summaryrefslogtreecommitdiff
path: root/numpy/core/tests/test_array_coercion.py
blob: d5373f642ac95fb70ae43c4ecbe2257731c364f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""
Tests for array coercion, mainly through testing `np.array` results directly.
Note that other such tests exist, e.g., in `test_api.py` and many corner-cases
are tested (sometimes indirectly) elsewhere.
"""

from itertools import permutations, product

import pytest
from pytest import param

import numpy as np
from numpy.core._rational_tests import rational
from numpy.core._multiarray_umath import _discover_array_parameters

from numpy.testing import (
    assert_array_equal, assert_warns, IS_PYPY)


def arraylikes():
    """
    Generator for functions converting an array into various array-likes.
    If full is True (default) it includes array-likes not capable of handling
    all dtypes.
    """
    # base array:
    def ndarray(a):
        return a

    yield param(ndarray, id="ndarray")

    # subclass:
    class MyArr(np.ndarray):
        pass

    def subclass(a):
        return a.view(MyArr)

    yield subclass

    class _SequenceLike():
        # Older NumPy versions, sometimes cared whether a protocol array was
        # also _SequenceLike.  This shouldn't matter, but keep it for now
        # for __array__ and not the others.
        def __len__(self):
            raise TypeError

        def __getitem__(self):
            raise TypeError

    # Array-interface
    class ArrayDunder(_SequenceLike):
        def __init__(self, a):
            self.a = a

        def __array__(self, dtype=None):
            return self.a

    yield param(ArrayDunder, id="__array__")

    # memory-view
    yield param(memoryview, id="memoryview")

    # Array-interface
    class ArrayInterface:
        def __init__(self, a):
            self.a = a  # need to hold on to keep interface valid
            self.__array_interface__ = a.__array_interface__

    yield param(ArrayInterface, id="__array_interface__")

    # Array-Struct
    class ArrayStruct:
        def __init__(self, a):
            self.a = a  # need to hold on to keep struct valid
            self.__array_struct__ = a.__array_struct__

    yield param(ArrayStruct, id="__array_struct__")


def scalar_instances(times=True, extended_precision=True, user_dtype=True):
    # Hard-coded list of scalar instances.
    # Floats:
    yield param(np.sqrt(np.float16(5)), id="float16")
    yield param(np.sqrt(np.float32(5)), id="float32")
    yield param(np.sqrt(np.float64(5)), id="float64")
    if extended_precision:
        yield param(np.sqrt(np.longdouble(5)), id="longdouble")

    # Complex:
    yield param(np.sqrt(np.complex64(2+3j)), id="complex64")
    yield param(np.sqrt(np.complex128(2+3j)), id="complex128")
    if extended_precision:
        yield param(np.sqrt(np.longcomplex(2+3j)), id="clongdouble")

    # Bool:
    # XFAIL: Bool should be added, but has some bad properties when it
    # comes to strings, see also gh-9875
    # yield param(np.bool_(0), id="bool")

    # Integers:
    yield param(np.int8(2), id="int8")
    yield param(np.int16(2), id="int16")
    yield param(np.int32(2), id="int32")
    yield param(np.int64(2), id="int64")

    yield param(np.uint8(2), id="uint8")
    yield param(np.uint16(2), id="uint16")
    yield param(np.uint32(2), id="uint32")
    yield param(np.uint64(2), id="uint64")

    # Rational:
    if user_dtype:
        yield param(rational(1, 2), id="rational")

    # Cannot create a structured void scalar directly:
    structured = np.array([(1, 3)], "i,i")[0]
    assert isinstance(structured, np.void)
    assert structured.dtype == np.dtype("i,i")
    yield param(structured, id="structured")

    if times:
        # Datetimes and timedelta
        yield param(np.timedelta64(2), id="timedelta64[generic]")
        yield param(np.timedelta64(23, "s"), id="timedelta64[s]")
        yield param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)")

        yield param(np.datetime64("NaT"), id="datetime64[generic](NaT)")
        yield param(np.datetime64("2020-06-07 12:43", "ms"), id="datetime64[ms]")

    # Strings and unstructured void:
    yield param(np.bytes_(b"1234"), id="bytes")
    yield param(np.str_("2345"), id="unicode")
    yield param(np.void(b"4321"), id="unstructured_void")


def is_parametric_dtype(dtype):
    """Returns True if the dtype is a parametric legacy dtype (itemsize
    is 0, or a datetime without units)
    """
    if dtype.itemsize == 0:
        return True
    if issubclass(dtype.type, (np.datetime64, np.timedelta64)):
        if dtype.name.endswith("64"):
            # Generic time units
            return True
    return False


class TestStringDiscovery:
    @pytest.mark.parametrize("obj",
            [object(), 1.2, 10**43, None, "string"],
            ids=["object", "1.2", "10**43", "None", "string"])
    def test_basic_stringlength(self, obj):
        length = len(str(obj))
        expected = np.dtype(f"S{length}")

        assert np.array(obj, dtype="S").dtype == expected
        assert np.array([obj], dtype="S").dtype == expected

        # A nested array is also discovered correctly
        arr = np.array(obj, dtype="O")
        assert np.array(arr, dtype="S").dtype == expected
        # Also if we use the dtype class
        assert np.array(arr, dtype=type(expected)).dtype == expected
        # Check that .astype() behaves identical
        assert arr.astype("S").dtype == expected
        # The DType class is accepted by `.astype()`
        assert arr.astype(type(np.dtype("S"))).dtype == expected

    @pytest.mark.parametrize("obj",
            [object(), 1.2, 10**43, None, "string"],
            ids=["object", "1.2", "10**43", "None", "string"])
    def test_nested_arrays_stringlength(self, obj):
        length = len(str(obj))
        expected = np.dtype(f"S{length}")
        arr = np.array(obj, dtype="O")
        assert np.array([arr, arr], dtype="S").dtype == expected

    @pytest.mark.parametrize("arraylike", arraylikes())
    def test_unpack_first_level(self, arraylike):
        # We unpack exactly one level of array likes
        obj = np.array([None])
        obj[0] = np.array(1.2)
        # the length of the included item, not of the float dtype
        length = len(str(obj[0]))
        expected = np.dtype(f"S{length}")

        obj = arraylike(obj)
        # casting to string usually calls str(obj)
        arr = np.array([obj], dtype="S")
        assert arr.shape == (1, 1)
        assert arr.dtype == expected


class TestScalarDiscovery:
    def test_void_special_case(self):
        # Void dtypes with structures discover tuples as elements
        arr = np.array((1, 2, 3), dtype="i,i,i")
        assert arr.shape == ()
        arr = np.array([(1, 2, 3)], dtype="i,i,i")
        assert arr.shape == (1,)

    def test_char_special_case(self):
        arr = np.array("string", dtype="c")
        assert arr.shape == (6,)
        assert arr.dtype.char == "c"
        arr = np.array(["string"], dtype="c")
        assert arr.shape == (1, 6)
        assert arr.dtype.char == "c"

    def test_char_special_case_deep(self):
        # Check that the character special case errors correctly if the
        # array is too deep:
        nested = ["string"]  # 2 dimensions (due to string being sequence)
        for i in range(np.MAXDIMS - 2):
            nested = [nested]

        arr = np.array(nested, dtype='c')
        assert arr.shape == (1,) * (np.MAXDIMS - 1) + (6,)
        with pytest.raises(ValueError):
            np.array([nested], dtype="c")

    def test_unknown_object(self):
        arr = np.array(object())
        assert arr.shape == ()
        assert arr.dtype == np.dtype("O")

    @pytest.mark.parametrize("scalar", scalar_instances())
    def test_scalar(self, scalar):
        arr = np.array(scalar)
        assert arr.shape == ()
        assert arr.dtype == scalar.dtype

        arr = np.array([[scalar, scalar]])
        assert arr.shape == (1, 2)
        assert arr.dtype == scalar.dtype

    # Additionally to string this test also runs into a corner case
    # with datetime promotion (the difference is the promotion order).
    @pytest.mark.filterwarnings("ignore:Promotion of numbers:FutureWarning")
    def test_scalar_promotion(self):
        for sc1, sc2 in product(scalar_instances(), scalar_instances()):
            sc1, sc2 = sc1.values[0], sc2.values[0]
            # test all combinations:
            try:
                arr = np.array([sc1, sc2])
            except (TypeError, ValueError):
                # The promotion between two times can fail
                # XFAIL (ValueError): Some object casts are currently undefined
                continue
            assert arr.shape == (2,)
            try:
                dt1, dt2 = sc1.dtype, sc2.dtype
                expected_dtype = np.promote_types(dt1, dt2)
                assert arr.dtype == expected_dtype
            except TypeError as e:
                # Will currently always go to object dtype
                assert arr.dtype == np.dtype("O")

    @pytest.mark.parametrize("scalar", scalar_instances())
    def test_scalar_coercion(self, scalar):
        # This tests various scalar coercion paths, mainly for the numerical
        # types. It includes some paths not directly related to `np.array`.
        if isinstance(scalar, np.inexact):
            # Ensure we have a full-precision number if available
            scalar = type(scalar)((scalar * 2)**0.5)

        if type(scalar) is rational:
            # Rational generally fails due to a missing cast. In the future
            # object casts should automatically be defined based on `setitem`.
            pytest.xfail("Rational to object cast is undefined currently.")

        # Use casting from object:
        arr = np.array(scalar, dtype=object).astype(scalar.dtype)

        # Test various ways to create an array containing this scalar:
        arr1 = np.array(scalar).reshape(1)
        arr2 = np.array([scalar])
        arr3 = np.empty(1, dtype=scalar.dtype)
        arr3[0] = scalar
        arr4 = np.empty(1, dtype=scalar.dtype)
        arr4[:] = [scalar]
        # All of these methods should yield the same results
        assert_array_equal(arr, arr1)
        assert_array_equal(arr, arr2)
        assert_array_equal(arr, arr3)
        assert_array_equal(arr, arr4)

    @pytest.mark.xfail(IS_PYPY, reason="`int(np.complex128(3))` fails on PyPy")
    @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
    @pytest.mark.parametrize("cast_to", scalar_instances())
    def test_scalar_coercion_same_as_cast_and_assignment(self, cast_to):
        """
        Test that in most cases:
           * `np.array(scalar, dtype=dtype)`
           * `np.empty((), dtype=dtype)[()] = scalar`
           * `np.array(scalar).astype(dtype)`
        should behave the same.  The only exceptions are parametric dtypes
        (mainly datetime/timedelta without unit) and void without fields.
        """
        dtype = cast_to.dtype  # use to parametrize only the target dtype

        for scalar in scalar_instances(times=False):
            scalar = scalar.values[0]

            if dtype.type == np.void:
               if scalar.dtype.fields is not None and dtype.fields is None:
                    # Here, coercion to "V6" works, but the cast fails.
                    # Since the types are identical, SETITEM takes care of
                    # this, but has different rules than the cast.
                    with pytest.raises(TypeError):
                        np.array(scalar).astype(dtype)
                    np.array(scalar, dtype=dtype)
                    np.array([scalar], dtype=dtype)
                    continue

            # The main test, we first try to use casting and if it succeeds
            # continue below testing that things are the same, otherwise
            # test that the alternative paths at least also fail.
            try:
                cast = np.array(scalar).astype(dtype)
            except (TypeError, ValueError, RuntimeError):
                # coercion should also raise (error type may change)
                with pytest.raises(Exception):
                    np.array(scalar, dtype=dtype)

                if (isinstance(scalar, rational) and
                        np.issubdtype(dtype, np.signedinteger)):
                    return

                with pytest.raises(Exception):
                    np.array([scalar], dtype=dtype)
                # assignment should also raise
                res = np.zeros((), dtype=dtype)
                with pytest.raises(Exception):
                    res[()] = scalar

                return

            # Non error path:
            arr = np.array(scalar, dtype=dtype)
            assert_array_equal(arr, cast)
            # assignment behaves the same
            ass = np.zeros((), dtype=dtype)
            ass[()] = scalar
            assert_array_equal(ass, cast)

    @pytest.mark.parametrize("pyscalar", [10, 10.32, 10.14j, 10**100])
    def test_pyscalar_subclasses(self, pyscalar):
        """NumPy arrays are read/write which means that anything but invariant
        behaviour is on thin ice.  However, we currently are happy to discover
        subclasses of Python float, int, complex the same as the base classes.
        This should potentially be deprecated.
        """
        class MyScalar(type(pyscalar)):
            pass

        res = np.array(MyScalar(pyscalar))
        expected = np.array(pyscalar)
        assert_array_equal(res, expected)

    @pytest.mark.parametrize("dtype_char", np.typecodes["All"])
    def test_default_dtype_instance(self, dtype_char):
        if dtype_char in "SU":
            dtype = np.dtype(dtype_char + "1")
        elif dtype_char == "V":
            # Legacy behaviour was to use V8. The reason was float64 being the
            # default dtype and that having 8 bytes.
            dtype = np.dtype("V8")
        else:
            dtype = np.dtype(dtype_char)

        discovered_dtype, _ = _discover_array_parameters([], type(dtype))

        assert discovered_dtype == dtype
        assert discovered_dtype.itemsize == dtype.itemsize

    @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
    @pytest.mark.parametrize(["scalar", "error"],
            [(np.float64(np.nan), ValueError),
             (np.array(-1).astype(np.ulonglong)[()], OverflowError)])
    def test_scalar_to_int_coerce_does_not_cast(self, dtype, scalar, error):
        """
        Signed integers are currently different in that they do not cast other
        NumPy scalar, but instead use scalar.__int__(). The hardcoded
        exception to this rule is `np.array(scalar, dtype=integer)`.
        """
        dtype = np.dtype(dtype)

        # This is a special case using casting logic. It warns for the NaN
        # but allows the cast (giving undefined behaviour).
        with np.errstate(invalid="ignore"):
            coerced = np.array(scalar, dtype=dtype)
            cast = np.array(scalar).astype(dtype)
        assert_array_equal(coerced, cast)

        # However these fail:
        with pytest.raises(error):
            np.array([scalar], dtype=dtype)
        with pytest.raises(error):
            cast[()] = scalar


class TestTimeScalars:
    @pytest.mark.parametrize("dtype", [np.int64, np.float32])
    @pytest.mark.parametrize("scalar",
            [param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)"),
             param(np.timedelta64(123, "s"), id="timedelta64[s]"),
             param(np.datetime64("NaT", "generic"), id="datetime64[generic](NaT)"),
             param(np.datetime64(1, "D"), id="datetime64[D]")],)
    def test_coercion_basic(self, dtype, scalar):
        # Note the `[scalar]` is there because np.array(scalar) uses stricter
        # `scalar.__int__()` rules for backward compatibility right now.
        arr = np.array(scalar, dtype=dtype)
        cast = np.array(scalar).astype(dtype)
        assert_array_equal(arr, cast)

        ass = np.ones((), dtype=dtype)
        if issubclass(dtype, np.integer):
            with pytest.raises(TypeError):
                # raises, as would np.array([scalar], dtype=dtype), this is
                # conversion from times, but behaviour of integers.
                ass[()] = scalar
        else:
            ass[()] = scalar
            assert_array_equal(ass, cast)

    @pytest.mark.parametrize("dtype", [np.int64, np.float32])
    @pytest.mark.parametrize("scalar",
            [param(np.timedelta64(123, "ns"), id="timedelta64[ns]"),
             param(np.timedelta64(12, "generic"), id="timedelta64[generic]")])
    def test_coercion_timedelta_convert_to_number(self, dtype, scalar):
        # Only "ns" and "generic" timedeltas can be converted to numbers
        # so these are slightly special.
        arr = np.array(scalar, dtype=dtype)
        cast = np.array(scalar).astype(dtype)
        ass = np.ones((), dtype=dtype)
        ass[()] = scalar  # raises, as would np.array([scalar], dtype=dtype)

        assert_array_equal(arr, cast)
        assert_array_equal(cast, cast)

    @pytest.mark.parametrize("dtype", ["S6", "U6"])
    @pytest.mark.parametrize(["val", "unit"],
            [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
    def test_coercion_assignment_datetime(self, val, unit, dtype):
        # String from datetime64 assignment is currently special cased to
        # never use casting.  This is because casting will error in this
        # case, and traditionally in most cases the behaviour is maintained
        # like this.  (`np.array(scalar, dtype="U6")` would have failed before)
        # TODO: This discrepancy _should_ be resolved, either by relaxing the
        #       cast, or by deprecating the first part.
        scalar = np.datetime64(val, unit)
        dtype = np.dtype(dtype)
        cut_string = dtype.type(str(scalar)[:6])

        arr = np.array(scalar, dtype=dtype)
        assert arr[()] == cut_string
        ass = np.ones((), dtype=dtype)
        ass[()] = scalar
        assert ass[()] == cut_string

        with pytest.raises(RuntimeError):
            # However, unlike the above assignment using `str(scalar)[:6]`
            # due to being handled by the string DType and not be casting
            # the explicit cast fails:
            np.array(scalar).astype(dtype)


    @pytest.mark.parametrize(["val", "unit"],
            [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
    def test_coercion_assignment_timedelta(self, val, unit):
        scalar = np.timedelta64(val, unit)

        # Unlike datetime64, timedelta allows the unsafe cast:
        np.array(scalar, dtype="S6")
        cast = np.array(scalar).astype("S6")
        ass = np.ones((), dtype="S6")
        ass[()] = scalar
        expected = scalar.astype("S")[:6]
        assert cast[()] == expected
        assert ass[()] == expected

class TestNested:
    def test_nested_simple(self):
        initial = [1.2]
        nested = initial
        for i in range(np.MAXDIMS - 1):
            nested = [nested]

        arr = np.array(nested, dtype="float64")
        assert arr.shape == (1,) * np.MAXDIMS
        with pytest.raises(ValueError):
            np.array([nested], dtype="float64")

        with pytest.raises(ValueError, match=".*would exceed the maximum"):
            np.array([nested])  # user must ask for `object` explicitly

        arr = np.array([nested], dtype=object)
        assert arr.dtype == np.dtype("O")
        assert arr.shape == (1,) * np.MAXDIMS
        assert arr.item() is initial

    def test_pathological_self_containing(self):
        # Test that this also works for two nested sequences
        l = []
        l.append(l)
        arr = np.array([l, l, l], dtype=object)
        assert arr.shape == (3,) + (1,) * (np.MAXDIMS - 1)

        # Also check a ragged case:
        arr = np.array([l, [None], l], dtype=object)
        assert arr.shape == (3, 1)

    @pytest.mark.parametrize("arraylike", arraylikes())
    def test_nested_arraylikes(self, arraylike):
        # We try storing an array like into an array, but the array-like
        # will have too many dimensions.  This means the shape discovery
        # decides that the array-like must be treated as an object (a special
        # case of ragged discovery).  The result will be an array with one
        # dimension less than the maximum dimensions, and the array being
        # assigned to it (which does work for object or if `float(arraylike)`
        # works).
        initial = arraylike(np.ones((1, 1)))

        nested = initial
        for i in range(np.MAXDIMS - 1):
            nested = [nested]

        with pytest.raises(ValueError, match=".*would exceed the maximum"):
            # It will refuse to assign the array into
            np.array(nested, dtype="float64")

        # If this is object, we end up assigning a (1, 1) array into (1,)
        # (due to running out of dimensions), this is currently supported but
        # a special case which is not ideal.
        arr = np.array(nested, dtype=object)
        assert arr.shape == (1,) * np.MAXDIMS
        assert arr.item() == np.array(initial).item()

    @pytest.mark.parametrize("arraylike", arraylikes())
    def test_uneven_depth_ragged(self, arraylike):
        arr = np.arange(4).reshape((2, 2))
        arr = arraylike(arr)

        # Array is ragged in the second dimension already:
        out = np.array([arr, [arr]], dtype=object)
        assert out.shape == (2,)
        assert out[0] is arr
        assert type(out[1]) is list

        # Array is ragged in the third dimension:
        with pytest.raises(ValueError):
            # This is a broadcast error during assignment, because
            # the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails.
            np.array([arr, [arr, arr]], dtype=object)

    def test_empty_sequence(self):
        arr = np.array([[], [1], [[1]]], dtype=object)
        assert arr.shape == (3,)

        # The empty sequence stops further dimension discovery, so the
        # result shape will be (0,) which leads to an error during:
        with pytest.raises(ValueError):
            np.array([[], np.empty((0, 1))], dtype=object)

    def test_array_of_different_depths(self):
        # When multiple arrays (or array-likes) are included in a
        # sequences and have different depth, we currently discover
        # as many dimensions as they share. (see also gh-17224)
        arr = np.zeros((3, 2))
        mismatch_first_dim = np.zeros((1, 2))
        mismatch_second_dim = np.zeros((3, 3))

        dtype, shape = _discover_array_parameters(
            [arr, mismatch_second_dim], dtype=np.dtype("O"))
        assert shape == (2, 3)

        dtype, shape = _discover_array_parameters(
            [arr, mismatch_first_dim], dtype=np.dtype("O"))
        assert shape == (2,)
        # The second case is currently supported because the arrays
        # can be stored as objects:
        res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O"))
        assert res[0] is arr
        assert res[1] is mismatch_first_dim


class TestBadSequences:
    # These are tests for bad objects passed into `np.array`, in general
    # these have undefined behaviour.  In the old code they partially worked
    # when now they will fail.  We could (and maybe should) create a copy
    # of all sequences to be safe against bad-actors.

    def test_growing_list(self):
        # List to coerce, `mylist` will append to it during coercion
        obj = []
        class mylist(list):
            def __len__(self):
                obj.append([1, 2])
                return super().__len__()

        obj.append(mylist([1, 2]))

        with pytest.raises(RuntimeError):
            np.array(obj)

    # Note: We do not test a shrinking list.  These do very evil things
    #       and the only way to fix them would be to copy all sequences.
    #       (which may be a real option in the future).

    def test_mutated_list(self):
        # List to coerce, `mylist` will mutate the first element
        obj = []
        class mylist(list):
            def __len__(self):
                obj[0] = [2, 3]  # replace with a different list.
                return super().__len__()

        obj.append([2, 3])
        obj.append(mylist([1, 2]))
        # Does not crash:
        np.array(obj)

    def test_replace_0d_array(self):
        # List to coerce, `mylist` will mutate the first element
        obj = []
        class baditem:
            def __len__(self):
                obj[0][0] = 2  # replace with a different list.
                raise ValueError("not actually a sequence!")

            def __getitem__(self):
                pass

        # Runs into a corner case in the new code, the `array(2)` is cached
        # so replacing it invalidates the cache.
        obj.append([np.array(2), baditem()])
        with pytest.raises(RuntimeError):
            np.array(obj)


class TestArrayLikes:
    @pytest.mark.parametrize("arraylike", arraylikes())
    def test_0d_object_special_case(self, arraylike):
        arr = np.array(0.)
        obj = arraylike(arr)
        # A single array-like is always converted:
        res = np.array(obj, dtype=object)
        assert_array_equal(arr, res)

        # But a single 0-D nested array-like never:
        res = np.array([obj], dtype=object)
        assert res[0] is obj

    @pytest.mark.parametrize("arraylike", arraylikes())
    @pytest.mark.parametrize("arr", [np.array(0.), np.arange(4)])
    def test_object_assignment_special_case(self, arraylike, arr):
        obj = arraylike(arr)
        empty = np.arange(1, dtype=object)
        empty[:] = [obj]
        assert empty[0] is obj

    def test_0d_generic_special_case(self):
        class ArraySubclass(np.ndarray):
            def __float__(self):
                raise TypeError("e.g. quantities raise on this")

        arr = np.array(0.)
        obj = arr.view(ArraySubclass)
        res = np.array(obj)
        # The subclass is simply cast:
        assert_array_equal(arr, res)

        # If the 0-D array-like is included, __float__ is currently
        # guaranteed to be used.  We may want to change that, quantities
        # and masked arrays half make use of this.
        with pytest.raises(TypeError):
            np.array([obj])

        # The same holds for memoryview:
        obj = memoryview(arr)
        res = np.array(obj)
        assert_array_equal(arr, res)
        with pytest.raises(ValueError):
            # The error type does not matter much here.
            np.array([obj])

    def test_arraylike_classes(self):
        # The classes of array-likes should generally be acceptable to be
        # stored inside a numpy (object) array.  This tests all of the
        # special attributes (since all are checked during coercion).
        arr = np.array(np.int64)
        assert arr[()] is np.int64
        arr = np.array([np.int64])
        assert arr[0] is np.int64

        # This also works for properties/unbound methods:
        class ArrayLike:
            @property
            def __array_interface__(self):
                pass

            @property
            def __array_struct__(self):
                pass

            def __array__(self):
                pass

        arr = np.array(ArrayLike)
        assert arr[()] is ArrayLike
        arr = np.array([ArrayLike])
        assert arr[0] is ArrayLike

    @pytest.mark.skipif(
            np.dtype(np.intp).itemsize < 8, reason="Needs 64bit platform")
    def test_too_large_array_error_paths(self):
        """Test the error paths, including for memory leaks"""
        arr = np.array(0, dtype="uint8")
        # Guarantees that a contiguous copy won't work:
        arr = np.broadcast_to(arr, 2**62)

        for i in range(5):
            # repeat, to ensure caching cannot have an effect:
            with pytest.raises(MemoryError):
                np.array(arr)
            with pytest.raises(MemoryError):
                np.array([arr])

    @pytest.mark.parametrize("attribute",
        ["__array_interface__", "__array__", "__array_struct__"])
    @pytest.mark.parametrize("error", [RecursionError, MemoryError])
    def test_bad_array_like_attributes(self, attribute, error):
        # RecursionError and MemoryError are considered fatal. All errors
        # (except AttributeError) should probably be raised in the future,
        # but shapely made use of it, so it will require a deprecation.

        class BadInterface:
            def __getattr__(self, attr):
                if attr == attribute:
                    raise error
                super().__getattr__(attr)

        with pytest.raises(error):
            np.array(BadInterface())

    @pytest.mark.parametrize("error", [RecursionError, MemoryError])
    def test_bad_array_like_bad_length(self, error):
        # RecursionError and MemoryError are considered "critical" in
        # sequences. We could expand this more generally though. (NumPy 1.20)
        class BadSequence:
            def __len__(self):
                raise error
            def __getitem__(self):
                # must have getitem to be a Sequence
                return 1

        with pytest.raises(error):
            np.array(BadSequence())


class TestAsArray:
    """Test expected behaviors of ``asarray``."""

    def test_dtype_identity(self):
        """Confirm the intended behavior for *dtype* kwarg.

        The result of ``asarray()`` should have the dtype provided through the
        keyword argument, when used. This forces unique array handles to be
        produced for unique np.dtype objects, but (for equivalent dtypes), the
        underlying data (the base object) is shared with the original array
        object.

        Ref https://github.com/numpy/numpy/issues/1468
        """
        int_array = np.array([1, 2, 3], dtype='i')
        assert np.asarray(int_array) is int_array

        # The character code resolves to the singleton dtype object provided
        # by the numpy package.
        assert np.asarray(int_array, dtype='i') is int_array

        # Derive a dtype from n.dtype('i'), but add a metadata object to force
        # the dtype to be distinct.
        unequal_type = np.dtype('i', metadata={'spam': True})
        annotated_int_array = np.asarray(int_array, dtype=unequal_type)
        assert annotated_int_array is not int_array
        assert annotated_int_array.base is int_array
        # Create an equivalent descriptor with a new and distinct dtype
        # instance.
        equivalent_requirement = np.dtype('i', metadata={'spam': True})
        annotated_int_array_alt = np.asarray(annotated_int_array,
                                             dtype=equivalent_requirement)
        assert unequal_type == equivalent_requirement
        assert unequal_type is not equivalent_requirement
        assert annotated_int_array_alt is not annotated_int_array
        assert annotated_int_array_alt.dtype is equivalent_requirement

        # Check the same logic for a pair of C types whose equivalence may vary
        # between computing environments.
        # Find an equivalent pair.
        integer_type_codes = ('i', 'l', 'q')
        integer_dtypes = [np.dtype(code) for code in integer_type_codes]
        typeA = None
        typeB = None
        for typeA, typeB in permutations(integer_dtypes, r=2):
            if typeA == typeB:
                assert typeA is not typeB
                break
        assert isinstance(typeA, np.dtype) and isinstance(typeB, np.dtype)

        # These ``asarray()`` calls may produce a new view or a copy,
        # but never the same object.
        long_int_array = np.asarray(int_array, dtype='l')
        long_long_int_array = np.asarray(int_array, dtype='q')
        assert long_int_array is not int_array
        assert long_long_int_array is not int_array
        assert np.asarray(long_int_array, dtype='q') is not long_int_array
        array_a = np.asarray(int_array, dtype=typeA)
        assert typeA == typeB
        assert typeA is not typeB
        assert array_a.dtype is typeA
        assert array_a is not np.asarray(array_a, dtype=typeB)
        assert np.asarray(array_a, dtype=typeB).dtype is typeB
        assert array_a is np.asarray(array_a, dtype=typeB).base


class TestSpecialAttributeLookupFailure:
    # An exception was raised while fetching the attribute

    class WeirdArrayLike:
        @property
        def __array__(self):
            raise RuntimeError("oops!")

    class WeirdArrayInterface:
        @property
        def __array_interface__(self):
            raise RuntimeError("oops!")

    def test_deprecated(self):
        with pytest.raises(RuntimeError):
            np.array(self.WeirdArrayLike())
        with pytest.raises(RuntimeError):
            np.array(self.WeirdArrayInterface())


def test_subarray_from_array_construction():
    # Arrays are more complex, since they "broadcast" on success:
    arr = np.array([1, 2])

    res = arr.astype("(2)i,")
    assert_array_equal(res, [[1, 1], [2, 2]])

    res = np.array(arr, dtype="(2)i,")

    assert_array_equal(res, [[1, 1], [2, 2]])

    res = np.array([[(1,), (2,)], arr], dtype="(2)i,")
    assert_array_equal(res, [[[1, 1], [2, 2]], [[1, 1], [2, 2]]])

    # Also try a multi-dimensional example:
    arr = np.arange(5 * 2).reshape(5, 2)
    expected = np.broadcast_to(arr[:, :, np.newaxis, np.newaxis], (5, 2, 2, 2))

    res = arr.astype("(2,2)f")
    assert_array_equal(res, expected)

    res = np.array(arr, dtype="(2,2)f")
    assert_array_equal(res, expected)