopyObject(PyArrayObject *dest, PyObject *src_object)
{
    int ret = 0;
    PyArrayObject *view;
    PyArray_Descr *dtype = NULL;
    int ndim;
    npy_intp dims[NPY_MAXDIMS];
    coercion_cache_obj *cache = NULL;

    /*
     * We have to set the maximum number of dimensions here to support
     * sequences within object arrays.
     */
    ndim = PyArray_DiscoverDTypeAndShape(src_object,
            PyArray_NDIM(dest), dims, &cache,
            NPY_DTYPE(PyArray_DESCR(dest)), PyArray_DESCR(dest), &dtype, 0);
    if (ndim < 0) {
        return -1;
    }

    if (cache != NULL && !(cache->sequence)) {
        /* The input is an array or array object, so assign directly */
        assert(cache->converted_obj == src_object);
        view = (PyArrayObject *)cache->arr_or_sequence;
        Py_DECREF(dtype);
        ret = PyArray_AssignArray(dest, view, NULL, NPY_UNSAFE_CASTING);
        npy_free_coercion_cache(cache);
        return ret;
    }

    /*
     * We may need to broadcast, due to shape mismatches, in this case
     * create a temporary array first, and assign that after filling
     * it from the sequences/scalar.
     */
    if (ndim != PyArray_NDIM(dest) ||
            !PyArray_CompareLists(PyArray_DIMS(dest), dims, ndim)) {
        /*
         * Broadcasting may be necessary, so assign to a view first.
         * This branch could lead to a shape mismatch error later.
         */
        assert (ndim <= PyArray_NDIM(dest));  /* would error during discovery */
        view = (PyArrayObject *) PyArray_NewFromDescr(
                &PyArray_Type, dtype, ndim, dims, NULL, NULL,
                PyArray_FLAGS(dest) & NPY_ARRAY_F_CONTIGUOUS, NULL);
        if (view == NULL) {
            npy_free_coercion_cache(cache);
            return -1;
        }
    }
    else {
        Py_DECREF(dtype);
        view = dest;
    }

    /* Assign the values to `view` (whichever array that is) */
    if (cache == NULL) {
        /* single (non-array) item, assign immediately */
        if (PyArray_Pack(
                PyArray_DESCR(view), PyArray_DATA(view), src_object) < 0) {
            goto fail;
        }
    }
    else {
        if (PyArray_AssignFromCache(view, cache) < 0) {
            goto fail;
        }
    }
    if (view == dest) {
        return 0;
    }
    ret = PyArray_AssignArray(dest, view, NULL, NPY_UNSAFE_CASTING);
    Py_DECREF(view);
    return ret;

  fail:
    if (view != dest) {
        Py_DECREF(view);
    }
    return -1;
}


/* returns an Array-Scalar Object of the type of arr
   from the given pointer to memory -- main Scalar creation function
   default new method calls this.
*/

/* Ideally, here the descriptor would contain all the information needed.
   So, that we simply need the data and the descriptor, and perhaps
   a flag
*/


/*
  Given a string return the type-number for
  the data-type with that string as the type-object name.
  Returns NPY_NOTYPE without setting an error if no type can be
  found.  Only works for user-defined data-types.
*/

/*NUMPY_API
 */
NPY_NO_EXPORT int
PyArray_TypeNumFromName(char const *str)
{
    int i;
    PyArray_Descr *descr;

    for (i = 0; i < NPY_NUMUSERTYPES; i++) {
        descr = userdescrs[i];
        if (strcmp(descr->typeobj->tp_name, str) == 0) {
            return descr->type_num;
        }
    }
    return NPY_NOTYPE;
}

/*NUMPY_API
 *
 * If WRITEBACKIFCOPY and self has data, reset the base WRITEABLE flag,
 * copy the local data to base, release the local data, and set flags
 * appropriately. Return 0 if not relevant, 1 if success, < 0 on failure
 */
NPY_NO_EXPORT int
PyArray_ResolveWritebackIfCopy(PyArrayObject * self)
{
    PyArrayObject_fields *fa = (PyArrayObject_fields *)self;
    if (fa && fa->base) {
        if (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY) {
            /*
             * WRITEBACKIFCOPY means that fa->base's data
             * should be updated with the contents
             * of self.
             * fa->base->flags is not WRITEABLE to protect the relationship
             * unlock it.
             */
            int retval = 0;
            PyArray_ENABLEFLAGS(((PyArrayObject *)fa->base),
                                                    NPY_ARRAY_WRITEABLE);
            PyArray_CLEARFLAGS(self, NPY_ARRAY_WRITEBACKIFCOPY);
            retval = PyArray_CopyAnyInto((PyArrayObject *)fa->base, self);
            Py_DECREF(fa->base);
            fa->base = NULL;
            if (retval < 0) {
                /* this should never happen, how did the two copies of data
                 * get out of sync?
                 */
                return retval;
            }
            return 1;
        }
    }
    return 0;
}

/*********************** end C-API functions **********************/


/* dealloc must not raise an error, best effort try to write
   to stderr and clear the error
*/

static inline void
WARN_IN_DEALLOC(PyObject* warning, const char * msg) {
    if (PyErr_WarnEx(warning, msg, 1) < 0) {
        PyObject * s;

        s = PyUnicode_FromString("array_dealloc");
        if (s) {
            PyErr_WriteUnraisable(s);
            Py_DECREF(s);
        }
        else {
            PyErr_WriteUnraisable(Py_None);
        }
    }
}

/* array object functions */

static void
array_dealloc(PyArrayObject *self)
{
    PyArrayObject_fields *fa = (PyArrayObject_fields *)self;

    if (_buffer_info_free(fa->_buffer_info, (PyObject *)self) < 0) {
        PyErr_WriteUnraisable(NULL);
    }

    if (fa->weakreflist != NULL) {
        PyObject_ClearWeakRefs((PyObject *)self);
    }
    if (fa->base) {
        int retval;
        if (PyArray_FLAGS(self) & NPY_ARRAY_WRITEBACKIFCOPY)
        {
            char const * msg = "WRITEBACKIFCOPY detected in array_dealloc. "
                " Required call to PyArray_ResolveWritebackIfCopy or "
                "PyArray_DiscardWritebackIfCopy is missing.";
            /*
             * prevent reaching 0 twice and thus recursing into dealloc.
             * Increasing sys.gettotalrefcount, but path should not be taken.
             */
            Py_INCREF(self);
            WARN_IN_DEALLOC(PyExc_RuntimeWarning, msg);
            retval = PyArray_ResolveWritebackIfCopy(self);
            if (retval < 0)
            {
                PyErr_Print();
                PyErr_Clear();
            }
        }
        /*
         * If fa->base is non-NULL, it is something
         * to DECREF -- either a view or a buffer object
         */
        Py_XDECREF(fa->base);
    }

    if ((fa->flags & NPY_ARRAY_OWNDATA) && fa->data) {
        /* Free any internal references */
        if (PyDataType_REFCHK(fa->descr)) {
            if (PyArray_ClearArray(self) < 0) {
                PyErr_WriteUnraisable(NULL);
            }
        }
        if (fa->mem_handler == NULL) {
            char *env = getenv("NUMPY_WARN_IF_NO_MEM_POLICY");
            if ((env != NULL) && (strncmp(env, "1", 1) == 0)) {
                char const * msg = "Trying to dealloc data, but a memory policy "
                    "is not set. If you take ownership of the data, you must "
                    "set a base owning the data (e.g. a PyCapsule).";
                WARN_IN_DEALLOC(PyExc_RuntimeWarning, msg);
            }
            // Guess at malloc/free ???
            free(fa->data);
        }
        else {
            size_t nbytes = PyArray_NBYTES(self);
            if (nbytes == 0) {
                nbytes = 1;
            }
            PyDataMem_UserFREE(fa->data, nbytes, fa->mem_handler);
            Py_DECREF(fa->mem_handler);
        }
    }

    /* must match allocation in PyArray_NewFromDescr */
    npy_free_cache_dim(fa->dimensions, 2 * fa->nd);
    Py_DECREF(fa->descr);
    Py_TYPE(self)->tp_free((PyObject *)self);
}

/*NUMPY_API
 * Prints the raw data of the ndarray in a form useful for debugging
 * low-level C issues.
 */
NPY_NO_EXPORT void
PyArray_DebugPrint(PyArrayObject *obj)
{
    int i;
    PyArrayObject_fields *fobj = (PyArrayObject_fields *)obj;

    printf("-------------------------------------------------------\n");
    printf(" Dump of NumPy ndarray at address %p\n", obj);
    if (obj == NULL) {
        printf(" It's NULL!\n");
        printf("-------------------------------------------------------\n");
        fflush(stdout);
        return;
    }
    printf(" ndim   : %d\n", fobj->nd);
    printf(" shape  :");
    for (i = 0; i < fobj->nd; ++i) {
        printf(" %" NPY_INTP_FMT, fobj->dimensions[i]);
    }
    printf("\n");

    printf(" dtype  : ");
    PyObject_Print((PyObject *)fobj->descr, stdout, 0);
    printf("\n");
    printf(" data   : %p\n", fobj->data);
    printf(" strides:");
    for (i = 0; i < fobj->nd; ++i) {
        printf(" %" NPY_INTP_FMT, fobj->strides[i]);
    }
    printf("\n");

    printf(" base   : %p\n", fobj->base);

    printf(" flags :");
    if (fobj->flags & NPY_ARRAY_C_CONTIGUOUS)
        printf(" NPY_C_CONTIGUOUS");
    if (fobj->flags & NPY_ARRAY_F_CONTIGUOUS)
        printf(" NPY_F_CONTIGUOUS");
    if (fobj->flags & NPY_ARRAY_OWNDATA)
        printf(" NPY_OWNDATA");
    if (fobj->flags & NPY_ARRAY_ALIGNED)
        printf(" NPY_ALIGNED");
    if (fobj->flags & NPY_ARRAY_WRITEABLE)
        printf(" NPY_WRITEABLE");
    if (fobj->flags & NPY_ARRAY_WRITEBACKIFCOPY)
        printf(" NPY_WRITEBACKIFCOPY");
    printf("\n");

    if (fobj->base != NULL && PyArray_Check(fobj->base)) {
        printf("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
        printf("Dump of array's BASE:\n");
        PyArray_DebugPrint((PyArrayObject *)fobj->base);
        printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
    }
    printf("-------------------------------------------------------\n");
    fflush(stdout);
}


/*NUMPY_API
 * This function is scheduled to be removed
 *
 * TO BE REMOVED - NOT USED INTERNALLY.
 */
NPY_NO_EXPORT void
PyArray_SetDatetimeParseFunction(PyObject *NPY_UNUSED(op))
{
}

/*NUMPY_API
 */
NPY_NO_EXPORT int
PyArray_CompareUCS4(npy_ucs4 const *s1, npy_ucs4 const *s2, size_t len)
{
    npy_ucs4 c1, c2;
    while(len-- > 0) {
        c1 = *s1++;
        c2 = *s2++;
        if (c1 != c2) {
            return (c1 < c2) ? -1 : 1;
        }
    }
    return 0;
}

/*NUMPY_API
 */
NPY_NO_EXPORT int
PyArray_CompareString(const char *s1, const char *s2, size_t len)
{
    const unsigned char *c1 = (unsigned char *)s1;
    const unsigned char *c2 = (unsigned char *)s2;
    size_t i;

    for(i = 0; i < len; ++i) {
        if (c1[i] != c2[i]) {
            return (c1[i] > c2[i]) ? 1 : -1;
        }
    }
    return 0;
}


/* Call this from contexts where an array might be written to, but we have no
 * way to tell. (E.g., when converting to a read-write buffer.)
 */
NPY_NO_EXPORT int
array_might_be_written(PyArrayObject *obj)
{
    const char *msg =
        "Numpy has detected that you (may be) writing to an array with\n"
        "overlapping memory from np.broadcast_arrays. If this is intentional\n"
        "set the WRITEABLE flag True or make a copy immediately before writing.";
    if (PyArray_FLAGS(obj) & NPY_ARRAY_WARN_ON_WRITE) {
        if (DEPRECATE(msg) < 0) {
            return -1;
        }
        /* Only warn once per array */
        while (1) {
            PyArray_CLEARFLAGS(obj, NPY_ARRAY_WARN_ON_WRITE);
            if (!PyArray_BASE(obj) || !PyArray_Check(PyArray_BASE(obj))) {
                break;
            }
            obj = (PyArrayObject *)PyArray_BASE(obj);
        }
    }
    return 0;
}

/*NUMPY_API
 *
 *  This function does nothing and returns 0 if *obj* is writeable.
 *  It raises an exception and returns -1 if *obj* is not writeable.
 *  It may also do other house-keeping, such as issuing warnings on
 *  arrays which are transitioning to become views. Always call this
 *  function at some point before writing to an array.
 *
 *  *name* is a name for the array, used to give better error messages.
 *  It can be something like "assignment destination", "output array",
 *  or even just "array".
 */
NPY_NO_EXPORT int
PyArray_FailUnlessWriteable(PyArrayObject *obj, const char *name)
{
    if (!PyArray_ISWRITEABLE(obj)) {
        PyErr_Format(PyExc_ValueError, "%s is read-only", name);
        return -1;
    }
    if (array_might_be_written(obj) < 0) {
        return -1;
    }
    return 0;
}


/* From umath/string_ufuncs.cpp/h */
NPY_NO_EXPORT PyObject *
_umath_strings_richcompare(
        PyArrayObject *self, PyArrayObject *other, int cmp_op, int rstrip);

/*
 * VOID-type arrays can only be compared equal and not-equal
 * in which case the fields are all compared by extracting the fields
 * and testing one at a time...
 * equality testing is performed using logical_ands on all the fields.
 * in-equality testing is performed using logical_ors on all the fields.
 *
 * VOID-type arrays without fields are compared for equality by comparing their
 * memory at each location directly (using string-code).
 */
static PyObject *
_void_compare(PyArrayObject *self, PyArrayObject *other, int cmp_op)
{
    if (!(cmp_op == Py_EQ || cmp_op == Py_NE)) {
        PyErr_SetString(PyExc_TypeError,
                "Void-arrays can only be compared for equality.");
        return NULL;
    }
    if (PyArray_TYPE(other) != NPY_VOID) {
        PyErr_SetString(PyExc_TypeError,
                "Cannot compare structured or void to non-void arrays.");
        return NULL;
    }
    if (PyArray_HASFIELDS(self) && PyArray_HASFIELDS(other)) {
        PyArray_Descr *self_descr = PyArray_DESCR(self);
        PyArray_Descr *other_descr = PyArray_DESCR(other);

        /* Use promotion to decide whether the comparison is valid */
        PyArray_Descr *promoted = PyArray_PromoteTypes(self_descr, other_descr);
        if (promoted == NULL) {
            PyErr_SetString(PyExc_TypeError,
                    "Cannot compare structured arrays unless they have a "
                    "common dtype.  I.e. `np.result_type(arr1, arr2)` must "
                    "be defined.");
            return NULL;
        }
        Py_DECREF(promoted);

        npy_intp result_ndim = PyArray_NDIM(self) > PyArray_NDIM(other) ?
                            PyArray_NDIM(self) : PyArray_NDIM(other);

        int field_count = PyTuple_GET_SIZE(self_descr->names);
        if (field_count != PyTuple_GET_SIZE(other_descr->names)) {
            PyErr_SetString(PyExc_TypeError,
                    "Cannot compare structured dtypes with different number of "
                    "fields.  (unreachable error please report to NumPy devs)");
            return NULL;
        }

        PyObject *op = (cmp_op == Py_EQ ? n_ops.logical_and : n_ops.logical_or);
        PyObject *res = NULL;
        for (int i = 0; i < field_count; ++i) {
            PyObject *fieldname, *temp, *temp2;

            fieldname = PyTuple_GET_ITEM(self_descr->names, i);
            PyArrayObject *a = (PyArrayObject *)array_subscript_asarray(
                    self, fieldname);
            if (a == NULL) {
                Py_XDECREF(res);
                return NULL;
            }
            fieldname = PyTuple_GET_ITEM(other_descr->names, i);
            PyArrayObject *b = (PyArrayObject *)array_subscript_asarray(
                    other, fieldname);
            if (b == NULL) {
                Py_XDECREF(res);
                Py_DECREF(a);
                return NULL;
            }
            /*
             * If the fields were subarrays, the dimensions may have changed.
             * In that case, the new shape (subarray part) must match exactly.
             * (If this is 0, there is no subarray.)
             */
            int field_dims_a = PyArray_NDIM(a) - PyArray_NDIM(self);
            int field_dims_b = PyArray_NDIM(b) - PyArray_NDIM(other);
            if (field_dims_a != field_dims_b || (
                    field_dims_a != 0 &&  /* neither is subarray */
                    /* Compare only the added (subarray) dimensions: */
                    !PyArray_CompareLists(
                            PyArray_DIMS(a) + PyArray_NDIM(self),
                            PyArray_DIMS(b) + PyArray_NDIM(other),
                            field_dims_a))) {
                PyErr_SetString(PyExc_TypeError,
                        "Cannot compare subarrays with different shapes. "
                        "(unreachable error, please report to NumPy devs.)");
                Py_DECREF(a);
                Py_DECREF(b);
                Py_XDECREF(res);
                return NULL;
            }

            temp = array_richcompare(a, (PyObject *)b, cmp_op);
            Py_DECREF(a);
            Py_DECREF(b);
            if (temp == NULL) {
                Py_XDECREF(res);
                return NULL;
            }

            /*
             * If the field type has a non-trivial shape, additional
             * dimensions will have been appended to `a` and `b`.
             * In that case, reduce them using `op`.
             */
            if (PyArray_Check(temp) &&
                        PyArray_NDIM((PyArrayObject *)temp) > result_ndim) {
                /* If the type was multidimensional, collapse that part to 1-D
                 */
                if (PyArray_NDIM((PyArrayObject *)temp) != result_ndim+1) {
                    npy_intp dimensions[NPY_MAXDIMS];
                    PyArray_Dims newdims;

                    newdims.ptr = dimensions;
                    newdims.len = result_ndim+1;
                    if (result_ndim) {
                        memcpy(dimensions, PyArray_DIMS((PyArrayObject *)temp),
                               sizeof(npy_intp)*result_ndim);
                    }

                    /*
                     * Compute the new dimension size manually, as reshaping
                     * with -1 does not work on empty arrays.
                     */
                    dimensions[result_ndim] = PyArray_MultiplyList(
                        PyArray_DIMS((PyArrayObject *)temp) + result_ndim,
                        PyArray_NDIM((PyArrayObject *)temp) - result_ndim);

                    temp2 = PyArray_Newshape((PyArrayObject *)temp,
                                             &newdims, NPY_ANYORDER);
                    if (temp2 == NULL) {
                        Py_DECREF(temp);
                        Py_XDECREF(res);
                        return NULL;
                    }
                    Py_DECREF(temp);
                    temp = temp2;
                }
                /* Reduce the extra dimension of `temp` using `op` */
                temp2 = PyArray_GenericReduceFunction((PyArrayObject *)temp,
                                                      op, result_ndim,
                                                      NPY_BOOL, NULL);
                if (temp2 == NULL) {
                    Py_DECREF(temp);
                    Py_XDECREF(res);
                    return NULL;
                }
                Py_DECREF(temp);
                temp = temp2;
            }

            if (res == NULL) {
                res = temp;
            }
            else {
                temp2 = PyObject_CallFunction(op, "OO", res, temp);
                Py_DECREF(temp);
                Py_DECREF(res);
                if (temp2 == NULL) {
                    return NULL;
                }
                res = temp2;
            }
        }
        if (res == NULL && !PyErr_Occurred()) {
            /* these dtypes had no fields. Use a MultiIter to broadcast them
             * to an output array, and fill with True (for EQ)*/
            PyArrayMultiIterObject *mit = (PyArrayMultiIterObject *)
                                          PyArray_MultiIterNew(2, self, other);
            if (mit == NULL) {
                return NULL;
            }

            res = PyArray_NewFromDescr(&PyArray_Type,
                                       PyArray_DescrFromType(NPY_BOOL),
                                       mit->nd, mit->dimensions,
                                       NULL, NULL, 0, NULL);
            Py_DECREF(mit);
            if (res) {
                 PyArray_FILLWBYTE((PyArrayObject *)res,
                                   cmp_op == Py_EQ ? 1 : 0);
            }
        }
        return res;
    }
    else if (PyArray_HASFIELDS(self) || PyArray_HASFIELDS(other)) {
        PyErr_SetString(PyExc_TypeError,
                "Cannot compare structured with unstructured void arrays. "
                "(unreachable error, please report to NumPy devs.)");
        return NULL;
    }
    else {
        /*
         * Since arrays absorb subarray descriptors, this path can only be
         * reached when both arrays have unstructured voids "V<len>" dtypes.
         */
        if (PyArray_ITEMSIZE(self) != PyArray_ITEMSIZE(other)) {
            PyErr_SetString(PyExc_TypeError,
                    "cannot compare unstructured voids of different length. "
                    "Use bytes to compare. "
                    "(This may return array of False in the future.)");
            return NULL;
        }
        /* compare as a string. Assumes self and other have same descr->type */
        return _umath_strings_richcompare(self, other, cmp_op, 0);
    }
}

/*
 * Silence the current error and emit a deprecation warning instead.
 *
 * If warnings are raised as errors, this sets the warning __cause__ to the
 * silenced error.
 */
NPY_NO_EXPORT int
DEPRECATE_silence_error(const char *msg) {
    PyObject *exc, *val, *tb;
    PyErr_Fetch(&exc, &val, &tb);
    if (DEPRECATE(msg) < 0) {
        npy_PyErr_ChainExceptionsCause(exc, val, tb);
        return -1;
    }
    Py_XDECREF(exc);
    Py_XDECREF(val);
    Py_XDECREF(tb);
    return 0;
}


NPY_NO_EXPORT PyObject *
array_richcompare(PyArrayObject *self, PyObject *other, int cmp_op)
{
    PyArrayObject *array_other;
    PyObject *obj_self = (PyObject *)self;
    PyObject *result = NULL;

    switch (cmp_op) {
    case Py_LT:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, other, n_ops.less);
        break;
    case Py_LE:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, other, n_ops.less_equal);
        break;
    case Py_EQ:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        /*
         * The ufunc does not support void/structured types, so these
         * need to be handled specifically. Only a few cases are supported.
         */

        if (PyArray_TYPE(self) == NPY_VOID) {
            array_other = (PyArrayObject *)PyArray_FROM_O(other);
            /*
             * If not successful, indicate that the items cannot be compared
             * this way.
             */
            if (array_other == NULL) {
                /* 2015-05-07, 1.10 */
                if (DEPRECATE_silence_error(
                        "elementwise == comparison failed and returning scalar "
                        "instead; this will raise an error in the future.") < 0) {
                    return NULL;
                }
                Py_INCREF(Py_NotImplemented);
                return Py_NotImplemented;
            }

            result = _void_compare(self, array_other, cmp_op);
            Py_DECREF(array_other);
            return result;
        }

        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, (PyObject *)other, n_ops.equal);
        break;
    case Py_NE:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        /*
         * The ufunc does not support void/structured types, so these
         * need to be handled specifically. Only a few cases are supported.
         */

        if (PyArray_TYPE(self) == NPY_VOID) {
            array_other = (PyArrayObject *)PyArray_FROM_O(other);
            /*
             * If not successful, indicate that the items cannot be compared
             * this way.
            */
            if (array_other == NULL) {
                /* 2015-05-07, 1.10 */
                if (DEPRECATE_silence_error(
                        "elementwise != comparison failed and returning scalar "
                        "instead; this will raise an error in the future.") < 0) {
                    return NULL;
                }
                Py_INCREF(Py_NotImplemented);
                return Py_NotImplemented;
            }

            result = _void_compare(self, array_other, cmp_op);
            Py_DECREF(array_other);
            return result;
        }

        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, (PyObject *)other, n_ops.not_equal);
        break;
    case Py_GT:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, other, n_ops.greater);
        break;
    case Py_GE:
        RICHCMP_GIVE_UP_IF_NEEDED(obj_self, other);
        result = PyArray_GenericBinaryFunction(
                (PyObject *)self, other, n_ops.greater_equal);
        break;
    default:
        Py_INCREF(Py_NotImplemented);
        return Py_NotImplemented;
    }

    /*
     * At this point `self` can take control of the operation by converting
     * `other` to an array (it would have a chance to take control).
     * If we are not in `==` and `!=`, this is an error and we hope that
     * the existing error makes sense and derives from `TypeError` (which
     * python would raise for `NotImplemented`) when it should.
     *
     * However, if the issue is no matching loop for the given dtypes and
     * we are inside == and !=, then returning an array of True or False
     * makes sense (following Python behavior for `==` and `!=`).
     * Effectively: Both *dtypes* told us that they cannot be compared.
     *
     * In theory, the error could be raised from within an object loop, the
     * solution to that could be pushing this into the ufunc (where we can
     * distinguish the two easily).  In practice, it seems like it should not
     * but a huge problem:  The ufunc loop will itself call `==` which should
     * probably never raise a UFuncNoLoopError.
     *
     * TODO: If/once we correctly push structured comparisons into the ufunc
     *       we could consider pushing this path into the ufunc itself as a
     *       fallback loop (which ignores the input arrays).
     *       This would have the advantage that subclasses implementing
     *       `__array_ufunc__` do not explicitly need `__eq__` and `__ne__`.
     */
    if (result == NULL
            && (cmp_op == Py_EQ || cmp_op == Py_NE)
            && PyErr_ExceptionMatches(npy_UFuncNoLoopError)) {
        PyErr_Clear();

        PyArrayObject *array_other = (PyArrayObject *)PyArray_FROM_O(other);
        if (PyArray_TYPE(array_other) == NPY_VOID) {
            /*
            * Void arrays are currently not handled by ufuncs, so if the other
            * is a void array, we defer to it (will raise a TypeError).
            */
            Py_DECREF(array_other);
            Py_RETURN_NOTIMPLEMENTED;
        }

        if (PyArray_NDIM(self) == 0 && PyArray_NDIM(array_other) == 0) {
            /*
             * (seberg) not sure that this is best, but we preserve Python
             * bool result for "scalar" inputs for now by returning
             * `NotImplemented`.
             */
            Py_DECREF(array_other);
            Py_RETURN_NOTIMPLEMENTED;
        }

        /* Hack warning: using NpyIter to allocate broadcasted result. */
        PyArrayObject *ops[3] = {self, array_other, NULL};
        npy_uint32 flags = NPY_ITER_ZEROSIZE_OK | NPY_ITER_REFS_OK;
        npy_uint32 op_flags[3] = {
            NPY_ITER_READONLY, NPY_ITER_READONLY,
            NPY_ITER_ALLOCATE | NPY_ITER_WRITEONLY};

        PyArray_Descr *bool_descr = PyArray_DescrFromType(NPY_BOOL);
        PyArray_Descr *op_descrs[3] = {
            PyArray_DESCR(self), PyArray_DESCR(array_other), bool_descr};

        NpyIter *iter = NpyIter_MultiNew(
                    3, ops, flags, NPY_KEEPORDER, NPY_NO_CASTING,
                    op_flags, op_descrs);

        Py_CLEAR(bool_descr);
        Py_CLEAR(array_other);
        if (iter == NULL) {
            return NULL;
        }
        PyArrayObject *res = NpyIter_GetOperandArray(iter)[2];
        Py_INCREF(res);
        if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
            Py_DECREF(res);
            return NULL;
        }

        /*
         * The array is guaranteed to be newly allocated and thus contiguous,
         * so simply fill it with 0 or 1.
         */
        memset(PyArray_BYTES(res), cmp_op == Py_EQ ? 0 : 1, PyArray_NBYTES(res));

        /* Ensure basic subclass support by wrapping: */
        if (!PyArray_CheckExact(self)) {
            /*
             * If other is also a subclass (with higher priority) we would
             * already have deferred.  So use `self` for wrapping.  If users
             * need more, they need to override `==` and `!=`.
             */
            Py_SETREF(res, PyArray_SubclassWrap(self, res));
        }
        return (PyObject *)res;
    }
    return result;
}

/*NUMPY_API
 */
NPY_NO_EXPORT int
PyArray_ElementStrides(PyObject *obj)
{
    PyArrayObject *arr;
    int itemsize;
    int i, ndim;
    npy_intp *strides;

    if (!PyArray_Check(obj)) {
        return 0;
    }

    arr = (PyArrayObject *)obj;

    itemsize = PyArray_ITEMSIZE(arr);
    ndim = PyArray_NDIM(arr);
    strides = PyArray_STRIDES(arr);

    for (i = 0; i < ndim; i++) {
        if ((strides[i] % itemsize) != 0) {
            return 0;
        }
    }
    return 1;
}

/*
 * This routine checks to see if newstrides (of length nd) will not
 * ever be able to walk outside of the memory implied numbytes and offset.
 *
 * The available memory is assumed to start at -offset and proceed
 * to numbytes-offset.  The strides are checked to ensure
 * that accessing memory using striding will not try to reach beyond
 * this memory for any of the axes.
 *
 * If numbytes is 0 it will be calculated using the dimensions and
 * element-size.
 *
 * This function checks for walking beyond the beginning and right-end
 * of the buffer and therefore works for any integer stride (positive
 * or negative).
 */

/*NUMPY_API*/
NPY_NO_EXPORT npy_bool
PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp offset,
                     npy_intp const *dims, npy_intp const *newstrides)
{
    npy_intp begin, end;
    npy_intp lower_offset;
    npy_intp upper_offset;

    if (numbytes == 0) {
        numbytes = PyArray_MultiplyList(dims, nd) * elsize;
    }

    begin = -offset;
    end = numbytes - offset;

    offset_bounds_from_strides(elsize, nd, dims, newstrides,
                                        &lower_offset, &upper_offset);

    if ((upper_offset > end) || (lower_offset < begin)) {
        return NPY_FALSE;
    }
    return NPY_TRUE;
}


static PyObject *
array_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)
{
    static char *kwlist[] = {"shape", "dtype", "buffer", "offset", "strides",
                             "order", NULL};
    PyArray_Descr *descr = NULL;
    int itemsize;
    PyArray_Dims dims = {NULL, 0};
    PyArray_Dims strides = {NULL, -1};
    PyArray_Chunk buffer;
    npy_longlong offset = 0;
    NPY_ORDER order = NPY_CORDER;
    int is_f_order = 0;
    PyArrayObject *ret;

    buffer.ptr = NULL;
    /*
     * Usually called with shape and type but can also be called with buffer,
     * strides, and swapped info For now, let's just use this to create an
     * empty, contiguous array of a specific type and shape.
     */
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "O&|O&O&LO&O&:ndarray",
                                     kwlist, PyArray_IntpConverter,
                                     &dims,
                                     PyArray_DescrConverter,
                                     &descr,
                                     PyArray_BufferConverter,
                                     &buffer,
                                     &offset,
                                     &PyArray_OptionalIntpConverter,
                                     &strides,
                                     &PyArray_OrderConverter,
                                     &order)) {
        goto fail;
    }
    if (order == NPY_FORTRANORDER) {
        is_f_order = 1;
    }
    if (descr == NULL) {
        descr = PyArray_DescrFromType(NPY_DEFAULT_TYPE);
    }

    itemsize = descr->elsize;

    if (strides.len != -1) {
        npy_intp nb, off;
        if (strides.len != dims.len) {
            PyErr_SetString(PyExc_ValueError,
                            "strides, if given, must be "   \
                            "the same length as shape");
            goto fail;
        }

        if (buffer.ptr == NULL) {
            nb = 0;
            off = 0;
        }
        else {
            nb = buffer.len;
            off = (npy_intp) offset;
        }


        if (!PyArray_CheckStrides(itemsize, dims.len,
                                  nb, off,
                                  dims.ptr, strides.ptr)) {
            PyErr_SetString(PyExc_ValueError,
                            "strides is incompatible "      \
                            "with shape of requested "      \
                            "array and size of buffer");
            goto fail;
        }
    }

    if (buffer.ptr == NULL) {
        ret = (PyArrayObject *)
            PyArray_NewFromDescr_int(subtype, descr,
                                     (int)dims.len,
                                     dims.ptr,
                                     strides.ptr, NULL, is_f_order, NULL, NULL,
                                     _NPY_ARRAY_ALLOW_EMPTY_STRING);
        if (ret == NULL) {
            descr = NULL;
            goto fail;
        }
        /* Logic shared by `empty`, `empty_like`, and `ndarray.__new__` */
        if (PyDataType_REFCHK(PyArray_DESCR(ret))) {
            /* place Py_None in object positions */
            PyArray_FillObjectArray(ret, Py_None);
            if (PyErr_Occurred()) {
                descr = NULL;
                goto fail;
            }
        }
    }
    else {
        /* buffer given -- use it */
        if (dims.len == 1 && dims.ptr[0] == -1) {
            dims.ptr[0] = (buffer.len-(npy_intp)offset) / itemsize;
        }
        else if ((strides.ptr == NULL) &&
                 (buffer.len < (offset + (((npy_intp)itemsize)*
                                          PyArray_MultiplyList(dims.ptr,
                                                               dims.len))))) {
            PyErr_SetString(PyExc_TypeError,
                            "buffer is too small for "      \
                            "requested array");
            goto fail;
        }
        /* get writeable and aligned */
        if (is_f_order) {
            buffer.flags |= NPY_ARRAY_F_CONTIGUOUS;
        }
        ret = (PyArrayObject *)PyArray_NewFromDescr_int(
                subtype, descr,
                dims.len, dims.ptr, strides.ptr, offset + (char *)buffer.ptr,
                buffer.flags, NULL, buffer.base,
                _NPY_ARRAY_ALLOW_EMPTY_STRING);
        if (ret == NULL) {
            descr = NULL;
            goto fail;
        }
    }

    npy_free_cache_dim_obj(dims);
    npy_free_cache_dim_obj(strides);
    return (PyObject *)ret;

 fail:
    Py_XDECREF(descr);
    npy_free_cache_dim_obj(dims);
    npy_free_cache_dim_obj(strides);
    return NULL;
}


static PyObject *
array_iter(PyArrayObject *arr)
{
    if (PyArray_NDIM(arr) == 0) {
        PyErr_SetString(PyExc_TypeError,
                        "iteration over a 0-d array");
        return NULL;
    }
    return PySeqIter_New((PyObject *)arr);
}


NPY_NO_EXPORT PyTypeObject PyArray_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    .tp_name = "numpy.ndarray",
    .tp_basicsize = sizeof(PyArrayObject_fields),
    /* methods */
    .tp_dealloc = (destructor)array_dealloc,
    .tp_repr = (reprfunc)array_repr,
    .tp_as_number = &array_as_number,
    .tp_as_sequence = &array_as_sequence,
    .tp_as_mapping = &array_as_mapping,
    .tp_str = (reprfunc)array_str,
    .tp_as_buffer = &array_as_buffer,
    .tp_flags =(Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE),

    .tp_richcompare = (richcmpfunc)array_richcompare,
    .tp_weaklistoffset = offsetof(PyArrayObject_fields, weakreflist),
    .tp_iter = (getiterfunc)array_iter,
    .tp_methods = array_methods,
    .tp_getset = array_getsetlist,
    .tp_new = (newfunc)array_new,
};