1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
|
# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics
# may be involved in their functionality.
import pytest, math, re
import itertools
import operator
from numpy.core._simd import targets, clear_floatstatus, get_floatstatus
from numpy.core._multiarray_umath import __cpu_baseline__
def check_floatstatus(divbyzero=False, overflow=False,
underflow=False, invalid=False,
all=False):
#define NPY_FPE_DIVIDEBYZERO 1
#define NPY_FPE_OVERFLOW 2
#define NPY_FPE_UNDERFLOW 4
#define NPY_FPE_INVALID 8
err = get_floatstatus()
ret = (all or divbyzero) and (err & 1) != 0
ret |= (all or overflow) and (err & 2) != 0
ret |= (all or underflow) and (err & 4) != 0
ret |= (all or invalid) and (err & 8) != 0
return ret
class _Test_Utility:
# submodule of the desired SIMD extension, e.g. targets["AVX512F"]
npyv = None
# the current data type suffix e.g. 's8'
sfx = None
# target name can be 'baseline' or one or more of CPU features
target_name = None
def __getattr__(self, attr):
"""
To call NPV intrinsics without the attribute 'npyv' and
auto suffixing intrinsics according to class attribute 'sfx'
"""
return getattr(self.npyv, attr + "_" + self.sfx)
def _x2(self, intrin_name):
return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2")
def _data(self, start=None, count=None, reverse=False):
"""
Create list of consecutive numbers according to number of vector's lanes.
"""
if start is None:
start = 1
if count is None:
count = self.nlanes
rng = range(start, start + count)
if reverse:
rng = reversed(rng)
if self._is_fp():
return [x / 1.0 for x in rng]
return list(rng)
def _is_unsigned(self):
return self.sfx[0] == 'u'
def _is_signed(self):
return self.sfx[0] == 's'
def _is_fp(self):
return self.sfx[0] == 'f'
def _scalar_size(self):
return int(self.sfx[1:])
def _int_clip(self, seq):
if self._is_fp():
return seq
max_int = self._int_max()
min_int = self._int_min()
return [min(max(v, min_int), max_int) for v in seq]
def _int_max(self):
if self._is_fp():
return None
max_u = self._to_unsigned(self.setall(-1))[0]
if self._is_signed():
return max_u // 2
return max_u
def _int_min(self):
if self._is_fp():
return None
if self._is_unsigned():
return 0
return -(self._int_max() + 1)
def _true_mask(self):
max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1)
return max_unsig[0]
def _to_unsigned(self, vector):
if isinstance(vector, (list, tuple)):
return getattr(self.npyv, "load_u" + self.sfx[1:])(vector)
else:
sfx = vector.__name__.replace("npyv_", "")
if sfx[0] == "b":
cvt_intrin = "cvt_u{0}_b{0}"
else:
cvt_intrin = "reinterpret_u{0}_{1}"
return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector)
def _pinfinity(self):
return float("inf")
def _ninfinity(self):
return -float("inf")
def _nan(self):
return float("nan")
def _cpu_features(self):
target = self.target_name
if target == "baseline":
target = __cpu_baseline__
else:
target = target.split('__') # multi-target separator
return ' '.join(target)
class _SIMD_BOOL(_Test_Utility):
"""
To test all boolean vector types at once
"""
def _nlanes(self):
return getattr(self.npyv, "nlanes_u" + self.sfx[1:])
def _data(self, start=None, count=None, reverse=False):
true_mask = self._true_mask()
rng = range(self._nlanes())
if reverse:
rng = reversed(rng)
return [true_mask if x % 2 else 0 for x in rng]
def _load_b(self, data):
len_str = self.sfx[1:]
load = getattr(self.npyv, "load_u" + len_str)
cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}")
return cvt(load(data))
def test_operators_logical(self):
"""
Logical operations for boolean types.
Test intrinsics:
npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX,
npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8
"""
data_a = self._data()
data_b = self._data(reverse=True)
vdata_a = self._load_b(data_a)
vdata_b = self._load_b(data_b)
data_and = [a & b for a, b in zip(data_a, data_b)]
vand = getattr(self, "and")(vdata_a, vdata_b)
assert vand == data_and
data_or = [a | b for a, b in zip(data_a, data_b)]
vor = getattr(self, "or")(vdata_a, vdata_b)
assert vor == data_or
data_xor = [a ^ b for a, b in zip(data_a, data_b)]
vxor = getattr(self, "xor")(vdata_a, vdata_b)
assert vxor == data_xor
vnot = getattr(self, "not")(vdata_a)
assert vnot == data_b
# among the boolean types, andc, orc and xnor only support b8
if self.sfx not in ("b8"):
return
data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)]
vandc = getattr(self, "andc")(vdata_a, vdata_b)
assert data_andc == vandc
data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)]
vorc = getattr(self, "orc")(vdata_a, vdata_b)
assert data_orc == vorc
data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)]
vxnor = getattr(self, "xnor")(vdata_a, vdata_b)
assert data_xnor == vxnor
def test_tobits(self):
data2bits = lambda data: sum([int(x != 0) << i for i, x in enumerate(data, 0)])
for data in (self._data(), self._data(reverse=True)):
vdata = self._load_b(data)
data_bits = data2bits(data)
tobits = self.tobits(vdata)
bin_tobits = bin(tobits)
assert bin_tobits == bin(data_bits)
def test_pack(self):
"""
Pack multiple vectors into one
Test intrinsics:
npyv_pack_b8_b16
npyv_pack_b8_b32
npyv_pack_b8_b64
"""
if self.sfx not in ("b16", "b32", "b64"):
return
# create the vectors
data = self._data()
rdata = self._data(reverse=True)
vdata = self._load_b(data)
vrdata = self._load_b(rdata)
pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
# for scalar execution, concatenate the elements of the multiple lists
# into a single list (spack) and then iterate over the elements of
# the created list applying a mask to capture the first byte of them.
if self.sfx == "b16":
spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
vpack = pack_simd(vrdata, vdata)
elif self.sfx == "b32":
spack = [(i & 0xFF) for i in (2*list(rdata) + 2*list(data))]
vpack = pack_simd(vrdata, vrdata, vdata, vdata)
elif self.sfx == "b64":
spack = [(i & 0xFF) for i in (4*list(rdata) + 4*list(data))]
vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
vdata, vdata, vdata, vdata)
assert vpack == spack
@pytest.mark.parametrize("intrin", ["any", "all"])
@pytest.mark.parametrize("data", (
[-1, 0],
[0, -1],
[-1],
[0]
))
def test_operators_crosstest(self, intrin, data):
"""
Test intrinsics:
npyv_any_##SFX
npyv_all_##SFX
"""
data_a = self._load_b(data * self._nlanes())
func = eval(intrin)
intrin = getattr(self, intrin)
desired = func(data_a)
simd = intrin(data_a)
assert not not simd == desired
class _SIMD_INT(_Test_Utility):
"""
To test all integer vector types at once
"""
def test_operators_shift(self):
if self.sfx in ("u8", "s8"):
return
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
for count in range(self._scalar_size()):
# load to cast
data_shl_a = self.load([a << count for a in data_a])
# left shift
shl = self.shl(vdata_a, count)
assert shl == data_shl_a
# load to cast
data_shr_a = self.load([a >> count for a in data_a])
# right shift
shr = self.shr(vdata_a, count)
assert shr == data_shr_a
# shift by zero or max or out-range immediate constant is not applicable and illogical
for count in range(1, self._scalar_size()):
# load to cast
data_shl_a = self.load([a << count for a in data_a])
# left shift by an immediate constant
shli = self.shli(vdata_a, count)
assert shli == data_shl_a
# load to cast
data_shr_a = self.load([a >> count for a in data_a])
# right shift by an immediate constant
shri = self.shri(vdata_a, count)
assert shri == data_shr_a
def test_arithmetic_subadd_saturated(self):
if self.sfx in ("u32", "s32", "u64", "s64"):
return
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)])
adds = self.adds(vdata_a, vdata_b)
assert adds == data_adds
data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)])
subs = self.subs(vdata_a, vdata_b)
assert subs == data_subs
def test_math_max_min(self):
data_a = self._data()
data_b = self._data(self.nlanes)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
data_max = [max(a, b) for a, b in zip(data_a, data_b)]
simd_max = self.max(vdata_a, vdata_b)
assert simd_max == data_max
data_min = [min(a, b) for a, b in zip(data_a, data_b)]
simd_min = self.min(vdata_a, vdata_b)
assert simd_min == data_min
@pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000])
def test_reduce_max_min(self, start):
"""
Test intrinsics:
npyv_reduce_max_##sfx
npyv_reduce_min_##sfx
"""
vdata_a = self.load(self._data(start))
assert self.reduce_max(vdata_a) == max(vdata_a)
assert self.reduce_min(vdata_a) == min(vdata_a)
class _SIMD_FP32(_Test_Utility):
"""
To only test single precision
"""
def test_conversions(self):
"""
Round to nearest even integer, assume CPU control register is set to rounding.
Test intrinsics:
npyv_round_s32_##SFX
"""
features = self._cpu_features()
if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features):
# very costly to emulate nearest even on Armv7
# instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1
_round = lambda v: int(v + (0.5 if v >= 0 else -0.5))
else:
_round = round
vdata_a = self.load(self._data())
vdata_a = self.sub(vdata_a, self.setall(0.5))
data_round = [_round(x) for x in vdata_a]
vround = self.round_s32(vdata_a)
assert vround == data_round
class _SIMD_FP64(_Test_Utility):
"""
To only test double precision
"""
def test_conversions(self):
"""
Round to nearest even integer, assume CPU control register is set to rounding.
Test intrinsics:
npyv_round_s32_##SFX
"""
vdata_a = self.load(self._data())
vdata_a = self.sub(vdata_a, self.setall(0.5))
vdata_b = self.mul(vdata_a, self.setall(-1.5))
data_round = [round(x) for x in list(vdata_a) + list(vdata_b)]
vround = self.round_s32(vdata_a, vdata_b)
assert vround == data_round
class _SIMD_FP(_Test_Utility):
"""
To test all float vector types at once
"""
def test_arithmetic_fused(self):
vdata_a, vdata_b, vdata_c = [self.load(self._data())]*3
vdata_cx2 = self.add(vdata_c, vdata_c)
# multiply and add, a*b + c
data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)])
fma = self.muladd(vdata_a, vdata_b, vdata_c)
assert fma == data_fma
# multiply and subtract, a*b - c
fms = self.mulsub(vdata_a, vdata_b, vdata_c)
data_fms = self.sub(data_fma, vdata_cx2)
assert fms == data_fms
# negate multiply and add, -(a*b) + c
nfma = self.nmuladd(vdata_a, vdata_b, vdata_c)
data_nfma = self.sub(vdata_cx2, data_fma)
assert nfma == data_nfma
# negate multiply and subtract, -(a*b) - c
nfms = self.nmulsub(vdata_a, vdata_b, vdata_c)
data_nfms = self.mul(data_fma, self.setall(-1))
assert nfms == data_nfms
# multiply, add for odd elements and subtract even elements.
# (a * b) -+ c
fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c))
assert fmas[0::2] == list(data_fms)[0::2]
assert fmas[1::2] == list(data_fma)[1::2]
def test_abs(self):
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
data = self._data()
vdata = self.load(self._data())
abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan))
for case, desired in abs_cases:
data_abs = [desired]*self.nlanes
vabs = self.abs(self.setall(case))
assert vabs == pytest.approx(data_abs, nan_ok=True)
vabs = self.abs(self.mul(vdata, self.setall(-1)))
assert vabs == data
def test_sqrt(self):
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
data = self._data()
vdata = self.load(self._data())
sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf))
for case, desired in sqrt_cases:
data_sqrt = [desired]*self.nlanes
sqrt = self.sqrt(self.setall(case))
assert sqrt == pytest.approx(data_sqrt, nan_ok=True)
data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision
sqrt = self.sqrt(vdata)
assert sqrt == data_sqrt
def test_square(self):
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
data = self._data()
vdata = self.load(self._data())
# square
square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf))
for case, desired in square_cases:
data_square = [desired]*self.nlanes
square = self.square(self.setall(case))
assert square == pytest.approx(data_square, nan_ok=True)
data_square = [x*x for x in data]
square = self.square(vdata)
assert square == data_square
@pytest.mark.parametrize("intrin, func", [("ceil", math.ceil),
("trunc", math.trunc), ("floor", math.floor), ("rint", round)])
def test_rounding(self, intrin, func):
"""
Test intrinsics:
npyv_rint_##SFX
npyv_ceil_##SFX
npyv_trunc_##SFX
npyv_floor##SFX
"""
intrin_name = intrin
intrin = getattr(self, intrin)
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
# special cases
round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf))
for case, desired in round_cases:
data_round = [desired]*self.nlanes
_round = intrin(self.setall(case))
assert _round == pytest.approx(data_round, nan_ok=True)
for x in range(0, 2**20, 256**2):
for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15):
data = self.load([(x+a)*w for a in range(self.nlanes)])
data_round = [func(x) for x in data]
_round = intrin(data)
assert _round == data_round
# test large numbers
for i in (
1.1529215045988576e+18, 4.6116860183954304e+18,
5.902958103546122e+20, 2.3611832414184488e+21
):
x = self.setall(i)
y = intrin(x)
data_round = [func(n) for n in x]
assert y == data_round
# signed zero
if intrin_name == "floor":
data_szero = (-0.0,)
else:
data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5)
for w in data_szero:
_round = self._to_unsigned(intrin(self.setall(w)))
data_round = self._to_unsigned(self.setall(-0.0))
assert _round == data_round
@pytest.mark.parametrize("intrin", [
"max", "maxp", "maxn", "min", "minp", "minn"
])
def test_max_min(self, intrin):
"""
Test intrinsics:
npyv_max_##sfx
npyv_maxp_##sfx
npyv_maxn_##sfx
npyv_min_##sfx
npyv_minp_##sfx
npyv_minn_##sfx
npyv_reduce_max_##sfx
npyv_reduce_maxp_##sfx
npyv_reduce_maxn_##sfx
npyv_reduce_min_##sfx
npyv_reduce_minp_##sfx
npyv_reduce_minn_##sfx
"""
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0)
func = eval(intrin[:3])
reduce_intrin = getattr(self, "reduce_" + intrin)
intrin = getattr(self, intrin)
hf_nlanes = self.nlanes//2
cases = (
([0.0, -0.0], [-0.0, 0.0]),
([10, -10], [10, -10]),
([pinf, 10], [10, ninf]),
([10, pinf], [ninf, 10]),
([10, -10], [10, -10]),
([-10, 10], [-10, 10])
)
for op1, op2 in cases:
vdata_a = self.load(op1*hf_nlanes)
vdata_b = self.load(op2*hf_nlanes)
data = func(vdata_a, vdata_b)
simd = intrin(vdata_a, vdata_b)
assert simd == data
data = func(vdata_a)
simd = reduce_intrin(vdata_a)
assert simd == data
if not chk_nan:
return
if chk_nan == 1:
test_nan = lambda a, b: (
b if math.isnan(a) else a if math.isnan(b) else b
)
else:
test_nan = lambda a, b: (
nan if math.isnan(a) or math.isnan(b) else b
)
cases = (
(nan, 10),
(10, nan),
(nan, pinf),
(pinf, nan),
(nan, nan)
)
for op1, op2 in cases:
vdata_ab = self.load([op1, op2]*hf_nlanes)
data = test_nan(op1, op2)
simd = reduce_intrin(vdata_ab)
assert simd == pytest.approx(data, nan_ok=True)
vdata_a = self.setall(op1)
vdata_b = self.setall(op2)
data = [data] * self.nlanes
simd = intrin(vdata_a, vdata_b)
assert simd == pytest.approx(data, nan_ok=True)
def test_reciprocal(self):
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
data = self._data()
vdata = self.load(self._data())
recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf))
for case, desired in recip_cases:
data_recip = [desired]*self.nlanes
recip = self.recip(self.setall(case))
assert recip == pytest.approx(data_recip, nan_ok=True)
data_recip = self.load([1/x for x in data]) # load to truncate precision
recip = self.recip(vdata)
assert recip == data_recip
def test_special_cases(self):
"""
Compare Not NaN. Test intrinsics:
npyv_notnan_##SFX
"""
nnan = self.notnan(self.setall(self._nan()))
assert nnan == [0]*self.nlanes
@pytest.mark.parametrize("intrin_name", [
"rint", "trunc", "ceil", "floor"
])
def test_unary_invalid_fpexception(self, intrin_name):
intrin = getattr(self, intrin_name)
for d in [float("nan"), float("inf"), -float("inf")]:
v = self.setall(d)
clear_floatstatus()
intrin(v)
assert check_floatstatus(invalid=True) == False
@pytest.mark.parametrize('py_comp,np_comp', [
(operator.lt, "cmplt"),
(operator.le, "cmple"),
(operator.gt, "cmpgt"),
(operator.ge, "cmpge"),
(operator.eq, "cmpeq"),
(operator.ne, "cmpneq")
])
def test_comparison_with_nan(self, py_comp, np_comp):
pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
mask_true = self._true_mask()
def to_bool(vector):
return [lane == mask_true for lane in vector]
intrin = getattr(self, np_comp)
cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan),
(ninf, nan), (-0.0, +0.0))
for case_operand1, case_operand2 in cmp_cases:
data_a = [case_operand1]*self.nlanes
data_b = [case_operand2]*self.nlanes
vdata_a = self.setall(case_operand1)
vdata_b = self.setall(case_operand2)
vcmp = to_bool(intrin(vdata_a, vdata_b))
data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)]
assert vcmp == data_cmp
@pytest.mark.parametrize("intrin", ["any", "all"])
@pytest.mark.parametrize("data", (
[float("nan"), 0],
[0, float("nan")],
[float("nan"), 1],
[1, float("nan")],
[float("nan"), float("nan")],
[0.0, -0.0],
[-0.0, 0.0],
[1.0, -0.0]
))
def test_operators_crosstest(self, intrin, data):
"""
Test intrinsics:
npyv_any_##SFX
npyv_all_##SFX
"""
data_a = self.load(data * self.nlanes)
func = eval(intrin)
intrin = getattr(self, intrin)
desired = func(data_a)
simd = intrin(data_a)
assert not not simd == desired
class _SIMD_ALL(_Test_Utility):
"""
To test all vector types at once
"""
def test_memory_load(self):
data = self._data()
# unaligned load
load_data = self.load(data)
assert load_data == data
# aligned load
loada_data = self.loada(data)
assert loada_data == data
# stream load
loads_data = self.loads(data)
assert loads_data == data
# load lower part
loadl = self.loadl(data)
loadl_half = list(loadl)[:self.nlanes//2]
data_half = data[:self.nlanes//2]
assert loadl_half == data_half
assert loadl != data # detect overflow
def test_memory_store(self):
data = self._data()
vdata = self.load(data)
# unaligned store
store = [0] * self.nlanes
self.store(store, vdata)
assert store == data
# aligned store
store_a = [0] * self.nlanes
self.storea(store_a, vdata)
assert store_a == data
# stream store
store_s = [0] * self.nlanes
self.stores(store_s, vdata)
assert store_s == data
# store lower part
store_l = [0] * self.nlanes
self.storel(store_l, vdata)
assert store_l[:self.nlanes//2] == data[:self.nlanes//2]
assert store_l != vdata # detect overflow
# store higher part
store_h = [0] * self.nlanes
self.storeh(store_h, vdata)
assert store_h[:self.nlanes//2] == data[self.nlanes//2:]
assert store_h != vdata # detect overflow
@pytest.mark.parametrize("intrin, elsizes, scale, fill", [
("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]),
("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]),
])
def test_memory_partial_load(self, intrin, elsizes, scale, fill):
if self._scalar_size() not in elsizes:
return
npyv_load_tillz, npyv_load_till = eval(intrin)
data = self._data()
lanes = list(range(1, self.nlanes + 1))
lanes += [self.nlanes**2, self.nlanes**4] # test out of range
for n in lanes:
load_till = npyv_load_till(data, n, *fill)
load_tillz = npyv_load_tillz(data, n)
n *= scale
data_till = data[:n] + fill * ((self.nlanes-n) // scale)
assert load_till == data_till
data_tillz = data[:n] + [0] * (self.nlanes-n)
assert load_tillz == data_tillz
@pytest.mark.parametrize("intrin, elsizes, scale", [
("self.store_till", (32, 64), 1),
("self.store2_till", (32, 64), 2),
])
def test_memory_partial_store(self, intrin, elsizes, scale):
if self._scalar_size() not in elsizes:
return
npyv_store_till = eval(intrin)
data = self._data()
data_rev = self._data(reverse=True)
vdata = self.load(data)
lanes = list(range(1, self.nlanes + 1))
lanes += [self.nlanes**2, self.nlanes**4]
for n in lanes:
data_till = data_rev.copy()
data_till[:n*scale] = data[:n*scale]
store_till = self._data(reverse=True)
npyv_store_till(store_till, n, vdata)
assert store_till == data_till
@pytest.mark.parametrize("intrin, elsizes, scale", [
("self.loadn", (32, 64), 1),
("self.loadn2", (32, 64), 2),
])
def test_memory_noncont_load(self, intrin, elsizes, scale):
if self._scalar_size() not in elsizes:
return
npyv_loadn = eval(intrin)
for stride in range(-64, 64):
if stride < 0:
data = self._data(stride, -stride*self.nlanes)
data_stride = list(itertools.chain(
*zip(*[data[-i::stride] for i in range(scale, 0, -1)])
))
elif stride == 0:
data = self._data()
data_stride = data[0:scale] * (self.nlanes//scale)
else:
data = self._data(count=stride*self.nlanes)
data_stride = list(itertools.chain(
*zip(*[data[i::stride] for i in range(scale)]))
)
data_stride = self.load(data_stride) # cast unsigned
loadn = npyv_loadn(data, stride)
assert loadn == data_stride
@pytest.mark.parametrize("intrin, elsizes, scale, fill", [
("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]),
("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]),
])
def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill):
if self._scalar_size() not in elsizes:
return
npyv_loadn_tillz, npyv_loadn_till = eval(intrin)
lanes = list(range(1, self.nlanes + 1))
lanes += [self.nlanes**2, self.nlanes**4]
for stride in range(-64, 64):
if stride < 0:
data = self._data(stride, -stride*self.nlanes)
data_stride = list(itertools.chain(
*zip(*[data[-i::stride] for i in range(scale, 0, -1)])
))
elif stride == 0:
data = self._data()
data_stride = data[0:scale] * (self.nlanes//scale)
else:
data = self._data(count=stride*self.nlanes)
data_stride = list(itertools.chain(
*zip(*[data[i::stride] for i in range(scale)])
))
data_stride = list(self.load(data_stride)) # cast unsigned
for n in lanes:
nscale = n * scale
llanes = self.nlanes - nscale
data_stride_till = (
data_stride[:nscale] + fill * (llanes//scale)
)
loadn_till = npyv_loadn_till(data, stride, n, *fill)
assert loadn_till == data_stride_till
data_stride_tillz = data_stride[:nscale] + [0] * llanes
loadn_tillz = npyv_loadn_tillz(data, stride, n)
assert loadn_tillz == data_stride_tillz
@pytest.mark.parametrize("intrin, elsizes, scale", [
("self.storen", (32, 64), 1),
("self.storen2", (32, 64), 2),
])
def test_memory_noncont_store(self, intrin, elsizes, scale):
if self._scalar_size() not in elsizes:
return
npyv_storen = eval(intrin)
data = self._data()
vdata = self.load(data)
hlanes = self.nlanes // scale
for stride in range(1, 64):
data_storen = [0xff] * stride * self.nlanes
for s in range(0, hlanes*stride, stride):
i = (s//stride)*scale
data_storen[s:s+scale] = data[i:i+scale]
storen = [0xff] * stride * self.nlanes
storen += [0x7f]*64
npyv_storen(storen, stride, vdata)
assert storen[:-64] == data_storen
assert storen[-64:] == [0x7f]*64 # detect overflow
for stride in range(-64, 0):
data_storen = [0xff] * -stride * self.nlanes
for s in range(0, hlanes*stride, stride):
i = (s//stride)*scale
data_storen[s-scale:s or None] = data[i:i+scale]
storen = [0x7f]*64
storen += [0xff] * -stride * self.nlanes
npyv_storen(storen, stride, vdata)
assert storen[64:] == data_storen
assert storen[:64] == [0x7f]*64 # detect overflow
# stride 0
data_storen = [0x7f] * self.nlanes
storen = data_storen.copy()
data_storen[0:scale] = data[-scale:]
npyv_storen(storen, 0, vdata)
assert storen == data_storen
@pytest.mark.parametrize("intrin, elsizes, scale", [
("self.storen_till", (32, 64), 1),
("self.storen2_till", (32, 64), 2),
])
def test_memory_noncont_partial_store(self, intrin, elsizes, scale):
if self._scalar_size() not in elsizes:
return
npyv_storen_till = eval(intrin)
data = self._data()
vdata = self.load(data)
lanes = list(range(1, self.nlanes + 1))
lanes += [self.nlanes**2, self.nlanes**4]
hlanes = self.nlanes // scale
for stride in range(1, 64):
for n in lanes:
data_till = [0xff] * stride * self.nlanes
tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
for s in range(0, hlanes*stride, stride)[:n]:
i = (s//stride)*scale
data_till[s:s+scale] = tdata[i:i+scale]
storen_till = [0xff] * stride * self.nlanes
storen_till += [0x7f]*64
npyv_storen_till(storen_till, stride, n, vdata)
assert storen_till[:-64] == data_till
assert storen_till[-64:] == [0x7f]*64 # detect overflow
for stride in range(-64, 0):
for n in lanes:
data_till = [0xff] * -stride * self.nlanes
tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
for s in range(0, hlanes*stride, stride)[:n]:
i = (s//stride)*scale
data_till[s-scale:s or None] = tdata[i:i+scale]
storen_till = [0x7f]*64
storen_till += [0xff] * -stride * self.nlanes
npyv_storen_till(storen_till, stride, n, vdata)
assert storen_till[64:] == data_till
assert storen_till[:64] == [0x7f]*64 # detect overflow
# stride 0
for n in lanes:
data_till = [0x7f] * self.nlanes
storen_till = data_till.copy()
data_till[0:scale] = data[:n*scale][-scale:]
npyv_storen_till(storen_till, 0, n, vdata)
assert storen_till == data_till
@pytest.mark.parametrize("intrin, table_size, elsize", [
("self.lut32", 32, 32),
("self.lut16", 16, 64)
])
def test_lut(self, intrin, table_size, elsize):
"""
Test lookup table intrinsics:
npyv_lut32_##sfx
npyv_lut16_##sfx
"""
if elsize != self._scalar_size():
return
intrin = eval(intrin)
idx_itrin = getattr(self.npyv, f"setall_u{elsize}")
table = range(0, table_size)
for i in table:
broadi = self.setall(i)
idx = idx_itrin(i)
lut = intrin(table, idx)
assert lut == broadi
def test_misc(self):
broadcast_zero = self.zero()
assert broadcast_zero == [0] * self.nlanes
for i in range(1, 10):
broadcasti = self.setall(i)
assert broadcasti == [i] * self.nlanes
data_a, data_b = self._data(), self._data(reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
# py level of npyv_set_* don't support ignoring the extra specified lanes or
# fill non-specified lanes with zero.
vset = self.set(*data_a)
assert vset == data_a
# py level of npyv_setf_* don't support ignoring the extra specified lanes or
# fill non-specified lanes with the specified scalar.
vsetf = self.setf(10, *data_a)
assert vsetf == data_a
# We're testing the sanity of _simd's type-vector,
# reinterpret* intrinsics itself are tested via compiler
# during the build of _simd module
sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"]
if self.npyv.simd_f64:
sfxes.append("f64")
if self.npyv.simd_f32:
sfxes.append("f32")
for sfx in sfxes:
vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__
assert vec_name == "npyv_" + sfx
# select & mask operations
select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b)
assert select_a == data_a
select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b)
assert select_b == data_b
# test extract elements
assert self.extract0(vdata_b) == vdata_b[0]
# cleanup intrinsic is only used with AVX for
# zeroing registers to avoid the AVX-SSE transition penalty,
# so nothing to test here
self.npyv.cleanup()
def test_reorder(self):
data_a, data_b = self._data(), self._data(reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
# lower half part
data_a_lo = data_a[:self.nlanes//2]
data_b_lo = data_b[:self.nlanes//2]
# higher half part
data_a_hi = data_a[self.nlanes//2:]
data_b_hi = data_b[self.nlanes//2:]
# combine two lower parts
combinel = self.combinel(vdata_a, vdata_b)
assert combinel == data_a_lo + data_b_lo
# combine two higher parts
combineh = self.combineh(vdata_a, vdata_b)
assert combineh == data_a_hi + data_b_hi
# combine x2
combine = self.combine(vdata_a, vdata_b)
assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi)
# zip(interleave)
data_zipl = self.load([
v for p in zip(data_a_lo, data_b_lo) for v in p
])
data_ziph = self.load([
v for p in zip(data_a_hi, data_b_hi) for v in p
])
vzip = self.zip(vdata_a, vdata_b)
assert vzip == (data_zipl, data_ziph)
vzip = [0]*self.nlanes*2
self._x2("store")(vzip, (vdata_a, vdata_b))
assert vzip == list(data_zipl) + list(data_ziph)
# unzip(deinterleave)
unzip = self.unzip(data_zipl, data_ziph)
assert unzip == (data_a, data_b)
unzip = self._x2("load")(list(data_zipl) + list(data_ziph))
assert unzip == (data_a, data_b)
def test_reorder_rev64(self):
# Reverse elements of each 64-bit lane
ssize = self._scalar_size()
if ssize == 64:
return
data_rev64 = [
y for x in range(0, self.nlanes, 64//ssize)
for y in reversed(range(x, x + 64//ssize))
]
rev64 = self.rev64(self.load(range(self.nlanes)))
assert rev64 == data_rev64
def test_reorder_permi128(self):
"""
Test permuting elements for each 128-bit lane.
npyv_permi128_##sfx
"""
ssize = self._scalar_size()
if ssize < 32:
return
data = self.load(self._data())
permn = 128//ssize
permd = permn-1
nlane128 = self.nlanes//permn
shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6]
for i in range(permn):
indices = [(i >> shf) & permd for shf in shfl]
vperm = self.permi128(data, *indices)
data_vperm = [
data[j + (e & -permn)]
for e, j in enumerate(indices*nlane128)
]
assert vperm == data_vperm
@pytest.mark.parametrize('func, intrin', [
(operator.lt, "cmplt"),
(operator.le, "cmple"),
(operator.gt, "cmpgt"),
(operator.ge, "cmpge"),
(operator.eq, "cmpeq")
])
def test_operators_comparison(self, func, intrin):
if self._is_fp():
data_a = self._data()
else:
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
intrin = getattr(self, intrin)
mask_true = self._true_mask()
def to_bool(vector):
return [lane == mask_true for lane in vector]
data_cmp = [func(a, b) for a, b in zip(data_a, data_b)]
cmp = to_bool(intrin(vdata_a, vdata_b))
assert cmp == data_cmp
def test_operators_logical(self):
if self._is_fp():
data_a = self._data()
else:
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
if self._is_fp():
data_cast_a = self._to_unsigned(vdata_a)
data_cast_b = self._to_unsigned(vdata_b)
cast, cast_data = self._to_unsigned, self._to_unsigned
else:
data_cast_a, data_cast_b = data_a, data_b
cast, cast_data = lambda a: a, self.load
data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)])
vxor = cast(self.xor(vdata_a, vdata_b))
assert vxor == data_xor
data_or = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)])
vor = cast(getattr(self, "or")(vdata_a, vdata_b))
assert vor == data_or
data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)])
vand = cast(getattr(self, "and")(vdata_a, vdata_b))
assert vand == data_and
data_not = cast_data([~a for a in data_cast_a])
vnot = cast(getattr(self, "not")(vdata_a))
assert vnot == data_not
if self.sfx not in ("u8"):
return
data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)]
vandc = cast(getattr(self, "andc")(vdata_a, vdata_b))
assert vandc == data_andc
@pytest.mark.parametrize("intrin", ["any", "all"])
@pytest.mark.parametrize("data", (
[1, 2, 3, 4],
[-1, -2, -3, -4],
[0, 1, 2, 3, 4],
[0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff],
[0, -1, -2, -3, 4],
[0],
[1],
[-1]
))
def test_operators_crosstest(self, intrin, data):
"""
Test intrinsics:
npyv_any_##SFX
npyv_all_##SFX
"""
data_a = self.load(data * self.nlanes)
func = eval(intrin)
intrin = getattr(self, intrin)
desired = func(data_a)
simd = intrin(data_a)
assert not not simd == desired
def test_conversion_boolean(self):
bsfx = "b" + self.sfx[1:]
to_boolean = getattr(self.npyv, "cvt_%s_%s" % (bsfx, self.sfx))
from_boolean = getattr(self.npyv, "cvt_%s_%s" % (self.sfx, bsfx))
false_vb = to_boolean(self.setall(0))
true_vb = self.cmpeq(self.setall(0), self.setall(0))
assert false_vb != true_vb
false_vsfx = from_boolean(false_vb)
true_vsfx = from_boolean(true_vb)
assert false_vsfx != true_vsfx
def test_conversion_expand(self):
"""
Test expand intrinsics:
npyv_expand_u16_u8
npyv_expand_u32_u16
"""
if self.sfx not in ("u8", "u16"):
return
totype = self.sfx[0]+str(int(self.sfx[1:])*2)
expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}")
# close enough from the edge to detect any deviation
data = self._data(self._int_max() - self.nlanes)
vdata = self.load(data)
edata = expand(vdata)
# lower half part
data_lo = data[:self.nlanes//2]
# higher half part
data_hi = data[self.nlanes//2:]
assert edata == (data_lo, data_hi)
def test_arithmetic_subadd(self):
if self._is_fp():
data_a = self._data()
else:
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
# non-saturated
data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast
add = self.add(vdata_a, vdata_b)
assert add == data_add
data_sub = self.load([a - b for a, b in zip(data_a, data_b)])
sub = self.sub(vdata_a, vdata_b)
assert sub == data_sub
def test_arithmetic_mul(self):
if self.sfx in ("u64", "s64"):
return
if self._is_fp():
data_a = self._data()
else:
data_a = self._data(self._int_max() - self.nlanes)
data_b = self._data(self._int_min(), reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
data_mul = self.load([a * b for a, b in zip(data_a, data_b)])
mul = self.mul(vdata_a, vdata_b)
assert mul == data_mul
def test_arithmetic_div(self):
if not self._is_fp():
return
data_a, data_b = self._data(), self._data(reverse=True)
vdata_a, vdata_b = self.load(data_a), self.load(data_b)
# load to truncate f64 to precision of f32
data_div = self.load([a / b for a, b in zip(data_a, data_b)])
div = self.div(vdata_a, vdata_b)
assert div == data_div
def test_arithmetic_intdiv(self):
"""
Test integer division intrinsics:
npyv_divisor_##sfx
npyv_divc_##sfx
"""
if self._is_fp():
return
int_min = self._int_min()
def trunc_div(a, d):
"""
Divide towards zero works with large integers > 2^53,
and wrap around overflow similar to what C does.
"""
if d == -1 and a == int_min:
return a
sign_a, sign_d = a < 0, d < 0
if a == 0 or sign_a == sign_d:
return a // d
return (a + sign_d - sign_a) // d + 1
data = [1, -int_min] # to test overflow
data += range(0, 2**8, 2**5)
data += range(0, 2**8, 2**5-1)
bsize = self._scalar_size()
if bsize > 8:
data += range(2**8, 2**16, 2**13)
data += range(2**8, 2**16, 2**13-1)
if bsize > 16:
data += range(2**16, 2**32, 2**29)
data += range(2**16, 2**32, 2**29-1)
if bsize > 32:
data += range(2**32, 2**64, 2**61)
data += range(2**32, 2**64, 2**61-1)
# negate
data += [-x for x in data]
for dividend, divisor in itertools.product(data, data):
divisor = self.setall(divisor)[0] # cast
if divisor == 0:
continue
dividend = self.load(self._data(dividend))
data_divc = [trunc_div(a, divisor) for a in dividend]
divisor_parms = self.divisor(divisor)
divc = self.divc(dividend, divisor_parms)
assert divc == data_divc
def test_arithmetic_reduce_sum(self):
"""
Test reduce sum intrinsics:
npyv_sum_##sfx
"""
if self.sfx not in ("u32", "u64", "f32", "f64"):
return
# reduce sum
data = self._data()
vdata = self.load(data)
data_sum = sum(data)
vsum = self.sum(vdata)
assert vsum == data_sum
def test_arithmetic_reduce_sumup(self):
"""
Test extend reduce sum intrinsics:
npyv_sumup_##sfx
"""
if self.sfx not in ("u8", "u16"):
return
rdata = (0, self.nlanes, self._int_min(), self._int_max()-self.nlanes)
for r in rdata:
data = self._data(r)
vdata = self.load(data)
data_sum = sum(data)
vsum = self.sumup(vdata)
assert vsum == data_sum
def test_mask_conditional(self):
"""
Conditional addition and subtraction for all supported data types.
Test intrinsics:
npyv_ifadd_##SFX, npyv_ifsub_##SFX
"""
vdata_a = self.load(self._data())
vdata_b = self.load(self._data(reverse=True))
true_mask = self.cmpeq(self.zero(), self.zero())
false_mask = self.cmpneq(self.zero(), self.zero())
data_sub = self.sub(vdata_b, vdata_a)
ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b)
assert ifsub == data_sub
ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b)
assert ifsub == vdata_b
data_add = self.add(vdata_b, vdata_a)
ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b)
assert ifadd == data_add
ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b)
assert ifadd == vdata_b
if not self._is_fp():
return
data_div = self.div(vdata_b, vdata_a)
ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b)
assert ifdiv == data_div
ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a)
assert ifdivz == data_div
ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b)
assert ifdiv == vdata_b
ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b)
assert ifdivz == self.zero()
bool_sfx = ("b8", "b16", "b32", "b64")
int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64")
fp_sfx = ("f32", "f64")
all_sfx = int_sfx + fp_sfx
tests_registry = {
bool_sfx: _SIMD_BOOL,
int_sfx : _SIMD_INT,
fp_sfx : _SIMD_FP,
("f32",): _SIMD_FP32,
("f64",): _SIMD_FP64,
all_sfx : _SIMD_ALL
}
for target_name, npyv in targets.items():
simd_width = npyv.simd if npyv else ''
pretty_name = target_name.split('__') # multi-target separator
if len(pretty_name) > 1:
# multi-target
pretty_name = f"({' '.join(pretty_name)})"
else:
pretty_name = pretty_name[0]
skip = ""
skip_sfx = dict()
if not npyv:
skip = f"target '{pretty_name}' isn't supported by current machine"
elif not npyv.simd:
skip = f"target '{pretty_name}' isn't supported by NPYV"
else:
if not npyv.simd_f32:
skip_sfx["f32"] = f"target '{pretty_name}' "\
"doesn't support single-precision"
if not npyv.simd_f64:
skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\
"support double-precision"
for sfxes, cls in tests_registry.items():
for sfx in sfxes:
skip_m = skip_sfx.get(sfx, skip)
inhr = (cls,)
attr = dict(npyv=targets[target_name], sfx=sfx, target_name=target_name)
tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr)
if skip_m:
pytest.mark.skip(reason=skip_m)(tcls)
globals()[tcls.__name__] = tcls
|