summaryrefslogtreecommitdiff
path: root/numpy/core/tests/test_item_selection.py
blob: 5660ef583edb52824494efb4d444d10ad2be5b6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys

import pytest

import numpy as np
from numpy.testing import (
    assert_, assert_raises, assert_array_equal, HAS_REFCOUNT
    )


class TestTake:
    def test_simple(self):
        a = [[1, 2], [3, 4]]
        a_str = [[b'1', b'2'], [b'3', b'4']]
        modes = ['raise', 'wrap', 'clip']
        indices = [-1, 4]
        index_arrays = [np.empty(0, dtype=np.intp),
                        np.empty(tuple(), dtype=np.intp),
                        np.empty((1, 1), dtype=np.intp)]
        real_indices = {'raise': {-1: 1, 4: IndexError},
                        'wrap': {-1: 1, 4: 0},
                        'clip': {-1: 0, 4: 1}}
        # Currently all types but object, use the same function generation.
        # So it should not be necessary to test all. However test also a non
        # refcounted struct on top of object, which has a size that hits the
        # default (non-specialized) path.
        types = int, object, np.dtype([('', 'i2', 3)])
        for t in types:
            # ta works, even if the array may be odd if buffer interface is used
            ta = np.array(a if np.issubdtype(t, np.number) else a_str, dtype=t)
            tresult = list(ta.T.copy())
            for index_array in index_arrays:
                if index_array.size != 0:
                    tresult[0].shape = (2,) + index_array.shape
                    tresult[1].shape = (2,) + index_array.shape
                for mode in modes:
                    for index in indices:
                        real_index = real_indices[mode][index]
                        if real_index is IndexError and index_array.size != 0:
                            index_array.put(0, index)
                            assert_raises(IndexError, ta.take, index_array,
                                          mode=mode, axis=1)
                        elif index_array.size != 0:
                            index_array.put(0, index)
                            res = ta.take(index_array, mode=mode, axis=1)
                            assert_array_equal(res, tresult[real_index])
                        else:
                            res = ta.take(index_array, mode=mode, axis=1)
                            assert_(res.shape == (2,) + index_array.shape)

    def test_refcounting(self):
        objects = [object() for i in range(10)]
        for mode in ('raise', 'clip', 'wrap'):
            a = np.array(objects)
            b = np.array([2, 2, 4, 5, 3, 5])
            a.take(b, out=a[:6], mode=mode)
            del a
            if HAS_REFCOUNT:
                assert_(all(sys.getrefcount(o) == 3 for o in objects))
            # not contiguous, example:
            a = np.array(objects * 2)[::2]
            a.take(b, out=a[:6], mode=mode)
            del a
            if HAS_REFCOUNT:
                assert_(all(sys.getrefcount(o) == 3 for o in objects))

    def test_unicode_mode(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.take, 5, mode=k)

    def test_empty_partition(self):
        # In reference to github issue #6530
        a_original = np.array([0, 2, 4, 6, 8, 10])
        a = a_original.copy()

        # An empty partition should be a successful no-op
        a.partition(np.array([], dtype=np.int16))

        assert_array_equal(a, a_original)

    def test_empty_argpartition(self):
        # In reference to github issue #6530
        a = np.array([0, 2, 4, 6, 8, 10])
        a = a.argpartition(np.array([], dtype=np.int16))

        b = np.array([0, 1, 2, 3, 4, 5])
        assert_array_equal(a, b)


class TestPutMask:
    @pytest.mark.parametrize("dtype", list(np.typecodes["All"]) + ["i,O"])
    def test_simple(self, dtype):
        if dtype.lower() == "m":
            dtype += "8[ns]"

        # putmask is weird and doesn't care about value length (even shorter)
        vals = np.arange(1001).astype(dtype=dtype)

        mask = np.random.randint(2, size=1000).astype(bool)
        # Use vals.dtype in case of flexible dtype (i.e. string)
        arr = np.zeros(1000, dtype=vals.dtype)
        zeros = arr.copy()

        np.putmask(arr, mask, vals)
        assert_array_equal(arr[mask], vals[:len(mask)][mask])
        assert_array_equal(arr[~mask], zeros[~mask])

    @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
    @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
    def test_empty(self, dtype, mode):
        arr = np.zeros(1000, dtype=dtype)
        arr_copy = arr.copy()
        mask = np.random.randint(2, size=1000).astype(bool)

        # Allowing empty values like this is weird...
        np.put(arr, mask, [])
        assert_array_equal(arr, arr_copy)


class TestPut:
    @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
    @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
    def test_simple(self, dtype, mode):
        if dtype.lower() == "m":
            dtype += "8[ns]"

        # put is weird and doesn't care about value length (even shorter)
        vals = np.arange(1001).astype(dtype=dtype)

        # Use vals.dtype in case of flexible dtype (i.e. string)
        arr = np.zeros(1000, dtype=vals.dtype)
        zeros = arr.copy()

        if mode == "clip":
            # Special because 0 and -1 value are "reserved" for clip test
            indx = np.random.permutation(len(arr) - 2)[:-500] + 1

            indx[-1] = 0
            indx[-2] = len(arr) - 1
            indx_put = indx.copy()
            indx_put[-1] = -1389
            indx_put[-2] = 1321
        else:
            # Avoid duplicates (for simplicity) and fill half only
            indx = np.random.permutation(len(arr) - 3)[:-500]
            indx_put = indx
            if mode == "wrap":
                indx_put = indx_put + len(arr)

        np.put(arr, indx_put, vals, mode=mode)
        assert_array_equal(arr[indx], vals[:len(indx)])
        untouched = np.ones(len(arr), dtype=bool)
        untouched[indx] = False
        assert_array_equal(arr[untouched], zeros[:untouched.sum()])

    @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
    @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
    def test_empty(self, dtype, mode):
        arr = np.zeros(1000, dtype=dtype)
        arr_copy = arr.copy()

        # Allowing empty values like this is weird...
        np.put(arr, [1, 2, 3], [])
        assert_array_equal(arr, arr_copy)