1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
#define _MULTIARRAYMODULE
#include "numpy/arrayobject.h"
#include "numpy/npy_3kcompat.h"
#include "alloc.h"
#include <string.h>
#include <stdbool.h>
#include "textreading/stream.h"
#include "textreading/tokenize.h"
#include "textreading/conversions.h"
#include "textreading/field_types.h"
#include "textreading/rows.h"
#include "textreading/growth.h"
/*
* Minimum size to grow the allocation by (or 25%). The 8KiB means the actual
* growths is within `8 KiB <= size < 16 KiB` (depending on the row size).
*/
#define MIN_BLOCK_SIZE (1 << 13)
/*
* Create the array of converter functions from the Python converters.
*/
static PyObject **
create_conv_funcs(
PyObject *converters, Py_ssize_t num_fields, const Py_ssize_t *usecols)
{
assert(converters != Py_None);
PyObject **conv_funcs = PyMem_Calloc(num_fields, sizeof(PyObject *));
if (conv_funcs == NULL) {
PyErr_NoMemory();
return NULL;
}
if (PyCallable_Check(converters)) {
/* a single converter used for all columns individually */
for (Py_ssize_t i = 0; i < num_fields; i++) {
Py_INCREF(converters);
conv_funcs[i] = converters;
}
return conv_funcs;
}
else if (!PyDict_Check(converters)) {
PyErr_SetString(PyExc_TypeError,
"converters must be a dictionary mapping columns to converter "
"functions or a single callable.");
goto error;
}
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(converters, &pos, &key, &value)) {
Py_ssize_t column = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (column == -1 && PyErr_Occurred()) {
PyErr_Format(PyExc_TypeError,
"keys of the converters dictionary must be integers; "
"got %.100R", key);
goto error;
}
if (usecols != NULL) {
/*
* This code searches for the corresponding usecol. It is
* identical to the legacy usecols code, which has two weaknesses:
* 1. It fails for duplicated usecols only setting converter for
* the first one.
* 2. It fails e.g. if usecols uses negative indexing and
* converters does not. (This is a feature, since it allows
* us to correctly normalize converters to result column here.)
*/
Py_ssize_t i = 0;
for (; i < num_fields; i++) {
if (column == usecols[i]) {
column = i;
break;
}
}
if (i == num_fields) {
continue; /* ignore unused converter */
}
}
else {
if (column < -num_fields || column >= num_fields) {
PyErr_Format(PyExc_ValueError,
"converter specified for column %zd, which is invalid "
"for the number of fields %zd.", column, num_fields);
goto error;
}
if (column < 0) {
column += num_fields;
}
}
if (!PyCallable_Check(value)) {
PyErr_Format(PyExc_TypeError,
"values of the converters dictionary must be callable, "
"but the value associated with key %R is not", key);
goto error;
}
Py_INCREF(value);
conv_funcs[column] = value;
}
return conv_funcs;
error:
for (Py_ssize_t i = 0; i < num_fields; i++) {
Py_XDECREF(conv_funcs[i]);
}
PyMem_FREE(conv_funcs);
return NULL;
}
/**
* Read a file into the provided array, or create (and possibly grow) an
* array to read into.
*
* @param s The stream object/struct providing reading capabilities used by
* the tokenizer.
* @param max_rows The number of rows to read, or -1. If negative
* all rows are read.
* @param num_field_types The number of field types stored in `field_types`.
* @param field_types Information about the dtype for each column (or one if
* `homogeneous`).
* @param pconfig Pointer to the parser config object used by both the
* tokenizer and the conversion functions.
* @param num_usecols The number of columns in `usecols`.
* @param usecols An array of length `num_usecols` or NULL. If given indicates
* which column is read for each individual row (negative columns are
* accepted).
* @param skiplines The number of lines to skip, these lines are ignored.
* @param converters Python dictionary of converters. Finalizing converters
* is difficult without information about the number of columns.
* @param data_array An array to be filled or NULL. In either case a new
* reference is returned (the reference to `data_array` is not stolen).
* @param out_descr The dtype used for allocating a new array. This is not
* used if `data_array` is provided. Note that the actual dtype of the
* returned array can differ for strings.
* @param num_cols Pointer in which the actual (discovered) number of columns
* is returned. This is only relevant if `homogeneous` is true.
* @param homogeneous Whether the datatype of the array is not homogeneous,
* i.e. not structured. In this case the number of columns has to be
* discovered an the returned array will be 2-dimensional rather than
* 1-dimensional.
*
* @returns Returns the result as an array object or NULL on error. The result
* is always a new reference (even when `data_array` was passed in).
*/
NPY_NO_EXPORT PyArrayObject *
read_rows(stream *s,
npy_intp max_rows, Py_ssize_t num_field_types, field_type *field_types,
parser_config *pconfig, Py_ssize_t num_usecols, Py_ssize_t *usecols,
Py_ssize_t skiplines, PyObject *converters,
PyArrayObject *data_array, PyArray_Descr *out_descr,
bool homogeneous)
{
char *data_ptr = NULL;
Py_ssize_t current_num_fields;
npy_intp row_size = out_descr->elsize;
PyObject **conv_funcs = NULL;
bool needs_init = PyDataType_FLAGCHK(out_descr, NPY_NEEDS_INIT);
int ndim = homogeneous ? 2 : 1;
npy_intp result_shape[2] = {0, 1};
bool data_array_allocated = data_array == NULL;
/* Make sure we own `data_array` for the purpose of error handling */
Py_XINCREF(data_array);
size_t rows_per_block = 1; /* will be increased depending on row size */
npy_intp data_allocated_rows = 0;
/* We give a warning if max_rows is used and an empty line is encountered */
bool give_empty_row_warning = max_rows >= 0;
int ts_result = 0;
tokenizer_state ts;
if (npy_tokenizer_init(&ts, pconfig) < 0) {
goto error;
}
/* Set the actual number of fields if it is already known, otherwise -1 */
Py_ssize_t actual_num_fields = -1;
if (usecols != NULL) {
assert(homogeneous || num_field_types == num_usecols);
actual_num_fields = num_usecols;
}
else if (!homogeneous) {
assert(usecols == NULL || num_field_types == num_usecols);
actual_num_fields = num_field_types;
}
for (Py_ssize_t i = 0; i < skiplines; i++) {
ts.state = TOKENIZE_GOTO_LINE_END;
ts_result = npy_tokenize(s, &ts, pconfig);
if (ts_result < 0) {
goto error;
}
else if (ts_result != 0) {
/* Fewer lines than skiplines is acceptable */
break;
}
}
Py_ssize_t row_count = 0; /* number of rows actually processed */
while ((max_rows < 0 || row_count < max_rows) && ts_result == 0) {
ts_result = npy_tokenize(s, &ts, pconfig);
if (ts_result < 0) {
goto error;
}
current_num_fields = ts.num_fields;
field_info *fields = ts.fields;
if (NPY_UNLIKELY(ts.num_fields == 0)) {
/*
* Deprecated NumPy 1.23, 2021-01-13 (not really a deprecation,
* but similar policy should apply to removing the warning again)
*/
/* Tokenizer may give a final "empty line" even if there is none */
if (give_empty_row_warning && ts_result == 0) {
give_empty_row_warning = false;
if (PyErr_WarnFormat(PyExc_UserWarning, 3,
"Input line %zd contained no data and will not be "
"counted towards `max_rows=%zd`. This differs from "
"the behaviour in NumPy <=1.22 which counted lines "
"rather than rows. If desired, the previous behaviour "
"can be achieved by using `itertools.islice`.\n"
"Please see the 1.23 release notes for an example on "
"how to do this. If you wish to ignore this warning, "
"use `warnings.filterwarnings`. This warning is "
"expected to be removed in the future and is given "
"only once per `loadtxt` call.",
row_count + skiplines + 1, max_rows) < 0) {
goto error;
}
}
continue; /* Ignore empty line */
}
if (NPY_UNLIKELY(data_ptr == NULL)) {
// We've deferred some of the initialization tasks to here,
// because we've now read the first line, and we definitively
// know how many fields (i.e. columns) we will be processing.
if (actual_num_fields == -1) {
actual_num_fields = current_num_fields;
}
if (converters != Py_None) {
conv_funcs = create_conv_funcs(
converters, actual_num_fields, usecols);
if (conv_funcs == NULL) {
goto error;
}
}
/* Note that result_shape[1] is only used if homogeneous is true */
result_shape[1] = actual_num_fields;
if (homogeneous) {
row_size *= actual_num_fields;
}
if (data_array == NULL) {
if (max_rows < 0) {
/*
* Negative max_rows denotes to read the whole file, we
* approach this by allocating ever larger blocks.
* Adds a number of rows based on `MIN_BLOCK_SIZE`.
* Note: later code grows assuming this is a power of two.
*/
if (row_size == 0) {
/* actual rows_per_block should not matter here */
rows_per_block = 512;
}
else {
/* safe on overflow since min_rows will be 0 or 1 */
size_t min_rows = (
(MIN_BLOCK_SIZE + row_size - 1) / row_size);
while (rows_per_block < min_rows) {
rows_per_block *= 2;
}
}
data_allocated_rows = rows_per_block;
}
else {
data_allocated_rows = max_rows;
}
result_shape[0] = data_allocated_rows;
Py_INCREF(out_descr);
/*
* We do not use Empty, as it would fill with None
* and requiring decref'ing if we shrink again.
*/
data_array = (PyArrayObject *)PyArray_SimpleNewFromDescr(
ndim, result_shape, out_descr);
#ifdef NPY_RELAXED_STRIDES_DEBUG
/* Incompatible with NPY_RELAXED_STRIDES_DEBUG due to growing */
if (result_shape[0] == 1) {
PyArray_STRIDES(data_array)[0] = row_size;
}
#endif /* NPY_RELAXED_STRIDES_DEBUG */
if (data_array == NULL) {
goto error;
}
if (needs_init) {
memset(PyArray_BYTES(data_array), 0, PyArray_NBYTES(data_array));
}
}
else {
assert(max_rows >=0);
data_allocated_rows = max_rows;
}
data_ptr = PyArray_BYTES(data_array);
}
if (!usecols && (actual_num_fields != current_num_fields)) {
if (homogeneous) {
PyErr_Format(PyExc_ValueError,
"the number of columns changed from %zd to %zd at row %zd; "
"use `usecols` to select a subset and avoid this error",
actual_num_fields, current_num_fields, row_count+1);
}
else {
PyErr_Format(PyExc_ValueError,
"the dtype passed requires %zd columns but %zd were found "
"at row %zd; "
"use `usecols` to select a subset and avoid this error",
actual_num_fields, current_num_fields, row_count+1);
}
goto error;
}
if (NPY_UNLIKELY(data_allocated_rows == row_count)) {
/*
* Grow by ~25% and rounded up to the next rows_per_block
* NOTE: This is based on very crude timings and could be refined!
*/
npy_intp new_rows = data_allocated_rows;
npy_intp alloc_size = grow_size_and_multiply(
&new_rows, rows_per_block, row_size);
if (alloc_size < 0) {
/* should normally error much earlier, but make sure */
PyErr_SetString(PyExc_ValueError,
"array is too big. Cannot read file as a single array; "
"providing a maximum number of rows to read may help.");
goto error;
}
char *new_data = PyDataMem_UserRENEW(
PyArray_BYTES(data_array), alloc_size ? alloc_size : 1,
PyArray_HANDLER(data_array));
if (new_data == NULL) {
PyErr_NoMemory();
goto error;
}
/* Replace the arrays data since it may have changed */
((PyArrayObject_fields *)data_array)->data = new_data;
((PyArrayObject_fields *)data_array)->dimensions[0] = new_rows;
data_ptr = new_data + row_count * row_size;
data_allocated_rows = new_rows;
if (needs_init) {
memset(data_ptr, '\0', (new_rows - row_count) * row_size);
}
}
for (Py_ssize_t i = 0; i < actual_num_fields; ++i) {
Py_ssize_t f; /* The field, either 0 (if homogeneous) or i. */
Py_ssize_t col; /* The column as read, remapped by usecols */
char *item_ptr;
if (homogeneous) {
f = 0;
item_ptr = data_ptr + i * field_types[0].descr->elsize;
}
else {
f = i;
item_ptr = data_ptr + field_types[f].structured_offset;
}
if (usecols == NULL) {
col = i;
}
else {
col = usecols[i];
if (col < 0) {
// Python-like column indexing: k = -1 means the last column.
col += current_num_fields;
}
if (NPY_UNLIKELY((col < 0) || (col >= current_num_fields))) {
PyErr_Format(PyExc_ValueError,
"invalid column index %zd at row %zd with %zd "
"columns",
usecols[i], row_count+1, current_num_fields);
goto error;
}
}
/*
* The following function calls represent the main "conversion"
* step, i.e. parsing the unicode string for each field and storing
* the result in the array.
*/
int parser_res;
Py_UCS4 *str = ts.field_buffer + fields[col].offset;
Py_UCS4 *end = ts.field_buffer + fields[col + 1].offset - 1;
if (conv_funcs == NULL || conv_funcs[i] == NULL) {
parser_res = field_types[f].set_from_ucs4(field_types[f].descr,
str, end, item_ptr, pconfig);
}
else {
parser_res = npy_to_generic_with_converter(field_types[f].descr,
str, end, item_ptr, pconfig, conv_funcs[i]);
}
if (NPY_UNLIKELY(parser_res < 0)) {
PyObject *exc, *val, *tb;
PyErr_Fetch(&exc, &val, &tb);
size_t length = end - str;
PyObject *string = PyUnicode_FromKindAndData(
PyUnicode_4BYTE_KIND, str, length);
if (string == NULL) {
npy_PyErr_ChainExceptions(exc, val, tb);
goto error;
}
PyErr_Format(PyExc_ValueError,
"could not convert string %.100R to %S at "
"row %zd, column %zd.",
string, field_types[f].descr, row_count, col+1);
Py_DECREF(string);
npy_PyErr_ChainExceptionsCause(exc, val, tb);
goto error;
}
}
++row_count;
data_ptr += row_size;
}
npy_tokenizer_clear(&ts);
if (conv_funcs != NULL) {
for (Py_ssize_t i = 0; i < actual_num_fields; i++) {
Py_XDECREF(conv_funcs[i]);
}
PyMem_FREE(conv_funcs);
}
if (data_array == NULL) {
assert(row_count == 0 && result_shape[0] == 0);
if (actual_num_fields == -1) {
/*
* We found no rows and have to discover the number of elements
* we have no choice but to guess 1.
* NOTE: It may make sense to move this outside of here to refine
* the behaviour where necessary.
*/
result_shape[1] = 1;
}
else {
result_shape[1] = actual_num_fields;
}
Py_INCREF(out_descr);
data_array = (PyArrayObject *)PyArray_Empty(
ndim, result_shape, out_descr, 0);
}
/*
* Note that if there is no data, `data_array` may still be NULL and
* row_count is 0. In that case, always realloc just in case.
*/
if (data_array_allocated && data_allocated_rows != row_count) {
size_t size = row_count * row_size;
char *new_data = PyDataMem_UserRENEW(
PyArray_BYTES(data_array), size ? size : 1,
PyArray_HANDLER(data_array));
if (new_data == NULL) {
Py_DECREF(data_array);
PyErr_NoMemory();
return NULL;
}
((PyArrayObject_fields *)data_array)->data = new_data;
((PyArrayObject_fields *)data_array)->dimensions[0] = row_count;
}
return data_array;
error:
if (conv_funcs != NULL) {
for (Py_ssize_t i = 0; i < actual_num_fields; i++) {
Py_XDECREF(conv_funcs[i]);
}
PyMem_FREE(conv_funcs);
}
npy_tokenizer_clear(&ts);
Py_XDECREF(data_array);
return NULL;
}
|