1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
""" Test printing of scalar types.
"""
import code
import platform
import pytest
import sys
from tempfile import TemporaryFile
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises, IS_MUSL
class TestRealScalars:
def test_str(self):
svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan]
styps = [np.float16, np.float32, np.float64, np.longdouble]
wanted = [
['0.0', '0.0', '0.0', '0.0' ],
['-0.0', '-0.0', '-0.0', '-0.0'],
['1.0', '1.0', '1.0', '1.0' ],
['-1.0', '-1.0', '-1.0', '-1.0'],
['inf', 'inf', 'inf', 'inf' ],
['-inf', '-inf', '-inf', '-inf'],
['nan', 'nan', 'nan', 'nan']]
for wants, val in zip(wanted, svals):
for want, styp in zip(wants, styps):
msg = 'for str({}({}))'.format(np.dtype(styp).name, repr(val))
assert_equal(str(styp(val)), want, err_msg=msg)
def test_scalar_cutoffs(self):
# test that both the str and repr of np.float64 behaves
# like python floats in python3.
def check(v):
assert_equal(str(np.float64(v)), str(v))
assert_equal(str(np.float64(v)), repr(v))
assert_equal(repr(np.float64(v)), repr(v))
assert_equal(repr(np.float64(v)), str(v))
# check we use the same number of significant digits
check(1.12345678901234567890)
check(0.0112345678901234567890)
# check switch from scientific output to positional and back
check(1e-5)
check(1e-4)
check(1e15)
check(1e16)
def test_py2_float_print(self):
# gh-10753
# In python2, the python float type implements an obsolete method
# tp_print, which overrides tp_repr and tp_str when using "print" to
# output to a "real file" (ie, not a StringIO). Make sure we don't
# inherit it.
x = np.double(0.1999999999999)
with TemporaryFile('r+t') as f:
print(x, file=f)
f.seek(0)
output = f.read()
assert_equal(output, str(x) + '\n')
# In python2 the value float('0.1999999999999') prints with reduced
# precision as '0.2', but we want numpy's np.double('0.1999999999999')
# to print the unique value, '0.1999999999999'.
# gh-11031
# Only in the python2 interactive shell and when stdout is a "real"
# file, the output of the last command is printed to stdout without
# Py_PRINT_RAW (unlike the print statement) so `>>> x` and `>>> print
# x` are potentially different. Make sure they are the same. The only
# way I found to get prompt-like output is using an actual prompt from
# the 'code' module. Again, must use tempfile to get a "real" file.
# dummy user-input which enters one line and then ctrl-Ds.
def userinput():
yield 'np.sqrt(2)'
raise EOFError
gen = userinput()
input_func = lambda prompt="": next(gen)
with TemporaryFile('r+t') as fo, TemporaryFile('r+t') as fe:
orig_stdout, orig_stderr = sys.stdout, sys.stderr
sys.stdout, sys.stderr = fo, fe
code.interact(local={'np': np}, readfunc=input_func, banner='')
sys.stdout, sys.stderr = orig_stdout, orig_stderr
fo.seek(0)
capture = fo.read().strip()
assert_equal(capture, repr(np.sqrt(2)))
def test_dragon4(self):
# these tests are adapted from Ryan Juckett's dragon4 implementation,
# see dragon4.c for details.
fpos32 = lambda x, **k: np.format_float_positional(np.float32(x), **k)
fsci32 = lambda x, **k: np.format_float_scientific(np.float32(x), **k)
fpos64 = lambda x, **k: np.format_float_positional(np.float64(x), **k)
fsci64 = lambda x, **k: np.format_float_scientific(np.float64(x), **k)
preckwd = lambda prec: {'unique': False, 'precision': prec}
assert_equal(fpos32('1.0'), "1.")
assert_equal(fsci32('1.0'), "1.e+00")
assert_equal(fpos32('10.234'), "10.234")
assert_equal(fpos32('-10.234'), "-10.234")
assert_equal(fsci32('10.234'), "1.0234e+01")
assert_equal(fsci32('-10.234'), "-1.0234e+01")
assert_equal(fpos32('1000.0'), "1000.")
assert_equal(fpos32('1.0', precision=0), "1.")
assert_equal(fsci32('1.0', precision=0), "1.e+00")
assert_equal(fpos32('10.234', precision=0), "10.")
assert_equal(fpos32('-10.234', precision=0), "-10.")
assert_equal(fsci32('10.234', precision=0), "1.e+01")
assert_equal(fsci32('-10.234', precision=0), "-1.e+01")
assert_equal(fpos32('10.234', precision=2), "10.23")
assert_equal(fsci32('-10.234', precision=2), "-1.02e+01")
assert_equal(fsci64('9.9999999999999995e-08', **preckwd(16)),
'9.9999999999999995e-08')
assert_equal(fsci64('9.8813129168249309e-324', **preckwd(16)),
'9.8813129168249309e-324')
assert_equal(fsci64('9.9999999999999694e-311', **preckwd(16)),
'9.9999999999999694e-311')
# test rounding
# 3.1415927410 is closest float32 to np.pi
assert_equal(fpos32('3.14159265358979323846', **preckwd(10)),
"3.1415927410")
assert_equal(fsci32('3.14159265358979323846', **preckwd(10)),
"3.1415927410e+00")
assert_equal(fpos64('3.14159265358979323846', **preckwd(10)),
"3.1415926536")
assert_equal(fsci64('3.14159265358979323846', **preckwd(10)),
"3.1415926536e+00")
# 299792448 is closest float32 to 299792458
assert_equal(fpos32('299792458.0', **preckwd(5)), "299792448.00000")
assert_equal(fsci32('299792458.0', **preckwd(5)), "2.99792e+08")
assert_equal(fpos64('299792458.0', **preckwd(5)), "299792458.00000")
assert_equal(fsci64('299792458.0', **preckwd(5)), "2.99792e+08")
assert_equal(fpos32('3.14159265358979323846', **preckwd(25)),
"3.1415927410125732421875000")
assert_equal(fpos64('3.14159265358979323846', **preckwd(50)),
"3.14159265358979311599796346854418516159057617187500")
assert_equal(fpos64('3.14159265358979323846'), "3.141592653589793")
# smallest numbers
assert_equal(fpos32(0.5**(126 + 23), unique=False, precision=149),
"0.00000000000000000000000000000000000000000000140129846432"
"4817070923729583289916131280261941876515771757068283889791"
"08268586060148663818836212158203125")
assert_equal(fpos64(5e-324, unique=False, precision=1074),
"0.00000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000049406564584124654417656"
"8792868221372365059802614324764425585682500675507270208751"
"8652998363616359923797965646954457177309266567103559397963"
"9877479601078187812630071319031140452784581716784898210368"
"8718636056998730723050006387409153564984387312473397273169"
"6151400317153853980741262385655911710266585566867681870395"
"6031062493194527159149245532930545654440112748012970999954"
"1931989409080416563324524757147869014726780159355238611550"
"1348035264934720193790268107107491703332226844753335720832"
"4319360923828934583680601060115061698097530783422773183292"
"4790498252473077637592724787465608477820373446969953364701"
"7972677717585125660551199131504891101451037862738167250955"
"8373897335989936648099411642057026370902792427675445652290"
"87538682506419718265533447265625")
# largest numbers
f32x = np.finfo(np.float32).max
assert_equal(fpos32(f32x, **preckwd(0)),
"340282346638528859811704183484516925440.")
assert_equal(fpos64(np.finfo(np.float64).max, **preckwd(0)),
"1797693134862315708145274237317043567980705675258449965989"
"1747680315726078002853876058955863276687817154045895351438"
"2464234321326889464182768467546703537516986049910576551282"
"0762454900903893289440758685084551339423045832369032229481"
"6580855933212334827479782620414472316873817718091929988125"
"0404026184124858368.")
# Warning: In unique mode only the integer digits necessary for
# uniqueness are computed, the rest are 0.
assert_equal(fpos32(f32x),
"340282350000000000000000000000000000000.")
# Further tests of zero-padding vs rounding in different combinations
# of unique, fractional, precision, min_digits
# precision can only reduce digits, not add them.
# min_digits can only extend digits, not reduce them.
assert_equal(fpos32(f32x, unique=True, fractional=True, precision=0),
"340282350000000000000000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=True, precision=4),
"340282350000000000000000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=0),
"340282346638528859811704183484516925440.")
assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=4),
"340282346638528859811704183484516925440.0000")
assert_equal(fpos32(f32x, unique=True, fractional=True,
min_digits=4, precision=4),
"340282346638528859811704183484516925440.0000")
assert_raises(ValueError, fpos32, f32x, unique=True, fractional=False,
precision=0)
assert_equal(fpos32(f32x, unique=True, fractional=False, precision=4),
"340300000000000000000000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=False, precision=20),
"340282350000000000000000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=False, min_digits=4),
"340282350000000000000000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=False,
min_digits=20),
"340282346638528859810000000000000000000.")
assert_equal(fpos32(f32x, unique=True, fractional=False,
min_digits=15),
"340282346638529000000000000000000000000.")
assert_equal(fpos32(f32x, unique=False, fractional=False, precision=4),
"340300000000000000000000000000000000000.")
# test that unique rounding is preserved when precision is supplied
# but no extra digits need to be printed (gh-18609)
a = np.float64.fromhex('-1p-97')
assert_equal(fsci64(a, unique=True), '-6.310887241768095e-30')
assert_equal(fsci64(a, unique=False, precision=15),
'-6.310887241768094e-30')
assert_equal(fsci64(a, unique=True, precision=15),
'-6.310887241768095e-30')
assert_equal(fsci64(a, unique=True, min_digits=15),
'-6.310887241768095e-30')
assert_equal(fsci64(a, unique=True, precision=15, min_digits=15),
'-6.310887241768095e-30')
# adds/remove digits in unique mode with unbiased rnding
assert_equal(fsci64(a, unique=True, precision=14),
'-6.31088724176809e-30')
assert_equal(fsci64(a, unique=True, min_digits=16),
'-6.3108872417680944e-30')
assert_equal(fsci64(a, unique=True, precision=16),
'-6.310887241768095e-30')
assert_equal(fsci64(a, unique=True, min_digits=14),
'-6.310887241768095e-30')
# test min_digits in unique mode with different rounding cases
assert_equal(fsci64('1e120', min_digits=3), '1.000e+120')
assert_equal(fsci64('1e100', min_digits=3), '1.000e+100')
# test trailing zeros
assert_equal(fpos32('1.0', unique=False, precision=3), "1.000")
assert_equal(fpos64('1.0', unique=False, precision=3), "1.000")
assert_equal(fsci32('1.0', unique=False, precision=3), "1.000e+00")
assert_equal(fsci64('1.0', unique=False, precision=3), "1.000e+00")
assert_equal(fpos32('1.5', unique=False, precision=3), "1.500")
assert_equal(fpos64('1.5', unique=False, precision=3), "1.500")
assert_equal(fsci32('1.5', unique=False, precision=3), "1.500e+00")
assert_equal(fsci64('1.5', unique=False, precision=3), "1.500e+00")
# gh-10713
assert_equal(fpos64('324', unique=False, precision=5,
fractional=False), "324.00")
def test_dragon4_interface(self):
tps = [np.float16, np.float32, np.float64]
# test is flaky for musllinux on np.float128
if hasattr(np, 'float128') and not IS_MUSL:
tps.append(np.float128)
fpos = np.format_float_positional
fsci = np.format_float_scientific
for tp in tps:
# test padding
assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), " 1. ")
assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), " -1. ")
assert_equal(fpos(tp('-10.2'),
pad_left=4, pad_right=4), " -10.2 ")
# test exp_digits
assert_equal(fsci(tp('1.23e1'), exp_digits=5), "1.23e+00001")
# test fixed (non-unique) mode
assert_equal(fpos(tp('1.0'), unique=False, precision=4), "1.0000")
assert_equal(fsci(tp('1.0'), unique=False, precision=4),
"1.0000e+00")
# test trimming
# trim of 'k' or '.' only affects non-unique mode, since unique
# mode will not output trailing 0s.
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='k'),
"1.0000")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='.'),
"1.")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='.'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='0'),
"1.0")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='0'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), trim='0'), "1.0")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='-'),
"1")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='-'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), trim='-'), "1")
assert_equal(fpos(tp('1.001'), precision=1, trim='-'), "1")
@pytest.mark.skipif(not platform.machine().startswith("ppc64"),
reason="only applies to ppc float128 values")
def test_ppc64_ibm_double_double128(self):
# check that the precision decreases once we get into the subnormal
# range. Unlike float64, this starts around 1e-292 instead of 1e-308,
# which happens when the first double is normal and the second is
# subnormal.
x = np.float128('2.123123123123123123123123123123123e-286')
got = [str(x/np.float128('2e' + str(i))) for i in range(0,40)]
expected = [
"1.06156156156156156156156156156157e-286",
"1.06156156156156156156156156156158e-287",
"1.06156156156156156156156156156159e-288",
"1.0615615615615615615615615615616e-289",
"1.06156156156156156156156156156157e-290",
"1.06156156156156156156156156156156e-291",
"1.0615615615615615615615615615616e-292",
"1.0615615615615615615615615615615e-293",
"1.061561561561561561561561561562e-294",
"1.06156156156156156156156156155e-295",
"1.0615615615615615615615615616e-296",
"1.06156156156156156156156156e-297",
"1.06156156156156156156156157e-298",
"1.0615615615615615615615616e-299",
"1.06156156156156156156156e-300",
"1.06156156156156156156155e-301",
"1.0615615615615615615616e-302",
"1.061561561561561561562e-303",
"1.06156156156156156156e-304",
"1.0615615615615615618e-305",
"1.06156156156156156e-306",
"1.06156156156156157e-307",
"1.0615615615615616e-308",
"1.06156156156156e-309",
"1.06156156156157e-310",
"1.0615615615616e-311",
"1.06156156156e-312",
"1.06156156154e-313",
"1.0615615616e-314",
"1.06156156e-315",
"1.06156155e-316",
"1.061562e-317",
"1.06156e-318",
"1.06155e-319",
"1.0617e-320",
"1.06e-321",
"1.04e-322",
"1e-323",
"0.0",
"0.0"]
assert_equal(got, expected)
# Note: we follow glibc behavior, but it (or gcc) might not be right.
# In particular we can get two values that print the same but are not
# equal:
a = np.float128('2')/np.float128('3')
b = np.float128(str(a))
assert_equal(str(a), str(b))
assert_(a != b)
def float32_roundtrip(self):
# gh-9360
x = np.float32(1024 - 2**-14)
y = np.float32(1024 - 2**-13)
assert_(repr(x) != repr(y))
assert_equal(np.float32(repr(x)), x)
assert_equal(np.float32(repr(y)), y)
def float64_vs_python(self):
# gh-2643, gh-6136, gh-6908
assert_equal(repr(np.float64(0.1)), repr(0.1))
assert_(repr(np.float64(0.20000000000000004)) != repr(0.2))
|