summaryrefslogtreecommitdiff
path: root/numpy/core/tests/test_ufunc.py
blob: f716e2104d9f0b2172448e2d5ae0e5178e43cb55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
import warnings
import itertools
import sys
import ctypes as ct

import pytest
from pytest import param

import numpy as np
import numpy.core._umath_tests as umt
import numpy.linalg._umath_linalg as uml
import numpy.core._operand_flag_tests as opflag_tests
import numpy.core._rational_tests as _rational_tests
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_array_equal,
    assert_almost_equal, assert_array_almost_equal, assert_no_warnings,
    assert_allclose, HAS_REFCOUNT, suppress_warnings, IS_WASM
    )
from numpy.testing._private.utils import requires_memory
from numpy.compat import pickle


UNARY_UFUNCS = [obj for obj in np.core.umath.__dict__.values()
                    if isinstance(obj, np.ufunc)]
UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types]


class TestUfuncKwargs:
    def test_kwarg_exact(self):
        assert_raises(TypeError, np.add, 1, 2, castingx='safe')
        assert_raises(TypeError, np.add, 1, 2, dtypex=int)
        assert_raises(TypeError, np.add, 1, 2, extobjx=[4096])
        assert_raises(TypeError, np.add, 1, 2, outx=None)
        assert_raises(TypeError, np.add, 1, 2, sigx='ii->i')
        assert_raises(TypeError, np.add, 1, 2, signaturex='ii->i')
        assert_raises(TypeError, np.add, 1, 2, subokx=False)
        assert_raises(TypeError, np.add, 1, 2, wherex=[True])

    def test_sig_signature(self):
        assert_raises(TypeError, np.add, 1, 2, sig='ii->i',
                      signature='ii->i')

    def test_sig_dtype(self):
        assert_raises(TypeError, np.add, 1, 2, sig='ii->i',
                      dtype=int)
        assert_raises(TypeError, np.add, 1, 2, signature='ii->i',
                      dtype=int)

    def test_extobj_refcount(self):
        # Should not segfault with USE_DEBUG.
        assert_raises(TypeError, np.add, 1, 2, extobj=[4096], parrot=True)


class TestUfuncGenericLoops:
    """Test generic loops.

    The loops to be tested are:

        PyUFunc_ff_f_As_dd_d
        PyUFunc_ff_f
        PyUFunc_dd_d
        PyUFunc_gg_g
        PyUFunc_FF_F_As_DD_D
        PyUFunc_DD_D
        PyUFunc_FF_F
        PyUFunc_GG_G
        PyUFunc_OO_O
        PyUFunc_OO_O_method
        PyUFunc_f_f_As_d_d
        PyUFunc_d_d
        PyUFunc_f_f
        PyUFunc_g_g
        PyUFunc_F_F_As_D_D
        PyUFunc_F_F
        PyUFunc_D_D
        PyUFunc_G_G
        PyUFunc_O_O
        PyUFunc_O_O_method
        PyUFunc_On_Om

    Where:

        f -- float
        d -- double
        g -- long double
        F -- complex float
        D -- complex double
        G -- complex long double
        O -- python object

    It is difficult to assure that each of these loops is entered from the
    Python level as the special cased loops are a moving target and the
    corresponding types are architecture dependent. We probably need to
    define C level testing ufuncs to get at them. For the time being, I've
    just looked at the signatures registered in the build directory to find
    relevant functions.

    """
    np_dtypes = [
        (np.single, np.single), (np.single, np.double),
        (np.csingle, np.csingle), (np.csingle, np.cdouble),
        (np.double, np.double), (np.longdouble, np.longdouble),
        (np.cdouble, np.cdouble), (np.clongdouble, np.clongdouble)]

    @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes)
    def test_unary_PyUFunc(self, input_dtype, output_dtype, f=np.exp, x=0, y=1):
        xs = np.full(10, input_dtype(x), dtype=output_dtype)
        ys = f(xs)[::2]
        assert_allclose(ys, y)
        assert_equal(ys.dtype, output_dtype)

    def f2(x, y):
        return x**y

    @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes)
    def test_binary_PyUFunc(self, input_dtype, output_dtype, f=f2, x=0, y=1):
        xs = np.full(10, input_dtype(x), dtype=output_dtype)
        ys = f(xs, xs)[::2]
        assert_allclose(ys, y)
        assert_equal(ys.dtype, output_dtype)

    # class to use in testing object method loops
    class foo:
        def conjugate(self):
            return np.bool_(1)

        def logical_xor(self, obj):
            return np.bool_(1)

    def test_unary_PyUFunc_O_O(self):
        x = np.ones(10, dtype=object)
        assert_(np.all(np.abs(x) == 1))

    def test_unary_PyUFunc_O_O_method_simple(self, foo=foo):
        x = np.full(10, foo(), dtype=object)
        assert_(np.all(np.conjugate(x) == True))

    def test_binary_PyUFunc_OO_O(self):
        x = np.ones(10, dtype=object)
        assert_(np.all(np.add(x, x) == 2))

    def test_binary_PyUFunc_OO_O_method(self, foo=foo):
        x = np.full(10, foo(), dtype=object)
        assert_(np.all(np.logical_xor(x, x)))

    def test_binary_PyUFunc_On_Om_method(self, foo=foo):
        x = np.full((10, 2, 3), foo(), dtype=object)
        assert_(np.all(np.logical_xor(x, x)))

    def test_python_complex_conjugate(self):
        # The conjugate ufunc should fall back to calling the method:
        arr = np.array([1+2j, 3-4j], dtype="O")
        assert isinstance(arr[0], complex)
        res = np.conjugate(arr)
        assert res.dtype == np.dtype("O")
        assert_array_equal(res, np.array([1-2j, 3+4j], dtype="O"))

    @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
    def test_unary_PyUFunc_O_O_method_full(self, ufunc):
        """Compare the result of the object loop with non-object one"""
        val = np.float64(np.pi/4)

        class MyFloat(np.float64):
            def __getattr__(self, attr):
                try:
                    return super().__getattr__(attr)
                except AttributeError:
                    return lambda: getattr(np.core.umath, attr)(val)

        # Use 0-D arrays, to ensure the same element call
        num_arr = np.array(val, dtype=np.float64)
        obj_arr = np.array(MyFloat(val), dtype="O")

        with np.errstate(all="raise"):
            try:
                res_num = ufunc(num_arr)
            except Exception as exc:
                with assert_raises(type(exc)):
                    ufunc(obj_arr)
            else:
                res_obj = ufunc(obj_arr)
                assert_array_almost_equal(res_num.astype("O"), res_obj)


def _pickleable_module_global():
    pass


class TestUfunc:
    def test_pickle(self):
        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
            assert_(pickle.loads(pickle.dumps(np.sin,
                                              protocol=proto)) is np.sin)

            # Check that ufunc not defined in the top level numpy namespace
            # such as numpy.core._rational_tests.test_add can also be pickled
            res = pickle.loads(pickle.dumps(_rational_tests.test_add,
                                            protocol=proto))
            assert_(res is _rational_tests.test_add)

    def test_pickle_withstring(self):
        astring = (b"cnumpy.core\n_ufunc_reconstruct\np0\n"
                   b"(S'numpy.core.umath'\np1\nS'cos'\np2\ntp3\nRp4\n.")
        assert_(pickle.loads(astring) is np.cos)

    def test_pickle_name_is_qualname(self):
        # This tests that a simplification of our ufunc pickle code will
        # lead to allowing qualnames as names.  Future ufuncs should
        # possible add a specific qualname, or a hook into pickling instead
        # (dask+numba may benefit).
        _pickleable_module_global.ufunc = umt._pickleable_module_global_ufunc
        obj = pickle.loads(pickle.dumps(_pickleable_module_global.ufunc))
        assert obj is umt._pickleable_module_global_ufunc

    def test_reduceat_shifting_sum(self):
        L = 6
        x = np.arange(L)
        idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel()
        assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7])

    def test_all_ufunc(self):
        """Try to check presence and results of all ufuncs.

        The list of ufuncs comes from generate_umath.py and is as follows:

        =====  ====  =============  ===============  ========================
        done   args   function        types                notes
        =====  ====  =============  ===============  ========================
        n      1     conjugate      nums + O
        n      1     absolute       nums + O         complex -> real
        n      1     negative       nums + O
        n      1     sign           nums + O         -> int
        n      1     invert         bool + ints + O  flts raise an error
        n      1     degrees        real + M         cmplx raise an error
        n      1     radians        real + M         cmplx raise an error
        n      1     arccos         flts + M
        n      1     arccosh        flts + M
        n      1     arcsin         flts + M
        n      1     arcsinh        flts + M
        n      1     arctan         flts + M
        n      1     arctanh        flts + M
        n      1     cos            flts + M
        n      1     sin            flts + M
        n      1     tan            flts + M
        n      1     cosh           flts + M
        n      1     sinh           flts + M
        n      1     tanh           flts + M
        n      1     exp            flts + M
        n      1     expm1          flts + M
        n      1     log            flts + M
        n      1     log10          flts + M
        n      1     log1p          flts + M
        n      1     sqrt           flts + M         real x < 0 raises error
        n      1     ceil           real + M
        n      1     trunc          real + M
        n      1     floor          real + M
        n      1     fabs           real + M
        n      1     rint           flts + M
        n      1     isnan          flts             -> bool
        n      1     isinf          flts             -> bool
        n      1     isfinite       flts             -> bool
        n      1     signbit        real             -> bool
        n      1     modf           real             -> (frac, int)
        n      1     logical_not    bool + nums + M  -> bool
        n      2     left_shift     ints + O         flts raise an error
        n      2     right_shift    ints + O         flts raise an error
        n      2     add            bool + nums + O  boolean + is ||
        n      2     subtract       bool + nums + O  boolean - is ^
        n      2     multiply       bool + nums + O  boolean * is &
        n      2     divide         nums + O
        n      2     floor_divide   nums + O
        n      2     true_divide    nums + O         bBhH -> f, iIlLqQ -> d
        n      2     fmod           nums + M
        n      2     power          nums + O
        n      2     greater        bool + nums + O  -> bool
        n      2     greater_equal  bool + nums + O  -> bool
        n      2     less           bool + nums + O  -> bool
        n      2     less_equal     bool + nums + O  -> bool
        n      2     equal          bool + nums + O  -> bool
        n      2     not_equal      bool + nums + O  -> bool
        n      2     logical_and    bool + nums + M  -> bool
        n      2     logical_or     bool + nums + M  -> bool
        n      2     logical_xor    bool + nums + M  -> bool
        n      2     maximum        bool + nums + O
        n      2     minimum        bool + nums + O
        n      2     bitwise_and    bool + ints + O  flts raise an error
        n      2     bitwise_or     bool + ints + O  flts raise an error
        n      2     bitwise_xor    bool + ints + O  flts raise an error
        n      2     arctan2        real + M
        n      2     remainder      ints + real + O
        n      2     hypot          real + M
        =====  ====  =============  ===============  ========================

        Types other than those listed will be accepted, but they are cast to
        the smallest compatible type for which the function is defined. The
        casting rules are:

        bool -> int8 -> float32
        ints -> double

        """
        pass

    # from include/numpy/ufuncobject.h
    size_inferred = 2
    can_ignore = 4
    def test_signature0(self):
        # the arguments to test_signature are: nin, nout, core_signature
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(i),(i)->()")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1,  1,  0))
        assert_equal(ixs, (0, 0))
        assert_equal(flags, (self.size_inferred,))
        assert_equal(sizes, (-1,))

    def test_signature1(self):
        # empty core signature; treat as plain ufunc (with trivial core)
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(),()->()")
        assert_equal(enabled, 0)
        assert_equal(num_dims, (0,  0,  0))
        assert_equal(ixs, ())
        assert_equal(flags, ())
        assert_equal(sizes, ())

    def test_signature2(self):
        # more complicated names for variables
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(i1,i2),(J_1)->(_kAB)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (2, 1, 1))
        assert_equal(ixs, (0, 1, 2, 3))
        assert_equal(flags, (self.size_inferred,)*4)
        assert_equal(sizes, (-1, -1, -1, -1))

    def test_signature3(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(i1, i12),   (J_1)->(i12, i2)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (2, 1, 2))
        assert_equal(ixs, (0, 1, 2, 1, 3))
        assert_equal(flags, (self.size_inferred,)*4)
        assert_equal(sizes, (-1, -1, -1, -1))

    def test_signature4(self):
        # matrix_multiply signature from _umath_tests
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(n,k),(k,m)->(n,m)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (2, 2, 2))
        assert_equal(ixs, (0, 1, 1, 2, 0, 2))
        assert_equal(flags, (self.size_inferred,)*3)
        assert_equal(sizes, (-1, -1, -1))

    def test_signature5(self):
        # matmul signature from _umath_tests
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            2, 1, "(n?,k),(k,m?)->(n?,m?)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (2, 2, 2))
        assert_equal(ixs, (0, 1, 1, 2, 0, 2))
        assert_equal(flags, (self.size_inferred | self.can_ignore,
                             self.size_inferred,
                             self.size_inferred | self.can_ignore))
        assert_equal(sizes, (-1, -1, -1))

    def test_signature6(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            1, 1, "(3)->()")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1, 0))
        assert_equal(ixs, (0,))
        assert_equal(flags, (0,))
        assert_equal(sizes, (3,))

    def test_signature7(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            3, 1, "(3),(03,3),(n)->(9)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1, 2, 1, 1))
        assert_equal(ixs, (0, 0, 0, 1, 2))
        assert_equal(flags, (0, self.size_inferred, 0))
        assert_equal(sizes, (3, -1, 9))

    def test_signature8(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            3, 1, "(3?),(3?,3?),(n)->(9)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1, 2, 1, 1))
        assert_equal(ixs, (0, 0, 0, 1, 2))
        assert_equal(flags, (self.can_ignore, self.size_inferred, 0))
        assert_equal(sizes, (3, -1, 9))

    def test_signature9(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            1, 1, "(  3)  -> ( )")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1, 0))
        assert_equal(ixs, (0,))
        assert_equal(flags, (0,))
        assert_equal(sizes, (3,))

    def test_signature10(self):
        enabled, num_dims, ixs, flags, sizes = umt.test_signature(
            3, 1, "( 3? ) , (3? ,  3?) ,(n )-> ( 9)")
        assert_equal(enabled, 1)
        assert_equal(num_dims, (1, 2, 1, 1))
        assert_equal(ixs, (0, 0, 0, 1, 2))
        assert_equal(flags, (self.can_ignore, self.size_inferred, 0))
        assert_equal(sizes, (3, -1, 9))

    def test_signature_failure_extra_parenthesis(self):
        with assert_raises(ValueError):
            umt.test_signature(2, 1, "((i)),(i)->()")

    def test_signature_failure_mismatching_parenthesis(self):
        with assert_raises(ValueError):
            umt.test_signature(2, 1, "(i),)i(->()")

    def test_signature_failure_signature_missing_input_arg(self):
        with assert_raises(ValueError):
            umt.test_signature(2, 1, "(i),->()")

    def test_signature_failure_signature_missing_output_arg(self):
        with assert_raises(ValueError):
            umt.test_signature(2, 2, "(i),(i)->()")

    def test_get_signature(self):
        assert_equal(umt.inner1d.signature, "(i),(i)->()")

    def test_forced_sig(self):
        a = 0.5*np.arange(3, dtype='f8')
        assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
        with pytest.warns(DeprecationWarning):
            assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
        with pytest.warns(DeprecationWarning):
            assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'),
                         [0, 0, 1])
        assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
                                            casting='unsafe'), [0, 0, 1])

        b = np.zeros((3,), dtype='f8')
        np.add(a, 0.5, out=b)
        assert_equal(b, [0.5, 1, 1.5])
        b[:] = 0
        with pytest.warns(DeprecationWarning):
            np.add(a, 0.5, sig='i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        with pytest.warns(DeprecationWarning):
            np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])
        b[:] = 0
        np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
        assert_equal(b, [0, 0, 1])

    def test_signature_all_None(self):
        # signature all None, is an acceptable alternative (since 1.21)
        # to not providing a signature.
        res1 = np.add([3], [4], sig=(None, None, None))
        res2 = np.add([3], [4])
        assert_array_equal(res1, res2)
        res1 = np.maximum([3], [4], sig=(None, None, None))
        res2 = np.maximum([3], [4])
        assert_array_equal(res1, res2)

        with pytest.raises(TypeError):
            # special case, that would be deprecated anyway, so errors:
            np.add(3, 4, signature=(None,))

    def test_signature_dtype_type(self):
        # Since that will be the normal behaviour (past NumPy 1.21)
        # we do support the types already:
        float_dtype = type(np.dtype(np.float64))
        np.add(3, 4, signature=(float_dtype, float_dtype, None))

    @pytest.mark.parametrize("get_kwarg", [
            lambda dt: dict(dtype=x),
            lambda dt: dict(signature=(x, None, None))])
    def test_signature_dtype_instances_allowed(self, get_kwarg):
        # We allow certain dtype instances when there is a clear singleton
        # and the given one is equivalent; mainly for backcompat.
        int64 = np.dtype("int64")
        int64_2 = pickle.loads(pickle.dumps(int64))
        # Relies on pickling behavior, if assert fails just remove test...
        assert int64 is not int64_2

        assert np.add(1, 2, **get_kwarg(int64_2)).dtype == int64
        td = np.timedelta(2, "s")
        assert np.add(td, td, **get_kwarg("m8")).dtype == "m8[s]"

    @pytest.mark.parametrize("get_kwarg", [
            param(lambda x: dict(dtype=x), id="dtype"),
            param(lambda x: dict(signature=(x, None, None)), id="signature")])
    def test_signature_dtype_instances_allowed(self, get_kwarg):
        msg = "The `dtype` and `signature` arguments to ufuncs"

        with pytest.raises(TypeError, match=msg):
            np.add(3, 5, **get_kwarg(np.dtype("int64").newbyteorder()))
        with pytest.raises(TypeError, match=msg):
            np.add(3, 5, **get_kwarg(np.dtype("m8[ns]")))
        with pytest.raises(TypeError, match=msg):
            np.add(3, 5, **get_kwarg("m8[ns]"))

    @pytest.mark.parametrize("casting", ["unsafe", "same_kind", "safe"])
    def test_partial_signature_mismatch(self, casting):
        # If the second argument matches already, no need to specify it:
        res = np.ldexp(np.float32(1.), np.int_(2), dtype="d")
        assert res.dtype == "d"
        res = np.ldexp(np.float32(1.), np.int_(2), signature=(None, None, "d"))
        assert res.dtype == "d"

        # ldexp only has a loop for long input as second argument, overriding
        # the output cannot help with that (no matter the casting)
        with pytest.raises(TypeError):
            np.ldexp(1., np.uint64(3), dtype="d")
        with pytest.raises(TypeError):
            np.ldexp(1., np.uint64(3), signature=(None, None, "d"))

    def test_partial_signature_mismatch_with_cache(self):
        with pytest.raises(TypeError):
            np.add(np.float16(1), np.uint64(2), sig=("e", "d", None))
        # Ensure e,d->None is in the dispatching cache (double loop)
        np.add(np.float16(1), np.float64(2))
        # The error must still be raised:
        with pytest.raises(TypeError):
            np.add(np.float16(1), np.uint64(2), sig=("e", "d", None))

    def test_use_output_signature_for_all_arguments(self):
        # Test that providing only `dtype=` or `signature=(None, None, dtype)`
        # is sufficient if falling back to a homogeneous signature works.
        # In this case, the `intp, intp -> intp` loop is chosen.
        res = np.power(1.5, 2.8, dtype=np.intp, casting="unsafe")
        assert res == 1  # the cast happens first.
        res = np.power(1.5, 2.8, signature=(None, None, np.intp),
                       casting="unsafe")
        assert res == 1
        with pytest.raises(TypeError):
            # the unsafe casting would normally cause errors though:
            np.power(1.5, 2.8, dtype=np.intp)

    def test_signature_errors(self):
        with pytest.raises(TypeError,
                    match="the signature object to ufunc must be a string or"):
            np.add(3, 4, signature=123.)  # neither a string nor a tuple

        with pytest.raises(ValueError):
            # bad symbols that do not translate to dtypes
            np.add(3, 4, signature="%^->#")

        with pytest.raises(ValueError):
            np.add(3, 4, signature=b"ii-i")  # incomplete and byte string

        with pytest.raises(ValueError):
            np.add(3, 4, signature="ii>i")  # incomplete string

        with pytest.raises(ValueError):
            np.add(3, 4, signature=(None, "f8"))  # bad length

        with pytest.raises(UnicodeDecodeError):
            np.add(3, 4, signature=b"\xff\xff->i")

    def test_forced_dtype_times(self):
        # Signatures only set the type numbers (not the actual loop dtypes)
        # so using `M` in a signature/dtype should generally work:
        a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='>M8[D]')
        np.maximum(a, a, dtype="M")
        np.maximum.reduce(a, dtype="M")

        arr = np.arange(10, dtype="m8[s]")
        np.add(arr, arr, dtype="m")
        np.maximum(arr, arr, dtype="m")

    @pytest.mark.parametrize("ufunc", [np.add, np.sqrt])
    def test_cast_safety(self, ufunc):
        """Basic test for the safest casts, because ufuncs inner loops can
        indicate a cast-safety as well (which is normally always "no").
        """
        def call_ufunc(arr, **kwargs):
            return ufunc(*(arr,) * ufunc.nin, **kwargs)

        arr = np.array([1., 2., 3.], dtype=np.float32)
        arr_bs = arr.astype(arr.dtype.newbyteorder())
        expected = call_ufunc(arr)
        # Normally, a "no" cast:
        res = call_ufunc(arr, casting="no")
        assert_array_equal(expected, res)
        # Byte-swapping is not allowed with "no" though:
        with pytest.raises(TypeError):
            call_ufunc(arr_bs, casting="no")

        # But is allowed with "equiv":
        res = call_ufunc(arr_bs, casting="equiv")
        assert_array_equal(expected, res)

        # Casting to float64 is safe, but not equiv:
        with pytest.raises(TypeError):
            call_ufunc(arr_bs, dtype=np.float64, casting="equiv")

        # but it is safe cast:
        res = call_ufunc(arr_bs, dtype=np.float64, casting="safe")
        expected = call_ufunc(arr.astype(np.float64))  # upcast
        assert_array_equal(expected, res)

    def test_true_divide(self):
        a = np.array(10)
        b = np.array(20)
        tgt = np.array(0.5)

        for tc in 'bhilqBHILQefdgFDG':
            dt = np.dtype(tc)
            aa = a.astype(dt)
            bb = b.astype(dt)

            # Check result value and dtype.
            for x, y in itertools.product([aa, -aa], [bb, -bb]):

                # Check with no output type specified
                if tc in 'FDG':
                    tgt = complex(x)/complex(y)
                else:
                    tgt = float(x)/float(y)

                res = np.true_divide(x, y)
                rtol = max(np.finfo(res).resolution, 1e-15)
                assert_allclose(res, tgt, rtol=rtol)

                if tc in 'bhilqBHILQ':
                    assert_(res.dtype.name == 'float64')
                else:
                    assert_(res.dtype.name == dt.name )

                # Check with output type specified.  This also checks for the
                # incorrect casts in issue gh-3484 because the unary '-' does
                # not change types, even for unsigned types, Hence casts in the
                # ufunc from signed to unsigned and vice versa will lead to
                # errors in the values.
                for tcout in 'bhilqBHILQ':
                    dtout = np.dtype(tcout)
                    assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)

                for tcout in 'efdg':
                    dtout = np.dtype(tcout)
                    if tc in 'FDG':
                        # Casting complex to float is not allowed
                        assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)
                    else:
                        tgt = float(x)/float(y)
                        rtol = max(np.finfo(dtout).resolution, 1e-15)
                        # The value of tiny for double double is NaN
                        with suppress_warnings() as sup:
                            sup.filter(UserWarning)
                            if not np.isnan(np.finfo(dtout).tiny):
                                atol = max(np.finfo(dtout).tiny, 3e-308)
                            else:
                                atol = 3e-308
                        # Some test values result in invalid for float16
                        # and the cast to it may overflow to inf.
                        with np.errstate(invalid='ignore', over='ignore'):
                            res = np.true_divide(x, y, dtype=dtout)
                        if not np.isfinite(res) and tcout == 'e':
                            continue
                        assert_allclose(res, tgt, rtol=rtol, atol=atol)
                        assert_(res.dtype.name == dtout.name)

                for tcout in 'FDG':
                    dtout = np.dtype(tcout)
                    tgt = complex(x)/complex(y)
                    rtol = max(np.finfo(dtout).resolution, 1e-15)
                    # The value of tiny for double double is NaN
                    with suppress_warnings() as sup:
                        sup.filter(UserWarning)
                        if not np.isnan(np.finfo(dtout).tiny):
                            atol = max(np.finfo(dtout).tiny, 3e-308)
                        else:
                            atol = 3e-308
                    res = np.true_divide(x, y, dtype=dtout)
                    if not np.isfinite(res):
                        continue
                    assert_allclose(res, tgt, rtol=rtol, atol=atol)
                    assert_(res.dtype.name == dtout.name)

        # Check booleans
        a = np.ones((), dtype=np.bool_)
        res = np.true_divide(a, a)
        assert_(res == 1.0)
        assert_(res.dtype.name == 'float64')
        res = np.true_divide(~a, a)
        assert_(res == 0.0)
        assert_(res.dtype.name == 'float64')

    def test_sum_stability(self):
        a = np.ones(500, dtype=np.float32)
        assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 4)

        a = np.ones(500, dtype=np.float64)
        assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 13)

    @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
    def test_sum(self):
        for dt in (int, np.float16, np.float32, np.float64, np.longdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                # warning if sum overflows, which it does in float16
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter("always", RuntimeWarning)

                    tgt = dt(v * (v + 1) / 2)
                    overflow = not np.isfinite(tgt)
                    assert_equal(len(w), 1 * overflow)

                    d = np.arange(1, v + 1, dtype=dt)

                    assert_almost_equal(np.sum(d), tgt)
                    assert_equal(len(w), 2 * overflow)

                    assert_almost_equal(np.sum(d[::-1]), tgt)
                    assert_equal(len(w), 3 * overflow)

            d = np.ones(500, dtype=dt)
            assert_almost_equal(np.sum(d[::2]), 250.)
            assert_almost_equal(np.sum(d[1::2]), 250.)
            assert_almost_equal(np.sum(d[::3]), 167.)
            assert_almost_equal(np.sum(d[1::3]), 167.)
            assert_almost_equal(np.sum(d[::-2]), 250.)
            assert_almost_equal(np.sum(d[-1::-2]), 250.)
            assert_almost_equal(np.sum(d[::-3]), 167.)
            assert_almost_equal(np.sum(d[-1::-3]), 167.)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt)
            d += d
            assert_almost_equal(d, 2.)

    def test_sum_complex(self):
        for dt in (np.complex64, np.complex128, np.clongdouble):
            for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
                      128, 1024, 1235):
                tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j)
                d = np.empty(v, dtype=dt)
                d.real = np.arange(1, v + 1)
                d.imag = -np.arange(1, v + 1)
                assert_almost_equal(np.sum(d), tgt)
                assert_almost_equal(np.sum(d[::-1]), tgt)

            d = np.ones(500, dtype=dt) + 1j
            assert_almost_equal(np.sum(d[::2]), 250. + 250j)
            assert_almost_equal(np.sum(d[1::2]), 250. + 250j)
            assert_almost_equal(np.sum(d[::3]), 167. + 167j)
            assert_almost_equal(np.sum(d[1::3]), 167. + 167j)
            assert_almost_equal(np.sum(d[::-2]), 250. + 250j)
            assert_almost_equal(np.sum(d[-1::-2]), 250. + 250j)
            assert_almost_equal(np.sum(d[::-3]), 167. + 167j)
            assert_almost_equal(np.sum(d[-1::-3]), 167. + 167j)
            # sum with first reduction entry != 0
            d = np.ones((1,), dtype=dt) + 1j
            d += d
            assert_almost_equal(d, 2. + 2j)

    def test_sum_initial(self):
        # Integer, single axis
        assert_equal(np.sum([3], initial=2), 5)

        # Floating point
        assert_almost_equal(np.sum([0.2], initial=0.1), 0.3)

        # Multiple non-adjacent axes
        assert_equal(np.sum(np.ones((2, 3, 5), dtype=np.int64), axis=(0, 2), initial=2),
                     [12, 12, 12])

    def test_sum_where(self):
        # More extensive tests done in test_reduction_with_where.
        assert_equal(np.sum([[1., 2.], [3., 4.]], where=[True, False]), 4.)
        assert_equal(np.sum([[1., 2.], [3., 4.]], axis=0, initial=5.,
                            where=[True, False]), [9., 5.])

    def test_inner1d(self):
        a = np.arange(6).reshape((2, 3))
        assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1))
        a = np.arange(6)
        assert_array_equal(umt.inner1d(a, a), np.sum(a*a))

    def test_broadcast(self):
        msg = "broadcast"
        a = np.arange(4).reshape((2, 1, 2))
        b = np.arange(4).reshape((1, 2, 2))
        assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
        msg = "extend & broadcast loop dimensions"
        b = np.arange(4).reshape((2, 2))
        assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
        # Broadcast in core dimensions should fail
        a = np.arange(8).reshape((4, 2))
        b = np.arange(4).reshape((4, 1))
        assert_raises(ValueError, umt.inner1d, a, b)
        # Extend core dimensions should fail
        a = np.arange(8).reshape((4, 2))
        b = np.array(7)
        assert_raises(ValueError, umt.inner1d, a, b)
        # Broadcast should fail
        a = np.arange(2).reshape((2, 1, 1))
        b = np.arange(3).reshape((3, 1, 1))
        assert_raises(ValueError, umt.inner1d, a, b)

        # Writing to a broadcasted array with overlap should warn, gh-2705
        a = np.arange(2)
        b = np.arange(4).reshape((2, 2))
        u, v = np.broadcast_arrays(a, b)
        assert_equal(u.strides[0], 0)
        x = u + v
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            u += v
            assert_equal(len(w), 1)
            assert_(x[0, 0] != u[0, 0])

        # Output reduction should not be allowed.
        # See gh-15139
        a = np.arange(6).reshape(3, 2)
        b = np.ones(2)
        out = np.empty(())
        assert_raises(ValueError, umt.inner1d, a, b, out)
        out2 = np.empty(3)
        c = umt.inner1d(a, b, out2)
        assert_(c is out2)

    def test_out_broadcasts(self):
        # For ufuncs and gufuncs (not for reductions), we currently allow
        # the output to cause broadcasting of the input arrays.
        # both along dimensions with shape 1 and dimensions which do not
        # exist at all in the inputs.
        arr = np.arange(3).reshape(1, 3)
        out = np.empty((5, 4, 3))
        np.add(arr, arr, out=out)
        assert (out == np.arange(3) * 2).all()

        # The same holds for gufuncs (gh-16484)
        umt.inner1d(arr, arr, out=out)
        # the result would be just a scalar `5`, but is broadcast fully:
        assert (out == 5).all()

    @pytest.mark.parametrize(["arr", "out"], [
                ([2], np.empty(())),
                ([1, 2], np.empty(1)),
                (np.ones((4, 3)), np.empty((4, 1)))],
            ids=["(1,)->()", "(2,)->(1,)", "(4, 3)->(4, 1)"])
    def test_out_broadcast_errors(self, arr, out):
        # Output is (currently) allowed to broadcast inputs, but it cannot be
        # smaller than the actual result.
        with pytest.raises(ValueError, match="non-broadcastable"):
            np.positive(arr, out=out)

        with pytest.raises(ValueError, match="non-broadcastable"):
            np.add(np.ones(()), arr, out=out)

    def test_type_cast(self):
        msg = "type cast"
        a = np.arange(6, dtype='short').reshape((2, 3))
        assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
                           err_msg=msg)
        msg = "type cast on one argument"
        a = np.arange(6).reshape((2, 3))
        b = a + 0.1
        assert_array_almost_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1),
                                  err_msg=msg)

    def test_endian(self):
        msg = "big endian"
        a = np.arange(6, dtype='>i4').reshape((2, 3))
        assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
                           err_msg=msg)
        msg = "little endian"
        a = np.arange(6, dtype='<i4').reshape((2, 3))
        assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
                           err_msg=msg)

        # Output should always be native-endian
        Ba = np.arange(1, dtype='>f8')
        La = np.arange(1, dtype='<f8')
        assert_equal((Ba+Ba).dtype, np.dtype('f8'))
        assert_equal((Ba+La).dtype, np.dtype('f8'))
        assert_equal((La+Ba).dtype, np.dtype('f8'))
        assert_equal((La+La).dtype, np.dtype('f8'))

        assert_equal(np.absolute(La).dtype, np.dtype('f8'))
        assert_equal(np.absolute(Ba).dtype, np.dtype('f8'))
        assert_equal(np.negative(La).dtype, np.dtype('f8'))
        assert_equal(np.negative(Ba).dtype, np.dtype('f8'))

    def test_incontiguous_array(self):
        msg = "incontiguous memory layout of array"
        x = np.arange(64).reshape((2, 2, 2, 2, 2, 2))
        a = x[:, 0,:, 0,:, 0]
        b = x[:, 1,:, 1,:, 1]
        a[0, 0, 0] = -1
        msg2 = "make sure it references to the original array"
        assert_equal(x[0, 0, 0, 0, 0, 0], -1, err_msg=msg2)
        assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
        x = np.arange(24).reshape(2, 3, 4)
        a = x.T
        b = x.T
        a[0, 0, 0] = -1
        assert_equal(x[0, 0, 0], -1, err_msg=msg2)
        assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)

    def test_output_argument(self):
        msg = "output argument"
        a = np.arange(12).reshape((2, 3, 2))
        b = np.arange(4).reshape((2, 1, 2)) + 1
        c = np.zeros((2, 3), dtype='int')
        umt.inner1d(a, b, c)
        assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
        c[:] = -1
        umt.inner1d(a, b, out=c)
        assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)

        msg = "output argument with type cast"
        c = np.zeros((2, 3), dtype='int16')
        umt.inner1d(a, b, c)
        assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
        c[:] = -1
        umt.inner1d(a, b, out=c)
        assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)

        msg = "output argument with incontiguous layout"
        c = np.zeros((2, 3, 4), dtype='int16')
        umt.inner1d(a, b, c[..., 0])
        assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)
        c[:] = -1
        umt.inner1d(a, b, out=c[..., 0])
        assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)

    def test_axes_argument(self):
        # inner1d signature: '(i),(i)->()'
        inner1d = umt.inner1d
        a = np.arange(27.).reshape((3, 3, 3))
        b = np.arange(10., 19.).reshape((3, 1, 3))
        # basic tests on inputs (outputs tested below with matrix_multiply).
        c = inner1d(a, b)
        assert_array_equal(c, (a * b).sum(-1))
        # default
        c = inner1d(a, b, axes=[(-1,), (-1,), ()])
        assert_array_equal(c, (a * b).sum(-1))
        # integers ok for single axis.
        c = inner1d(a, b, axes=[-1, -1, ()])
        assert_array_equal(c, (a * b).sum(-1))
        # mix fine
        c = inner1d(a, b, axes=[(-1,), -1, ()])
        assert_array_equal(c, (a * b).sum(-1))
        # can omit last axis.
        c = inner1d(a, b, axes=[-1, -1])
        assert_array_equal(c, (a * b).sum(-1))
        # can pass in other types of integer (with __index__ protocol)
        c = inner1d(a, b, axes=[np.int8(-1), np.array(-1, dtype=np.int32)])
        assert_array_equal(c, (a * b).sum(-1))
        # swap some axes
        c = inner1d(a, b, axes=[0, 0])
        assert_array_equal(c, (a * b).sum(0))
        c = inner1d(a, b, axes=[0, 2])
        assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1))
        # Check errors for improperly constructed axes arguments.
        # should have list.
        assert_raises(TypeError, inner1d, a, b, axes=-1)
        # needs enough elements
        assert_raises(ValueError, inner1d, a, b, axes=[-1])
        # should pass in indices.
        assert_raises(TypeError, inner1d, a, b, axes=[-1.0, -1.0])
        assert_raises(TypeError, inner1d, a, b, axes=[(-1.0,), -1])
        assert_raises(TypeError, inner1d, a, b, axes=[None, 1])
        # cannot pass an index unless there is only one dimension
        # (output is wrong in this case)
        assert_raises(np.AxisError, inner1d, a, b, axes=[-1, -1, -1])
        # or pass in generally the wrong number of axes
        assert_raises(np.AxisError, inner1d, a, b, axes=[-1, -1, (-1,)])
        assert_raises(np.AxisError, inner1d, a, b, axes=[-1, (-2, -1), ()])
        # axes need to have same length.
        assert_raises(ValueError, inner1d, a, b, axes=[0, 1])

        # matrix_multiply signature: '(m,n),(n,p)->(m,p)'
        mm = umt.matrix_multiply
        a = np.arange(12).reshape((2, 3, 2))
        b = np.arange(8).reshape((2, 2, 2, 1)) + 1
        # Sanity check.
        c = mm(a, b)
        assert_array_equal(c, np.matmul(a, b))
        # Default axes.
        c = mm(a, b, axes=[(-2, -1), (-2, -1), (-2, -1)])
        assert_array_equal(c, np.matmul(a, b))
        # Default with explicit axes.
        c = mm(a, b, axes=[(1, 2), (2, 3), (2, 3)])
        assert_array_equal(c, np.matmul(a, b))
        # swap some axes.
        c = mm(a, b, axes=[(0, -1), (1, 2), (-2, -1)])
        assert_array_equal(c, np.matmul(a.transpose(1, 0, 2),
                                        b.transpose(0, 3, 1, 2)))
        # Default with output array.
        c = np.empty((2, 2, 3, 1))
        d = mm(a, b, out=c, axes=[(1, 2), (2, 3), (2, 3)])
        assert_(c is d)
        assert_array_equal(c, np.matmul(a, b))
        # Transposed output array
        c = np.empty((1, 2, 2, 3))
        d = mm(a, b, out=c, axes=[(-2, -1), (-2, -1), (3, 0)])
        assert_(c is d)
        assert_array_equal(c, np.matmul(a, b).transpose(3, 0, 1, 2))
        # Check errors for improperly constructed axes arguments.
        # wrong argument
        assert_raises(TypeError, mm, a, b, axis=1)
        # axes should be list
        assert_raises(TypeError, mm, a, b, axes=1)
        assert_raises(TypeError, mm, a, b, axes=((-2, -1), (-2, -1), (-2, -1)))
        # list needs to have right length
        assert_raises(ValueError, mm, a, b, axes=[])
        assert_raises(ValueError, mm, a, b, axes=[(-2, -1)])
        # list should not contain None, or lists
        assert_raises(TypeError, mm, a, b, axes=[None, None, None])
        assert_raises(TypeError,
                      mm, a, b, axes=[[-2, -1], [-2, -1], [-2, -1]])
        assert_raises(TypeError,
                      mm, a, b, axes=[(-2, -1), (-2, -1), [-2, -1]])
        assert_raises(TypeError, mm, a, b, axes=[(-2, -1), (-2, -1), None])
        # single integers are AxisErrors if more are required
        assert_raises(np.AxisError, mm, a, b, axes=[-1, -1, -1])
        assert_raises(np.AxisError, mm, a, b, axes=[(-2, -1), (-2, -1), -1])
        # tuples should not have duplicated values
        assert_raises(ValueError, mm, a, b, axes=[(-2, -1), (-2, -1), (-2, -2)])
        # arrays should have enough axes.
        z = np.zeros((2, 2))
        assert_raises(ValueError, mm, z, z[0])
        assert_raises(ValueError, mm, z, z, out=z[:, 0])
        assert_raises(ValueError, mm, z[1], z, axes=[0, 1])
        assert_raises(ValueError, mm, z, z, out=z[0], axes=[0, 1])
        # Regular ufuncs should not accept axes.
        assert_raises(TypeError, np.add, 1., 1., axes=[0])
        # should be able to deal with bad unrelated kwargs.
        assert_raises(TypeError, mm, z, z, axes=[0, 1], parrot=True)

    def test_axis_argument(self):
        # inner1d signature: '(i),(i)->()'
        inner1d = umt.inner1d
        a = np.arange(27.).reshape((3, 3, 3))
        b = np.arange(10., 19.).reshape((3, 1, 3))
        c = inner1d(a, b)
        assert_array_equal(c, (a * b).sum(-1))
        c = inner1d(a, b, axis=-1)
        assert_array_equal(c, (a * b).sum(-1))
        out = np.zeros_like(c)
        d = inner1d(a, b, axis=-1, out=out)
        assert_(d is out)
        assert_array_equal(d, c)
        c = inner1d(a, b, axis=0)
        assert_array_equal(c, (a * b).sum(0))
        # Sanity checks on innerwt and cumsum.
        a = np.arange(6).reshape((2, 3))
        b = np.arange(10, 16).reshape((2, 3))
        w = np.arange(20, 26).reshape((2, 3))
        assert_array_equal(umt.innerwt(a, b, w, axis=0),
                           np.sum(a * b * w, axis=0))
        assert_array_equal(umt.cumsum(a, axis=0), np.cumsum(a, axis=0))
        assert_array_equal(umt.cumsum(a, axis=-1), np.cumsum(a, axis=-1))
        out = np.empty_like(a)
        b = umt.cumsum(a, out=out, axis=0)
        assert_(out is b)
        assert_array_equal(b, np.cumsum(a, axis=0))
        b = umt.cumsum(a, out=out, axis=1)
        assert_(out is b)
        assert_array_equal(b, np.cumsum(a, axis=-1))
        # Check errors.
        # Cannot pass in both axis and axes.
        assert_raises(TypeError, inner1d, a, b, axis=0, axes=[0, 0])
        # Not an integer.
        assert_raises(TypeError, inner1d, a, b, axis=[0])
        # more than 1 core dimensions.
        mm = umt.matrix_multiply
        assert_raises(TypeError, mm, a, b, axis=1)
        # Output wrong size in axis.
        out = np.empty((1, 2, 3), dtype=a.dtype)
        assert_raises(ValueError, umt.cumsum, a, out=out, axis=0)
        # Regular ufuncs should not accept axis.
        assert_raises(TypeError, np.add, 1., 1., axis=0)

    def test_keepdims_argument(self):
        # inner1d signature: '(i),(i)->()'
        inner1d = umt.inner1d
        a = np.arange(27.).reshape((3, 3, 3))
        b = np.arange(10., 19.).reshape((3, 1, 3))
        c = inner1d(a, b)
        assert_array_equal(c, (a * b).sum(-1))
        c = inner1d(a, b, keepdims=False)
        assert_array_equal(c, (a * b).sum(-1))
        c = inner1d(a, b, keepdims=True)
        assert_array_equal(c, (a * b).sum(-1, keepdims=True))
        out = np.zeros_like(c)
        d = inner1d(a, b, keepdims=True, out=out)
        assert_(d is out)
        assert_array_equal(d, c)
        # Now combined with axis and axes.
        c = inner1d(a, b, axis=-1, keepdims=False)
        assert_array_equal(c, (a * b).sum(-1, keepdims=False))
        c = inner1d(a, b, axis=-1, keepdims=True)
        assert_array_equal(c, (a * b).sum(-1, keepdims=True))
        c = inner1d(a, b, axis=0, keepdims=False)
        assert_array_equal(c, (a * b).sum(0, keepdims=False))
        c = inner1d(a, b, axis=0, keepdims=True)
        assert_array_equal(c, (a * b).sum(0, keepdims=True))
        c = inner1d(a, b, axes=[(-1,), (-1,), ()], keepdims=False)
        assert_array_equal(c, (a * b).sum(-1))
        c = inner1d(a, b, axes=[(-1,), (-1,), (-1,)], keepdims=True)
        assert_array_equal(c, (a * b).sum(-1, keepdims=True))
        c = inner1d(a, b, axes=[0, 0], keepdims=False)
        assert_array_equal(c, (a * b).sum(0))
        c = inner1d(a, b, axes=[0, 0, 0], keepdims=True)
        assert_array_equal(c, (a * b).sum(0, keepdims=True))
        c = inner1d(a, b, axes=[0, 2], keepdims=False)
        assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1))
        c = inner1d(a, b, axes=[0, 2], keepdims=True)
        assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1,
                                                             keepdims=True))
        c = inner1d(a, b, axes=[0, 2, 2], keepdims=True)
        assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1,
                                                             keepdims=True))
        c = inner1d(a, b, axes=[0, 2, 0], keepdims=True)
        assert_array_equal(c, (a * b.transpose(2, 0, 1)).sum(0, keepdims=True))
        # Hardly useful, but should work.
        c = inner1d(a, b, axes=[0, 2, 1], keepdims=True)
        assert_array_equal(c, (a.transpose(1, 0, 2) * b.transpose(0, 2, 1))
                           .sum(1, keepdims=True))
        # Check with two core dimensions.
        a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis]
        expected = uml.det(a)
        c = uml.det(a, keepdims=False)
        assert_array_equal(c, expected)
        c = uml.det(a, keepdims=True)
        assert_array_equal(c, expected[:, np.newaxis, np.newaxis])
        a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis]
        expected_s, expected_l = uml.slogdet(a)
        cs, cl = uml.slogdet(a, keepdims=False)
        assert_array_equal(cs, expected_s)
        assert_array_equal(cl, expected_l)
        cs, cl = uml.slogdet(a, keepdims=True)
        assert_array_equal(cs, expected_s[:, np.newaxis, np.newaxis])
        assert_array_equal(cl, expected_l[:, np.newaxis, np.newaxis])
        # Sanity check on innerwt.
        a = np.arange(6).reshape((2, 3))
        b = np.arange(10, 16).reshape((2, 3))
        w = np.arange(20, 26).reshape((2, 3))
        assert_array_equal(umt.innerwt(a, b, w, keepdims=True),
                           np.sum(a * b * w, axis=-1, keepdims=True))
        assert_array_equal(umt.innerwt(a, b, w, axis=0, keepdims=True),
                           np.sum(a * b * w, axis=0, keepdims=True))
        # Check errors.
        # Not a boolean
        assert_raises(TypeError, inner1d, a, b, keepdims='true')
        # More than 1 core dimension, and core output dimensions.
        mm = umt.matrix_multiply
        assert_raises(TypeError, mm, a, b, keepdims=True)
        assert_raises(TypeError, mm, a, b, keepdims=False)
        # Regular ufuncs should not accept keepdims.
        assert_raises(TypeError, np.add, 1., 1., keepdims=False)

    def test_innerwt(self):
        a = np.arange(6).reshape((2, 3))
        b = np.arange(10, 16).reshape((2, 3))
        w = np.arange(20, 26).reshape((2, 3))
        assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
        a = np.arange(100, 124).reshape((2, 3, 4))
        b = np.arange(200, 224).reshape((2, 3, 4))
        w = np.arange(300, 324).reshape((2, 3, 4))
        assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))

    def test_innerwt_empty(self):
        """Test generalized ufunc with zero-sized operands"""
        a = np.array([], dtype='f8')
        b = np.array([], dtype='f8')
        w = np.array([], dtype='f8')
        assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))

    def test_cross1d(self):
        """Test with fixed-sized signature."""
        a = np.eye(3)
        assert_array_equal(umt.cross1d(a, a), np.zeros((3, 3)))
        out = np.zeros((3, 3))
        result = umt.cross1d(a[0], a, out)
        assert_(result is out)
        assert_array_equal(result, np.vstack((np.zeros(3), a[2], -a[1])))
        assert_raises(ValueError, umt.cross1d, np.eye(4), np.eye(4))
        assert_raises(ValueError, umt.cross1d, a, np.arange(4.))
        # Wrong output core dimension.
        assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros((3, 4)))
        # Wrong output broadcast dimension (see gh-15139).
        assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros(3))

    def test_can_ignore_signature(self):
        # Comparing the effects of ? in signature:
        # matrix_multiply: (m,n),(n,p)->(m,p)    # all must be there.
        # matmul:        (m?,n),(n,p?)->(m?,p?)  # allow missing m, p.
        mat = np.arange(12).reshape((2, 3, 2))
        single_vec = np.arange(2)
        col_vec = single_vec[:, np.newaxis]
        col_vec_array = np.arange(8).reshape((2, 2, 2, 1)) + 1
        # matrix @ single column vector with proper dimension
        mm_col_vec = umt.matrix_multiply(mat, col_vec)
        # matmul does the same thing
        matmul_col_vec = umt.matmul(mat, col_vec)
        assert_array_equal(matmul_col_vec, mm_col_vec)
        # matrix @ vector without dimension making it a column vector.
        # matrix multiply fails -> missing core dim.
        assert_raises(ValueError, umt.matrix_multiply, mat, single_vec)
        # matmul mimicker passes, and returns a vector.
        matmul_col = umt.matmul(mat, single_vec)
        assert_array_equal(matmul_col, mm_col_vec.squeeze())
        # Now with a column array: same as for column vector,
        # broadcasting sensibly.
        mm_col_vec = umt.matrix_multiply(mat, col_vec_array)
        matmul_col_vec = umt.matmul(mat, col_vec_array)
        assert_array_equal(matmul_col_vec, mm_col_vec)
        # As above, but for row vector
        single_vec = np.arange(3)
        row_vec = single_vec[np.newaxis, :]
        row_vec_array = np.arange(24).reshape((4, 2, 1, 1, 3)) + 1
        # row vector @ matrix
        mm_row_vec = umt.matrix_multiply(row_vec, mat)
        matmul_row_vec = umt.matmul(row_vec, mat)
        assert_array_equal(matmul_row_vec, mm_row_vec)
        # single row vector @ matrix
        assert_raises(ValueError, umt.matrix_multiply, single_vec, mat)
        matmul_row = umt.matmul(single_vec, mat)
        assert_array_equal(matmul_row, mm_row_vec.squeeze())
        # row vector array @ matrix
        mm_row_vec = umt.matrix_multiply(row_vec_array, mat)
        matmul_row_vec = umt.matmul(row_vec_array, mat)
        assert_array_equal(matmul_row_vec, mm_row_vec)
        # Now for vector combinations
        # row vector @ column vector
        col_vec = row_vec.T
        col_vec_array = row_vec_array.swapaxes(-2, -1)
        mm_row_col_vec = umt.matrix_multiply(row_vec, col_vec)
        matmul_row_col_vec = umt.matmul(row_vec, col_vec)
        assert_array_equal(matmul_row_col_vec, mm_row_col_vec)
        # single row vector @ single col vector
        assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec)
        matmul_row_col = umt.matmul(single_vec, single_vec)
        assert_array_equal(matmul_row_col, mm_row_col_vec.squeeze())
        # row vector array @ matrix
        mm_row_col_array = umt.matrix_multiply(row_vec_array, col_vec_array)
        matmul_row_col_array = umt.matmul(row_vec_array, col_vec_array)
        assert_array_equal(matmul_row_col_array, mm_row_col_array)
        # Finally, check that things are *not* squeezed if one gives an
        # output.
        out = np.zeros_like(mm_row_col_array)
        out = umt.matrix_multiply(row_vec_array, col_vec_array, out=out)
        assert_array_equal(out, mm_row_col_array)
        out[:] = 0
        out = umt.matmul(row_vec_array, col_vec_array, out=out)
        assert_array_equal(out, mm_row_col_array)
        # And check one cannot put missing dimensions back.
        out = np.zeros_like(mm_row_col_vec)
        assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec,
                      out)
        # But fine for matmul, since it is just a broadcast.
        out = umt.matmul(single_vec, single_vec, out)
        assert_array_equal(out, mm_row_col_vec.squeeze())

    def test_matrix_multiply(self):
        self.compare_matrix_multiply_results(np.int64)
        self.compare_matrix_multiply_results(np.double)

    def test_matrix_multiply_umath_empty(self):
        res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0)))
        assert_array_equal(res, np.zeros((0, 0)))
        res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10)))
        assert_array_equal(res, np.zeros((10, 10)))

    def compare_matrix_multiply_results(self, tp):
        d1 = np.array(np.random.rand(2, 3, 4), dtype=tp)
        d2 = np.array(np.random.rand(2, 3, 4), dtype=tp)
        msg = "matrix multiply on type %s" % d1.dtype.name

        def permute_n(n):
            if n == 1:
                return ([0],)
            ret = ()
            base = permute_n(n-1)
            for perm in base:
                for i in range(n):
                    new = perm + [n-1]
                    new[n-1] = new[i]
                    new[i] = n-1
                    ret += (new,)
            return ret

        def slice_n(n):
            if n == 0:
                return ((),)
            ret = ()
            base = slice_n(n-1)
            for sl in base:
                ret += (sl+(slice(None),),)
                ret += (sl+(slice(0, 1),),)
            return ret

        def broadcastable(s1, s2):
            return s1 == s2 or s1 == 1 or s2 == 1

        permute_3 = permute_n(3)
        slice_3 = slice_n(3) + ((slice(None, None, -1),)*3,)

        ref = True
        for p1 in permute_3:
            for p2 in permute_3:
                for s1 in slice_3:
                    for s2 in slice_3:
                        a1 = d1.transpose(p1)[s1]
                        a2 = d2.transpose(p2)[s2]
                        ref = ref and a1.base is not None
                        ref = ref and a2.base is not None
                        if (a1.shape[-1] == a2.shape[-2] and
                                broadcastable(a1.shape[0], a2.shape[0])):
                            assert_array_almost_equal(
                                umt.matrix_multiply(a1, a2),
                                np.sum(a2[..., np.newaxis].swapaxes(-3, -1) *
                                       a1[..., np.newaxis,:], axis=-1),
                                err_msg=msg + ' %s %s' % (str(a1.shape),
                                                          str(a2.shape)))

        assert_equal(ref, True, err_msg="reference check")

    def test_euclidean_pdist(self):
        a = np.arange(12, dtype=float).reshape(4, 3)
        out = np.empty((a.shape[0] * (a.shape[0] - 1) // 2,), dtype=a.dtype)
        umt.euclidean_pdist(a, out)
        b = np.sqrt(np.sum((a[:, None] - a)**2, axis=-1))
        b = b[~np.tri(a.shape[0], dtype=bool)]
        assert_almost_equal(out, b)
        # An output array is required to determine p with signature (n,d)->(p)
        assert_raises(ValueError, umt.euclidean_pdist, a)

    def test_cumsum(self):
        a = np.arange(10)
        result = umt.cumsum(a)
        assert_array_equal(result, a.cumsum())

    def test_object_logical(self):
        a = np.array([3, None, True, False, "test", ""], dtype=object)
        assert_equal(np.logical_or(a, None),
                        np.array([x or None for x in a], dtype=object))
        assert_equal(np.logical_or(a, True),
                        np.array([x or True for x in a], dtype=object))
        assert_equal(np.logical_or(a, 12),
                        np.array([x or 12 for x in a], dtype=object))
        assert_equal(np.logical_or(a, "blah"),
                        np.array([x or "blah" for x in a], dtype=object))

        assert_equal(np.logical_and(a, None),
                        np.array([x and None for x in a], dtype=object))
        assert_equal(np.logical_and(a, True),
                        np.array([x and True for x in a], dtype=object))
        assert_equal(np.logical_and(a, 12),
                        np.array([x and 12 for x in a], dtype=object))
        assert_equal(np.logical_and(a, "blah"),
                        np.array([x and "blah" for x in a], dtype=object))

        assert_equal(np.logical_not(a),
                        np.array([not x for x in a], dtype=object))

        assert_equal(np.logical_or.reduce(a), 3)
        assert_equal(np.logical_and.reduce(a), None)

    def test_object_comparison(self):
        class HasComparisons:
            def __eq__(self, other):
                return '=='

        arr0d = np.array(HasComparisons())
        assert_equal(arr0d == arr0d, True)
        assert_equal(np.equal(arr0d, arr0d), True)  # normal behavior is a cast

        arr1d = np.array([HasComparisons()])
        assert_equal(arr1d == arr1d, np.array([True]))
        assert_equal(np.equal(arr1d, arr1d), np.array([True]))  # normal behavior is a cast
        assert_equal(np.equal(arr1d, arr1d, dtype=object), np.array(['==']))

    def test_object_array_reduction(self):
        # Reductions on object arrays
        a = np.array(['a', 'b', 'c'], dtype=object)
        assert_equal(np.sum(a), 'abc')
        assert_equal(np.max(a), 'c')
        assert_equal(np.min(a), 'a')
        a = np.array([True, False, True], dtype=object)
        assert_equal(np.sum(a), 2)
        assert_equal(np.prod(a), 0)
        assert_equal(np.any(a), True)
        assert_equal(np.all(a), False)
        assert_equal(np.max(a), True)
        assert_equal(np.min(a), False)
        assert_equal(np.array([[1]], dtype=object).sum(), 1)
        assert_equal(np.array([[[1, 2]]], dtype=object).sum((0, 1)), [1, 2])
        assert_equal(np.array([1], dtype=object).sum(initial=1), 2)
        assert_equal(np.array([[1], [2, 3]], dtype=object)
                     .sum(initial=[0], where=[False, True]), [0, 2, 3])

    def test_object_array_accumulate_inplace(self):
        # Checks that in-place accumulates work, see also gh-7402
        arr = np.ones(4, dtype=object)
        arr[:] = [[1] for i in range(4)]
        # Twice reproduced also for tuples:
        np.add.accumulate(arr, out=arr)
        np.add.accumulate(arr, out=arr)
        assert_array_equal(arr,
                           np.array([[1]*i for i in [1, 3, 6, 10]], dtype=object),
                          )

        # And the same if the axis argument is used
        arr = np.ones((2, 4), dtype=object)
        arr[0, :] = [[2] for i in range(4)]
        np.add.accumulate(arr, out=arr, axis=-1)
        np.add.accumulate(arr, out=arr, axis=-1)
        assert_array_equal(arr[0, :],
                           np.array([[2]*i for i in [1, 3, 6, 10]], dtype=object),
                          )

    def test_object_array_accumulate_failure(self):
        # Typical accumulation on object works as expected:
        res = np.add.accumulate(np.array([1, 0, 2], dtype=object))
        assert_array_equal(res, np.array([1, 1, 3], dtype=object))
        # But errors are propagated from the inner-loop if they occur:
        with pytest.raises(TypeError):
            np.add.accumulate([1, None, 2])

    def test_object_array_reduceat_inplace(self):
        # Checks that in-place reduceats work, see also gh-7465
        arr = np.empty(4, dtype=object)
        arr[:] = [[1] for i in range(4)]
        out = np.empty(4, dtype=object)
        out[:] = [[1] for i in range(4)]
        np.add.reduceat(arr, np.arange(4), out=arr)
        np.add.reduceat(arr, np.arange(4), out=arr)
        assert_array_equal(arr, out)

        # And the same if the axis argument is used
        arr = np.ones((2, 4), dtype=object)
        arr[0, :] = [[2] for i in range(4)]
        out = np.ones((2, 4), dtype=object)
        out[0, :] = [[2] for i in range(4)]
        np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
        np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
        assert_array_equal(arr, out)

    def test_object_array_reduceat_failure(self):
        # Reduceat works as expected when no invalid operation occurs (None is
        # not involved in an operation here)
        res = np.add.reduceat(np.array([1, None, 2], dtype=object), [1, 2])
        assert_array_equal(res, np.array([None, 2], dtype=object))
        # But errors when None would be involved in an operation:
        with pytest.raises(TypeError):
            np.add.reduceat([1, None, 2], [0, 2])

    def test_zerosize_reduction(self):
        # Test with default dtype and object dtype
        for a in [[], np.array([], dtype=object)]:
            assert_equal(np.sum(a), 0)
            assert_equal(np.prod(a), 1)
            assert_equal(np.any(a), False)
            assert_equal(np.all(a), True)
            assert_raises(ValueError, np.max, a)
            assert_raises(ValueError, np.min, a)

    def test_axis_out_of_bounds(self):
        a = np.array([False, False])
        assert_raises(np.AxisError, a.all, axis=1)
        a = np.array([False, False])
        assert_raises(np.AxisError, a.all, axis=-2)

        a = np.array([False, False])
        assert_raises(np.AxisError, a.any, axis=1)
        a = np.array([False, False])
        assert_raises(np.AxisError, a.any, axis=-2)

    def test_scalar_reduction(self):
        # The functions 'sum', 'prod', etc allow specifying axis=0
        # even for scalars
        assert_equal(np.sum(3, axis=0), 3)
        assert_equal(np.prod(3.5, axis=0), 3.5)
        assert_equal(np.any(True, axis=0), True)
        assert_equal(np.all(False, axis=0), False)
        assert_equal(np.max(3, axis=0), 3)
        assert_equal(np.min(2.5, axis=0), 2.5)

        # Check scalar behaviour for ufuncs without an identity
        assert_equal(np.power.reduce(3), 3)

        # Make sure that scalars are coming out from this operation
        assert_(type(np.prod(np.float32(2.5), axis=0)) is np.float32)
        assert_(type(np.sum(np.float32(2.5), axis=0)) is np.float32)
        assert_(type(np.max(np.float32(2.5), axis=0)) is np.float32)
        assert_(type(np.min(np.float32(2.5), axis=0)) is np.float32)

        # check if scalars/0-d arrays get cast
        assert_(type(np.any(0, axis=0)) is np.bool_)

        # assert that 0-d arrays get wrapped
        class MyArray(np.ndarray):
            pass
        a = np.array(1).view(MyArray)
        assert_(type(np.any(a)) is MyArray)

    def test_casting_out_param(self):
        # Test that it's possible to do casts on output
        a = np.ones((200, 100), np.int64)
        b = np.ones((200, 100), np.int64)
        c = np.ones((200, 100), np.float64)
        np.add(a, b, out=c)
        assert_equal(c, 2)

        a = np.zeros(65536)
        b = np.zeros(65536, dtype=np.float32)
        np.subtract(a, 0, out=b)
        assert_equal(b, 0)

    def test_where_param(self):
        # Test that the where= ufunc parameter works with regular arrays
        a = np.arange(7)
        b = np.ones(7)
        c = np.zeros(7)
        np.add(a, b, out=c, where=(a % 2 == 1))
        assert_equal(c, [0, 2, 0, 4, 0, 6, 0])

        a = np.arange(4).reshape(2, 2) + 2
        np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]])
        assert_equal(a, [[2, 27], [16, 5]])
        # Broadcasting the where= parameter
        np.subtract(a, 2, out=a, where=[True, False])
        assert_equal(a, [[0, 27], [14, 5]])

    def test_where_param_buffer_output(self):
        # This test is temporarily skipped because it requires
        # adding masking features to the nditer to work properly

        # With casting on output
        a = np.ones(10, np.int64)
        b = np.ones(10, np.int64)
        c = 1.5 * np.ones(10, np.float64)
        np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0])
        assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5])

    def test_where_param_alloc(self):
        # With casting and allocated output
        a = np.array([1], dtype=np.int64)
        m = np.array([True], dtype=bool)
        assert_equal(np.sqrt(a, where=m), [1])

        # No casting and allocated output
        a = np.array([1], dtype=np.float64)
        m = np.array([True], dtype=bool)
        assert_equal(np.sqrt(a, where=m), [1])

    def test_where_with_broadcasting(self):
        # See gh-17198
        a = np.random.random((5000, 4))
        b = np.random.random((5000, 1))

        where = a > 0.3
        out = np.full_like(a, 0)
        np.less(a, b, where=where, out=out)
        b_where = np.broadcast_to(b, a.shape)[where]
        assert_array_equal((a[where] < b_where), out[where].astype(bool))
        assert not out[~where].any()  # outside mask, out remains all 0

    def check_identityless_reduction(self, a):
        # np.minimum.reduce is an identityless reduction

        # Verify that it sees the zero at various positions
        a[...] = 1
        a[1, 0, 0] = 0
        assert_equal(np.minimum.reduce(a, axis=None), 0)
        assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
        assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
        assert_equal(np.minimum.reduce(a, axis=(1, 2)), [1, 0])
        assert_equal(np.minimum.reduce(a, axis=0),
                                    [[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=1),
                                    [[1, 1, 1, 1], [0, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=2),
                                    [[1, 1, 1], [0, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=()), a)

        a[...] = 1
        a[0, 1, 0] = 0
        assert_equal(np.minimum.reduce(a, axis=None), 0)
        assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
        assert_equal(np.minimum.reduce(a, axis=(0, 2)), [1, 0, 1])
        assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
        assert_equal(np.minimum.reduce(a, axis=0),
                                    [[1, 1, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=1),
                                    [[0, 1, 1, 1], [1, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=2),
                                    [[1, 0, 1], [1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=()), a)

        a[...] = 1
        a[0, 0, 1] = 0
        assert_equal(np.minimum.reduce(a, axis=None), 0)
        assert_equal(np.minimum.reduce(a, axis=(0, 1)), [1, 0, 1, 1])
        assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
        assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
        assert_equal(np.minimum.reduce(a, axis=0),
                                    [[1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=1),
                                    [[1, 0, 1, 1], [1, 1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=2),
                                    [[0, 1, 1], [1, 1, 1]])
        assert_equal(np.minimum.reduce(a, axis=()), a)

    @requires_memory(6 * 1024**3)
    def test_identityless_reduction_huge_array(self):
        # Regression test for gh-20921 (copying identity incorrectly failed)
        arr = np.zeros((2, 2**31), 'uint8')
        arr[:, 0] = [1, 3]
        arr[:, -1] = [4, 1]
        res = np.maximum.reduce(arr, axis=0)
        del arr
        assert res[0] == 3
        assert res[-1] == 4

    def test_identityless_reduction_corder(self):
        a = np.empty((2, 3, 4), order='C')
        self.check_identityless_reduction(a)

    def test_identityless_reduction_forder(self):
        a = np.empty((2, 3, 4), order='F')
        self.check_identityless_reduction(a)

    def test_identityless_reduction_otherorder(self):
        a = np.empty((2, 4, 3), order='C').swapaxes(1, 2)
        self.check_identityless_reduction(a)

    def test_identityless_reduction_noncontig(self):
        a = np.empty((3, 5, 4), order='C').swapaxes(1, 2)
        a = a[1:, 1:, 1:]
        self.check_identityless_reduction(a)

    def test_identityless_reduction_noncontig_unaligned(self):
        a = np.empty((3*4*5*8 + 1,), dtype='i1')
        a = a[1:].view(dtype='f8')
        a.shape = (3, 4, 5)
        a = a[1:, 1:, 1:]
        self.check_identityless_reduction(a)

    def test_reduce_identity_depends_on_loop(self):
        """
        The type of the result should always depend on the selected loop, not
        necessarily the output (only relevant for object arrays).
        """
        # For an object loop, the default value 0 with type int is used:
        assert type(np.add.reduce([], dtype=object)) is int
        out = np.array(None, dtype=object)
        # When the loop is float64 but `out` is object this does not happen,
        # the result is float64 cast to object (which gives Python `float`).
        np.add.reduce([], out=out, dtype=np.float64)
        assert type(out[()]) is float

    def test_initial_reduction(self):
        # np.minimum.reduce is an identityless reduction

        # For cases like np.maximum(np.abs(...), initial=0)
        # More generally, a supremum over non-negative numbers.
        assert_equal(np.maximum.reduce([], initial=0), 0)

        # For cases like reduction of an empty array over the reals.
        assert_equal(np.minimum.reduce([], initial=np.inf), np.inf)
        assert_equal(np.maximum.reduce([], initial=-np.inf), -np.inf)

        # Random tests
        assert_equal(np.minimum.reduce([5], initial=4), 4)
        assert_equal(np.maximum.reduce([4], initial=5), 5)
        assert_equal(np.maximum.reduce([5], initial=4), 5)
        assert_equal(np.minimum.reduce([4], initial=5), 4)

        # Check initial=None raises ValueError for both types of ufunc reductions
        assert_raises(ValueError, np.minimum.reduce, [], initial=None)
        assert_raises(ValueError, np.add.reduce, [], initial=None)
        # Also in the somewhat special object case:
        with pytest.raises(ValueError):
            np.add.reduce([], initial=None, dtype=object)

        # Check that np._NoValue gives default behavior.
        assert_equal(np.add.reduce([], initial=np._NoValue), 0)

        # Check that initial kwarg behaves as intended for dtype=object
        a = np.array([10], dtype=object)
        res = np.add.reduce(a, initial=5)
        assert_equal(res, 15)

    def test_empty_reduction_and_idenity(self):
        arr = np.zeros((0, 5))
        # OK, since the reduction itself is *not* empty, the result is
        assert np.true_divide.reduce(arr, axis=1).shape == (0,)
        # Not OK, the reduction itself is empty and we have no idenity
        with pytest.raises(ValueError):
            np.true_divide.reduce(arr, axis=0)

        # Test that an empty reduction fails also if the result is empty
        arr = np.zeros((0, 0, 5))
        with pytest.raises(ValueError):
            np.true_divide.reduce(arr, axis=1)

        # Division reduction makes sense with `initial=1` (empty or not):
        res = np.true_divide.reduce(arr, axis=1, initial=1)
        assert_array_equal(res, np.ones((0, 5)))

    @pytest.mark.parametrize('axis', (0, 1, None))
    @pytest.mark.parametrize('where', (np.array([False, True, True]),
                                       np.array([[True], [False], [True]]),
                                       np.array([[True, False, False],
                                                 [False, True, False],
                                                 [False, True, True]])))
    def test_reduction_with_where(self, axis, where):
        a = np.arange(9.).reshape(3, 3)
        a_copy = a.copy()
        a_check = np.zeros_like(a)
        np.positive(a, out=a_check, where=where)

        res = np.add.reduce(a, axis=axis, where=where)
        check = a_check.sum(axis)
        assert_equal(res, check)
        # Check we do not overwrite elements of a internally.
        assert_array_equal(a, a_copy)

    @pytest.mark.parametrize(('axis', 'where'),
                             ((0, np.array([True, False, True])),
                              (1, [True, True, False]),
                              (None, True)))
    @pytest.mark.parametrize('initial', (-np.inf, 5.))
    def test_reduction_with_where_and_initial(self, axis, where, initial):
        a = np.arange(9.).reshape(3, 3)
        a_copy = a.copy()
        a_check = np.full(a.shape, -np.inf)
        np.positive(a, out=a_check, where=where)

        res = np.maximum.reduce(a, axis=axis, where=where, initial=initial)
        check = a_check.max(axis, initial=initial)
        assert_equal(res, check)

    def test_reduction_where_initial_needed(self):
        a = np.arange(9.).reshape(3, 3)
        m = [False, True, False]
        assert_raises(ValueError, np.maximum.reduce, a, where=m)

    def test_identityless_reduction_nonreorderable(self):
        a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]])

        res = np.divide.reduce(a, axis=0)
        assert_equal(res, [8.0, 4.0, 8.0])

        res = np.divide.reduce(a, axis=1)
        assert_equal(res, [2.0, 8.0])

        res = np.divide.reduce(a, axis=())
        assert_equal(res, a)

        assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1))

    def test_reduce_zero_axis(self):
        # If we have a n x m array and do a reduction with axis=1, then we are
        # doing n reductions, and each reduction takes an m-element array. For
        # a reduction operation without an identity, then:
        #   n > 0, m > 0: fine
        #   n = 0, m > 0: fine, doing 0 reductions of m-element arrays
        #   n > 0, m = 0: can't reduce a 0-element array, ValueError
        #   n = 0, m = 0: can't reduce a 0-element array, ValueError (for
        #     consistency with the above case)
        # This test doesn't actually look at return values, it just checks to
        # make sure that error we get an error in exactly those cases where we
        # expect one, and assumes the calculations themselves are done
        # correctly.

        def ok(f, *args, **kwargs):
            f(*args, **kwargs)

        def err(f, *args, **kwargs):
            assert_raises(ValueError, f, *args, **kwargs)

        def t(expect, func, n, m):
            expect(func, np.zeros((n, m)), axis=1)
            expect(func, np.zeros((m, n)), axis=0)
            expect(func, np.zeros((n // 2, n // 2, m)), axis=2)
            expect(func, np.zeros((n // 2, m, n // 2)), axis=1)
            expect(func, np.zeros((n, m // 2, m // 2)), axis=(1, 2))
            expect(func, np.zeros((m // 2, n, m // 2)), axis=(0, 2))
            expect(func, np.zeros((m // 3, m // 3, m // 3,
                                  n // 2, n // 2)),
                                 axis=(0, 1, 2))
            # Check what happens if the inner (resp. outer) dimensions are a
            # mix of zero and non-zero:
            expect(func, np.zeros((10, m, n)), axis=(0, 1))
            expect(func, np.zeros((10, n, m)), axis=(0, 2))
            expect(func, np.zeros((m, 10, n)), axis=0)
            expect(func, np.zeros((10, m, n)), axis=1)
            expect(func, np.zeros((10, n, m)), axis=2)

        # np.maximum is just an arbitrary ufunc with no reduction identity
        assert_equal(np.maximum.identity, None)
        t(ok, np.maximum.reduce, 30, 30)
        t(ok, np.maximum.reduce, 0, 30)
        t(err, np.maximum.reduce, 30, 0)
        t(err, np.maximum.reduce, 0, 0)
        err(np.maximum.reduce, [])
        np.maximum.reduce(np.zeros((0, 0)), axis=())

        # all of the combinations are fine for a reduction that has an
        # identity
        t(ok, np.add.reduce, 30, 30)
        t(ok, np.add.reduce, 0, 30)
        t(ok, np.add.reduce, 30, 0)
        t(ok, np.add.reduce, 0, 0)
        np.add.reduce([])
        np.add.reduce(np.zeros((0, 0)), axis=())

        # OTOH, accumulate always makes sense for any combination of n and m,
        # because it maps an m-element array to an m-element array. These
        # tests are simpler because accumulate doesn't accept multiple axes.
        for uf in (np.maximum, np.add):
            uf.accumulate(np.zeros((30, 0)), axis=0)
            uf.accumulate(np.zeros((0, 30)), axis=0)
            uf.accumulate(np.zeros((30, 30)), axis=0)
            uf.accumulate(np.zeros((0, 0)), axis=0)

    def test_safe_casting(self):
        # In old versions of numpy, in-place operations used the 'unsafe'
        # casting rules. In versions >= 1.10, 'same_kind' is the
        # default and an exception is raised instead of a warning.
        # when 'same_kind' is not satisfied.
        a = np.array([1, 2, 3], dtype=int)
        # Non-in-place addition is fine
        assert_array_equal(assert_no_warnings(np.add, a, 1.1),
                           [2.1, 3.1, 4.1])
        assert_raises(TypeError, np.add, a, 1.1, out=a)

        def add_inplace(a, b):
            a += b

        assert_raises(TypeError, add_inplace, a, 1.1)
        # Make sure that explicitly overriding the exception is allowed:
        assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe")
        assert_array_equal(a, [2, 3, 4])

    def test_ufunc_custom_out(self):
        # Test ufunc with built in input types and custom output type

        a = np.array([0, 1, 2], dtype='i8')
        b = np.array([0, 1, 2], dtype='i8')
        c = np.empty(3, dtype=_rational_tests.rational)

        # Output must be specified so numpy knows what
        # ufunc signature to look for
        result = _rational_tests.test_add(a, b, c)
        target = np.array([0, 2, 4], dtype=_rational_tests.rational)
        assert_equal(result, target)

        # The new resolution means that we can (usually) find custom loops
        # as long as they match exactly:
        result = _rational_tests.test_add(a, b)
        assert_equal(result, target)

        # This works even more generally, so long the default common-dtype
        # promoter works out:
        result = _rational_tests.test_add(a, b.astype(np.uint16), out=c)
        assert_equal(result, target)

        # But, it can be fooled, e.g. (use scalars, which forces legacy
        # type resolution to kick in, which then fails):
        with assert_raises(TypeError):
            _rational_tests.test_add(a, np.uint16(2))

    def test_operand_flags(self):
        a = np.arange(16, dtype='l').reshape(4, 4)
        b = np.arange(9, dtype='l').reshape(3, 3)
        opflag_tests.inplace_add(a[:-1, :-1], b)
        assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7],
            [14, 16, 18, 11], [12, 13, 14, 15]], dtype='l'))

        a = np.array(0)
        opflag_tests.inplace_add(a, 3)
        assert_equal(a, 3)
        opflag_tests.inplace_add(a, [3, 4])
        assert_equal(a, 10)

    def test_struct_ufunc(self):
        import numpy.core._struct_ufunc_tests as struct_ufunc

        a = np.array([(1, 2, 3)], dtype='u8,u8,u8')
        b = np.array([(1, 2, 3)], dtype='u8,u8,u8')

        result = struct_ufunc.add_triplet(a, b)
        assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8'))
        assert_raises(RuntimeError, struct_ufunc.register_fail)

    def test_custom_ufunc(self):
        a = np.array(
            [_rational_tests.rational(1, 2),
             _rational_tests.rational(1, 3),
             _rational_tests.rational(1, 4)],
            dtype=_rational_tests.rational)
        b = np.array(
            [_rational_tests.rational(1, 2),
             _rational_tests.rational(1, 3),
             _rational_tests.rational(1, 4)],
            dtype=_rational_tests.rational)

        result = _rational_tests.test_add_rationals(a, b)
        expected = np.array(
            [_rational_tests.rational(1),
             _rational_tests.rational(2, 3),
             _rational_tests.rational(1, 2)],
            dtype=_rational_tests.rational)
        assert_equal(result, expected)

    def test_custom_ufunc_forced_sig(self):
        # gh-9351 - looking for a non-first userloop would previously hang
        with assert_raises(TypeError):
            np.multiply(_rational_tests.rational(1), 1,
                        signature=(_rational_tests.rational, int, None))

    def test_custom_array_like(self):

        class MyThing:
            __array_priority__ = 1000

            rmul_count = 0
            getitem_count = 0

            def __init__(self, shape):
                self.shape = shape

            def __len__(self):
                return self.shape[0]

            def __getitem__(self, i):
                MyThing.getitem_count += 1
                if not isinstance(i, tuple):
                    i = (i,)
                if len(i) > self.ndim:
                    raise IndexError("boo")

                return MyThing(self.shape[len(i):])

            def __rmul__(self, other):
                MyThing.rmul_count += 1
                return self

        np.float64(5)*MyThing((3, 3))
        assert_(MyThing.rmul_count == 1, MyThing.rmul_count)
        assert_(MyThing.getitem_count <= 2, MyThing.getitem_count)

    @pytest.mark.parametrize("a", (
                             np.arange(10, dtype=int),
                             np.arange(10, dtype=_rational_tests.rational),
                             ))
    def test_ufunc_at_basic(self, a):

        aa = a.copy()
        np.add.at(aa, [2, 5, 2], 1)
        assert_equal(aa, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9])

        with pytest.raises(ValueError):
            # missing second operand
            np.add.at(aa, [2, 5, 3])

        aa = a.copy()
        np.negative.at(aa, [2, 5, 3])
        assert_equal(aa, [0, 1, -2, -3, 4, -5, 6, 7, 8, 9])

        aa = a.copy()
        b = np.array([100, 100, 100])
        np.add.at(aa, [2, 5, 2], b)
        assert_equal(aa, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9])

        with pytest.raises(ValueError):
            # extraneous second operand
            np.negative.at(a, [2, 5, 3], [1, 2, 3])

        with pytest.raises(ValueError):
            # second operand cannot be converted to an array
            np.add.at(a, [2, 5, 3], [[1, 2], 1])

    # ufuncs with indexed loops for performance in ufunc.at
    indexed_ufuncs = [np.add, np.subtract, np.multiply, np.floor_divide,
                      np.maximum, np.minimum, np.fmax, np.fmin]

    @pytest.mark.parametrize(
                "typecode", np.typecodes['AllInteger'] + np.typecodes['Float'])
    @pytest.mark.parametrize("ufunc", indexed_ufuncs)
    def test_ufunc_at_inner_loops(self, typecode, ufunc):
        if ufunc is np.divide and typecode in np.typecodes['AllInteger']:
            # Avoid divide-by-zero and inf for integer divide
            a = np.ones(100, dtype=typecode)
            indx = np.random.randint(100, size=30, dtype=np.intp)
            vals = np.arange(1, 31, dtype=typecode)
        else:
            a = np.ones(1000, dtype=typecode)
            indx = np.random.randint(1000, size=3000, dtype=np.intp)
            vals = np.arange(3000, dtype=typecode)
        atag = a.copy()
        # Do the calculation twice and compare the answers
        with warnings.catch_warnings(record=True) as w_at:
            warnings.simplefilter('always')
            ufunc.at(a, indx, vals)
        with warnings.catch_warnings(record=True) as w_loop:
            warnings.simplefilter('always')
            for i, v in zip(indx, vals):
                # Make sure all the work happens inside the ufunc
                # in order to duplicate error/warning handling
                ufunc(atag[i], v, out=atag[i:i+1], casting="unsafe")
        assert_equal(atag, a)
        # If w_loop warned, make sure w_at warned as well
        if len(w_loop) > 0:
            #
            assert len(w_at) > 0
            assert w_at[0].category == w_loop[0].category
            assert str(w_at[0].message)[:10] == str(w_loop[0].message)[:10]

    @pytest.mark.parametrize("typecode", np.typecodes['Complex'])
    @pytest.mark.parametrize("ufunc", [np.add, np.subtract, np.multiply])
    def test_ufunc_at_inner_loops_complex(self, typecode, ufunc):
        a = np.ones(10, dtype=typecode)
        indx = np.concatenate([np.ones(6, dtype=np.intp),
                               np.full(18, 4, dtype=np.intp)])
        value = a.dtype.type(1j)
        ufunc.at(a, indx, value)
        expected = np.ones_like(a)
        if ufunc is np.multiply:
            expected[1] = expected[4] = -1
        else:
            expected[1] += 6 * (value if ufunc is np.add else -value)
            expected[4] += 18 * (value if ufunc is np.add else -value)

        assert_array_equal(a, expected)

    def test_ufunc_at_ellipsis(self):
        # Make sure the indexed loop check does not choke on iters
        # with subspaces
        arr = np.zeros(5)
        np.add.at(arr, slice(None), np.ones(5))
        assert_array_equal(arr, np.ones(5))

    def test_ufunc_at_negative(self):
        arr = np.ones(5, dtype=np.int32)
        indx = np.arange(5)
        umt.indexed_negative.at(arr, indx)
        # If it is [-1, -1, -1, -100, 0] then the regular strided loop was used
        assert np.all(arr == [-1, -1, -1, -200, -1])

    def test_ufunc_at_large(self):
        # issue gh-23457
        indices = np.zeros(8195, dtype=np.int16)
        b = np.zeros(8195, dtype=float)
        b[0] = 10
        b[1] = 5
        b[8192:] = 100
        a = np.zeros(1, dtype=float)
        np.add.at(a, indices, b)
        assert a[0] == b.sum()

    def test_cast_index_fastpath(self):
        arr = np.zeros(10)
        values = np.ones(100000)
        # index must be cast, which may be buffered in chunks:
        index = np.zeros(len(values), dtype=np.uint8)
        np.add.at(arr, index, values)
        assert arr[0] == len(values)

    @pytest.mark.parametrize("value", [
        np.ones(1), np.ones(()), np.float64(1.), 1.])
    def test_ufunc_at_scalar_value_fastpath(self, value):
        arr = np.zeros(1000)
        # index must be cast, which may be buffered in chunks:
        index = np.repeat(np.arange(1000), 2)
        np.add.at(arr, index, value)
        assert_array_equal(arr, np.full_like(arr, 2 * value))

    def test_ufunc_at_multiD(self):
        a = np.arange(9).reshape(3, 3)
        b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
        np.add.at(a, (slice(None), [1, 2, 1]), b)
        assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]])

        a = np.arange(27).reshape(3, 3, 3)
        b = np.array([100, 200, 300])
        np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b)
        assert_equal(a,
            [[[0, 401, 202],
              [3, 404, 205],
              [6, 407, 208]],

             [[9, 410, 211],
              [12, 413, 214],
              [15, 416, 217]],

             [[18, 419, 220],
              [21, 422, 223],
              [24, 425, 226]]])

        a = np.arange(9).reshape(3, 3)
        b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
        np.add.at(a, ([1, 2, 1], slice(None)), b)
        assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]])

        a = np.arange(27).reshape(3, 3, 3)
        b = np.array([100, 200, 300])
        np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b)
        assert_equal(a,
            [[[0,  1,  2],
              [203, 404, 605],
              [106, 207, 308]],

             [[9,  10, 11],
              [212, 413, 614],
              [115, 216, 317]],

             [[18, 19, 20],
              [221, 422, 623],
              [124, 225, 326]]])

        a = np.arange(9).reshape(3, 3)
        b = np.array([100, 200, 300])
        np.add.at(a, (0, [1, 2, 1]), b)
        assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]])

        a = np.arange(27).reshape(3, 3, 3)
        b = np.array([100, 200, 300])
        np.add.at(a, ([1, 2, 1], 0, slice(None)), b)
        assert_equal(a,
            [[[0,  1,  2],
              [3,  4,  5],
              [6,  7,  8]],

             [[209, 410, 611],
              [12,  13, 14],
              [15,  16, 17]],

             [[118, 219, 320],
              [21,  22, 23],
              [24,  25, 26]]])

        a = np.arange(27).reshape(3, 3, 3)
        b = np.array([100, 200, 300])
        np.add.at(a, (slice(None), slice(None), slice(None)), b)
        assert_equal(a,
            [[[100, 201, 302],
              [103, 204, 305],
              [106, 207, 308]],

             [[109, 210, 311],
              [112, 213, 314],
              [115, 216, 317]],

             [[118, 219, 320],
              [121, 222, 323],
              [124, 225, 326]]])

    def test_ufunc_at_0D(self):
        a = np.array(0)
        np.add.at(a, (), 1)
        assert_equal(a, 1)

        assert_raises(IndexError, np.add.at, a, 0, 1)
        assert_raises(IndexError, np.add.at, a, [], 1)

    def test_ufunc_at_dtypes(self):
        # Test mixed dtypes
        a = np.arange(10)
        np.power.at(a, [1, 2, 3, 2], 3.5)
        assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9]))

    def test_ufunc_at_boolean(self):
        # Test boolean indexing and boolean ufuncs
        a = np.arange(10)
        index = a % 2 == 0
        np.equal.at(a, index, [0, 2, 4, 6, 8])
        assert_equal(a, [1, 1, 1, 3, 1, 5, 1, 7, 1, 9])

        # Test unary operator
        a = np.arange(10, dtype='u4')
        np.invert.at(a, [2, 5, 2])
        assert_equal(a, [0, 1, 2, 3, 4, 5 ^ 0xffffffff, 6, 7, 8, 9])

    def test_ufunc_at_advanced(self):
        # Test empty subspace
        orig = np.arange(4)
        a = orig[:, None][:, 0:0]
        np.add.at(a, [0, 1], 3)
        assert_array_equal(orig, np.arange(4))

        # Test with swapped byte order
        index = np.array([1, 2, 1], np.dtype('i').newbyteorder())
        values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder())
        np.add.at(values, index, 3)
        assert_array_equal(values, [1, 8, 6, 4])

        # Test exception thrown
        values = np.array(['a', 1], dtype=object)
        assert_raises(TypeError, np.add.at, values, [0, 1], 1)
        assert_array_equal(values, np.array(['a', 1], dtype=object))

        # Test multiple output ufuncs raise error, gh-5665
        assert_raises(ValueError, np.modf.at, np.arange(10), [1])

        # Test maximum
        a = np.array([1, 2, 3])
        np.maximum.at(a, [0], 0)
        assert_equal(a, np.array([1, 2, 3]))

    def test_at_not_none_signature(self):
        # Test ufuncs with non-trivial signature raise a TypeError
        a = np.ones((2, 2, 2))
        b = np.ones((1, 2, 2))
        assert_raises(TypeError, np.matmul.at, a, [0], b)

        a = np.array([[[1, 2], [3, 4]]])
        assert_raises(TypeError, np.linalg._umath_linalg.det.at, a, [0])

    def test_at_no_loop_for_op(self):
        # str dtype does not have a ufunc loop for np.add
        arr = np.ones(10, dtype=str)
        with pytest.raises(np.core._exceptions._UFuncNoLoopError):
            np.add.at(arr, [0, 1], [0, 1])

    def test_at_output_casting(self):
        arr = np.array([-1])
        np.equal.at(arr, [0], [0])
        assert arr[0] == 0

    def test_at_broadcast_failure(self):
        arr = np.arange(5)
        with pytest.raises(ValueError):
            np.add.at(arr, [0, 1], [1, 2, 3])


    def test_reduce_arguments(self):
        f = np.add.reduce
        d = np.ones((5,2), dtype=int)
        o = np.ones((2,), dtype=d.dtype)
        r = o * 5
        assert_equal(f(d), r)
        # a, axis=0, dtype=None, out=None, keepdims=False
        assert_equal(f(d, axis=0), r)
        assert_equal(f(d, 0), r)
        assert_equal(f(d, 0, dtype=None), r)
        assert_equal(f(d, 0, dtype='i'), r)
        assert_equal(f(d, 0, 'i'), r)
        assert_equal(f(d, 0, None), r)
        assert_equal(f(d, 0, None, out=None), r)
        assert_equal(f(d, 0, None, out=o), r)
        assert_equal(f(d, 0, None, o), r)
        assert_equal(f(d, 0, None, None), r)
        assert_equal(f(d, 0, None, None, keepdims=False), r)
        assert_equal(f(d, 0, None, None, True), r.reshape((1,) + r.shape))
        assert_equal(f(d, 0, None, None, False, 0), r)
        assert_equal(f(d, 0, None, None, False, initial=0), r)
        assert_equal(f(d, 0, None, None, False, 0, True), r)
        assert_equal(f(d, 0, None, None, False, 0, where=True), r)
        # multiple keywords
        assert_equal(f(d, axis=0, dtype=None, out=None, keepdims=False), r)
        assert_equal(f(d, 0, dtype=None, out=None, keepdims=False), r)
        assert_equal(f(d, 0, None, out=None, keepdims=False), r)
        assert_equal(f(d, 0, None, out=None, keepdims=False, initial=0,
                       where=True), r)

        # too little
        assert_raises(TypeError, f)
        # too much
        assert_raises(TypeError, f, d, 0, None, None, False, 0, True, 1)
        # invalid axis
        assert_raises(TypeError, f, d, "invalid")
        assert_raises(TypeError, f, d, axis="invalid")
        assert_raises(TypeError, f, d, axis="invalid", dtype=None,
                      keepdims=True)
        # invalid dtype
        assert_raises(TypeError, f, d, 0, "invalid")
        assert_raises(TypeError, f, d, dtype="invalid")
        assert_raises(TypeError, f, d, dtype="invalid", out=None)
        # invalid out
        assert_raises(TypeError, f, d, 0, None, "invalid")
        assert_raises(TypeError, f, d, out="invalid")
        assert_raises(TypeError, f, d, out="invalid", dtype=None)
        # keepdims boolean, no invalid value
        # assert_raises(TypeError, f, d, 0, None, None, "invalid")
        # assert_raises(TypeError, f, d, keepdims="invalid", axis=0, dtype=None)
        # invalid mix
        assert_raises(TypeError, f, d, 0, keepdims="invalid", dtype="invalid",
                     out=None)

        # invalid keyword
        assert_raises(TypeError, f, d, axis=0, dtype=None, invalid=0)
        assert_raises(TypeError, f, d, invalid=0)
        assert_raises(TypeError, f, d, 0, keepdims=True, invalid="invalid",
                      out=None)
        assert_raises(TypeError, f, d, axis=0, dtype=None, keepdims=True,
                      out=None, invalid=0)
        assert_raises(TypeError, f, d, axis=0, dtype=None,
                      out=None, invalid=0)

    def test_structured_equal(self):
        # https://github.com/numpy/numpy/issues/4855

        class MyA(np.ndarray):
            def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
                return getattr(ufunc, method)(*(input.view(np.ndarray)
                                              for input in inputs), **kwargs)
        a = np.arange(12.).reshape(4,3)
        ra = a.view(dtype=('f8,f8,f8')).squeeze()
        mra = ra.view(MyA)

        target = np.array([ True, False, False, False], dtype=bool)
        assert_equal(np.all(target == (mra == ra[0])), True)

    def test_scalar_equal(self):
        # Scalar comparisons should always work, without deprecation warnings.
        # even when the ufunc fails.
        a = np.array(0.)
        b = np.array('a')
        assert_(a != b)
        assert_(b != a)
        assert_(not (a == b))
        assert_(not (b == a))

    def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.maximum, np.minimum, np.mod,
            np.greater, np.greater_equal, np.less, np.less_equal,
            np.equal, np.not_equal]

        a = np.array('1')
        b = 1
        c = np.array([1., 2.])
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
            assert_raises(TypeError, f, c, a)

    @pytest.mark.parametrize("ufunc",
             [np.logical_and, np.logical_or])  # logical_xor object loop is bad
    @pytest.mark.parametrize("signature",
             [(None, None, object), (object, None, None),
              (None, object, None)])
    def test_logical_ufuncs_object_signatures(self, ufunc, signature):
        a = np.array([True, None, False], dtype=object)
        res = ufunc(a, a, signature=signature)
        assert res.dtype == object

    @pytest.mark.parametrize("ufunc",
            [np.logical_and, np.logical_or, np.logical_xor])
    @pytest.mark.parametrize("signature",
                 [(bool, None, object), (object, None, bool),
                  (None, object, bool)])
    def test_logical_ufuncs_mixed_object_signatures(self, ufunc, signature):
        # Most mixed signatures fail (except those with bool out, e.g. `OO->?`)
        a = np.array([True, None, False])
        with pytest.raises(TypeError):
            ufunc(a, a, signature=signature)

    @pytest.mark.parametrize("ufunc",
            [np.logical_and, np.logical_or, np.logical_xor])
    def test_logical_ufuncs_support_anything(self, ufunc):
        # The logical ufuncs support even input that can't be promoted:
        a = np.array(b'1', dtype="V3")
        c = np.array([1., 2.])
        assert_array_equal(ufunc(a, c), ufunc([True, True], True))
        assert ufunc.reduce(a) == True
        # check that the output has no effect:
        out = np.zeros(2, dtype=np.int32)
        expected = ufunc([True, True], True).astype(out.dtype)
        assert_array_equal(ufunc(a, c, out=out), expected)
        out = np.zeros((), dtype=np.int32)
        assert ufunc.reduce(a, out=out) == True
        # Last check, test reduction when out and a match (the complexity here
        # is that the "i,i->?" may seem right, but should not match.
        a = np.array([3], dtype="i")
        out = np.zeros((), dtype=a.dtype)
        assert ufunc.reduce(a, out=out) == 1

    @pytest.mark.parametrize("ufunc",
            [np.logical_and, np.logical_or, np.logical_xor])
    def test_logical_ufuncs_reject_string(self, ufunc):
        """
        Logical ufuncs are normally well defined by working with the boolean
        equivalent, i.e. casting all inputs to bools should work.

        However, casting strings to bools is *currently* weird, because it
        actually uses `bool(int(str))`.  Thus we explicitly reject strings.
        This test should succeed (and can probably just be removed) as soon as
        string to bool casts are well defined in NumPy.
        """
        with pytest.raises(TypeError, match="contain a loop with signature"):
            ufunc(["1"], ["3"])
        with pytest.raises(TypeError, match="contain a loop with signature"):
            ufunc.reduce(["1", "2", "0"])

    @pytest.mark.parametrize("ufunc",
             [np.logical_and, np.logical_or, np.logical_xor])
    def test_logical_ufuncs_out_cast_check(self, ufunc):
        a = np.array('1')
        c = np.array([1., 2.])
        out = a.copy()
        with pytest.raises(TypeError):
            # It would be safe, but not equiv casting:
            ufunc(a, c, out=out, casting="equiv")

    def test_reducelike_byteorder_resolution(self):
        # See gh-20699, byte-order changes need some extra care in the type
        # resolution to make the following succeed:
        arr_be = np.arange(10, dtype=">i8")
        arr_le = np.arange(10, dtype="<i8")

        assert np.add.reduce(arr_be) == np.add.reduce(arr_le)
        assert_array_equal(np.add.accumulate(arr_be), np.add.accumulate(arr_le))
        assert_array_equal(
            np.add.reduceat(arr_be, [1]), np.add.reduceat(arr_le, [1]))

    def test_reducelike_out_promotes(self):
        # Check that the out argument to reductions is considered for
        # promotion.  See also gh-20455.
        # Note that these paths could prefer `initial=` in the future and
        # do not up-cast to the default integer for add and prod
        arr = np.ones(1000, dtype=np.uint8)
        out = np.zeros((), dtype=np.uint16)
        assert np.add.reduce(arr, out=out) == 1000
        arr[:10] = 2
        assert np.multiply.reduce(arr, out=out) == 2**10

        # For legacy dtypes, the signature currently has to be forced if `out=`
        # is passed.  The two paths below should differ, without `dtype=` the
        # expected result should be: `np.prod(arr.astype("f8")).astype("f4")`!
        arr = np.full(5, 2**25-1, dtype=np.int64)

        # float32 and int64 promote to float64:
        res = np.zeros((), dtype=np.float32)
        # If `dtype=` is passed, the calculation is forced to float32:
        single_res = np.zeros((), dtype=np.float32)
        np.multiply.reduce(arr, out=single_res, dtype=np.float32)
        assert single_res != res

    def test_reducelike_output_needs_identical_cast(self):
        # Checks the case where the we have a simple byte-swap works, maily
        # tests that this is not rejected directly.
        # (interesting because we require descriptor identity in reducelikes).
        arr = np.ones(20, dtype="f8")
        out = np.empty((), dtype=arr.dtype.newbyteorder())
        expected = np.add.reduce(arr)
        np.add.reduce(arr, out=out)
        assert_array_equal(expected, out)
        # Check reduceat:
        out = np.empty(2, dtype=arr.dtype.newbyteorder())
        expected = np.add.reduceat(arr, [0, 1])
        np.add.reduceat(arr, [0, 1], out=out)
        assert_array_equal(expected, out)
        # And accumulate:
        out = np.empty(arr.shape, dtype=arr.dtype.newbyteorder())
        expected = np.add.accumulate(arr)
        np.add.accumulate(arr, out=out)
        assert_array_equal(expected, out)

    def test_reduce_noncontig_output(self):
        # Check that reduction deals with non-contiguous output arrays
        # appropriately.
        #
        # gh-8036

        x = np.arange(7*13*8, dtype=np.int16).reshape(7, 13, 8)
        x = x[4:6,1:11:6,1:5].transpose(1, 2, 0)
        y_base = np.arange(4*4, dtype=np.int16).reshape(4, 4)
        y = y_base[::2,:]

        y_base_copy = y_base.copy()

        r0 = np.add.reduce(x, out=y.copy(), axis=2)
        r1 = np.add.reduce(x, out=y, axis=2)

        # The results should match, and y_base shouldn't get clobbered
        assert_equal(r0, r1)
        assert_equal(y_base[1,:], y_base_copy[1,:])
        assert_equal(y_base[3,:], y_base_copy[3,:])

    @pytest.mark.parametrize("with_cast", [True, False])
    def test_reduceat_and_accumulate_out_shape_mismatch(self, with_cast):
        # Should raise an error mentioning "shape" or "size"
        arr = np.arange(5)
        out = np.arange(3)  # definitely wrong shape
        if with_cast:
            # If a cast is necessary on the output, we can be sure to use
            # the generic NpyIter (non-fast) path.
            out = out.astype(np.float64)

        with pytest.raises(ValueError, match="(shape|size)"):
            np.add.reduceat(arr, [0, 3], out=out)

        with pytest.raises(ValueError, match="(shape|size)"):
            np.add.accumulate(arr, out=out)

    @pytest.mark.parametrize('out_shape',
                             [(), (1,), (3,), (1, 1), (1, 3), (4, 3)])
    @pytest.mark.parametrize('keepdims', [True, False])
    @pytest.mark.parametrize('f_reduce', [np.add.reduce, np.minimum.reduce])
    def test_reduce_wrong_dimension_output(self, f_reduce, keepdims, out_shape):
        # Test that we're not incorrectly broadcasting dimensions.
        # See gh-15144 (failed for np.add.reduce previously).
        a = np.arange(12.).reshape(4, 3)
        out = np.empty(out_shape, a.dtype)

        correct_out = f_reduce(a, axis=0, keepdims=keepdims)
        if out_shape != correct_out.shape:
            with assert_raises(ValueError):
                f_reduce(a, axis=0, out=out, keepdims=keepdims)
        else:
            check = f_reduce(a, axis=0, out=out, keepdims=keepdims)
            assert_(check is out)
            assert_array_equal(check, correct_out)

    def test_reduce_output_does_not_broadcast_input(self):
        # Test that the output shape cannot broadcast an input dimension
        # (it never can add dimensions, but it might expand an existing one)
        a = np.ones((1, 10))
        out_correct = (np.empty((1, 1)))
        out_incorrect = np.empty((3, 1))
        np.add.reduce(a, axis=-1, out=out_correct, keepdims=True)
        np.add.reduce(a, axis=-1, out=out_correct[:, 0], keepdims=False)
        with assert_raises(ValueError):
            np.add.reduce(a, axis=-1, out=out_incorrect, keepdims=True)
        with assert_raises(ValueError):
            np.add.reduce(a, axis=-1, out=out_incorrect[:, 0], keepdims=False)

    def test_reduce_output_subclass_ok(self):
        class MyArr(np.ndarray):
            pass

        out = np.empty(())
        np.add.reduce(np.ones(5), out=out)  # no subclass, all fine
        out = out.view(MyArr)
        assert np.add.reduce(np.ones(5), out=out) is out
        assert type(np.add.reduce(out)) is MyArr

    def test_no_doc_string(self):
        # gh-9337
        assert_('\n' not in umt.inner1d_no_doc.__doc__)

    def test_invalid_args(self):
        # gh-7961
        exc = pytest.raises(TypeError, np.sqrt, None)
        # minimally check the exception text
        assert exc.match('loop of ufunc does not support')

    @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
    def test_nat_is_not_finite(self, nat):
        try:
            assert not np.isfinite(nat)
        except TypeError:
            pass  # ok, just not implemented

    @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
    def test_nat_is_nan(self, nat):
        try:
            assert np.isnan(nat)
        except TypeError:
            pass  # ok, just not implemented

    @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
    def test_nat_is_not_inf(self, nat):
        try:
            assert not np.isinf(nat)
        except TypeError:
            pass  # ok, just not implemented


@pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np)
                                if isinstance(getattr(np, x), np.ufunc)])
def test_ufunc_types(ufunc):
    '''
    Check all ufuncs that the correct type is returned. Avoid
    object and boolean types since many operations are not defined for
    for them.

    Choose the shape so even dot and matmul will succeed
    '''
    for typ in ufunc.types:
        # types is a list of strings like ii->i
        if 'O' in typ or '?' in typ:
            continue
        inp, out = typ.split('->')
        args = [np.ones((3, 3), t) for t in inp]
        with warnings.catch_warnings(record=True):
            warnings.filterwarnings("always")
            res = ufunc(*args)
        if isinstance(res, tuple):
            outs = tuple(out)
            assert len(res) == len(outs)
            for r, t in zip(res, outs):
                assert r.dtype == np.dtype(t)
        else:
            assert res.dtype == np.dtype(out)

@pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np)
                                if isinstance(getattr(np, x), np.ufunc)])
@np._no_nep50_warning()
def test_ufunc_noncontiguous(ufunc):
    '''
    Check that contiguous and non-contiguous calls to ufuncs
    have the same results for values in range(9)
    '''
    for typ in ufunc.types:
        # types is a list of strings like ii->i
        if any(set('O?mM') & set(typ)):
            # bool, object, datetime are too irregular for this simple test
            continue
        inp, out = typ.split('->')
        args_c = [np.empty(6, t) for t in inp]
        args_n = [np.empty(18, t)[::3] for t in inp]
        for a in args_c:
            a.flat = range(1,7)
        for a in args_n:
            a.flat = range(1,7)
        with warnings.catch_warnings(record=True):
            warnings.filterwarnings("always")
            res_c = ufunc(*args_c)
            res_n = ufunc(*args_n)
        if len(out) == 1:
            res_c = (res_c,)
            res_n = (res_n,)
        for c_ar, n_ar in zip(res_c, res_n):
            dt = c_ar.dtype
            if np.issubdtype(dt, np.floating):
                # for floating point results allow a small fuss in comparisons
                # since different algorithms (libm vs. intrinsics) can be used
                # for different input strides
                res_eps = np.finfo(dt).eps
                tol = 2*res_eps
                assert_allclose(res_c, res_n, atol=tol, rtol=tol)
            else:
                assert_equal(c_ar, n_ar)


@pytest.mark.parametrize('ufunc', [np.sign, np.equal])
def test_ufunc_warn_with_nan(ufunc):
    # issue gh-15127
    # test that calling certain ufuncs with a non-standard `nan` value does not
    # emit a warning
    # `b` holds a 64 bit signaling nan: the most significant bit of the
    # significand is zero.
    b = np.array([0x7ff0000000000001], 'i8').view('f8')
    assert np.isnan(b)
    if ufunc.nin == 1:
        ufunc(b)
    elif ufunc.nin == 2:
        ufunc(b, b.copy())
    else:
        raise ValueError('ufunc with more than 2 inputs')


@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_ufunc_out_casterrors():
    # Tests that casting errors are correctly reported and buffers are
    # cleared.
    # The following array can be added to itself as an object array, but
    # the result cannot be cast to an integer output:
    value = 123  # relies on python cache (leak-check will still find it)
    arr = np.array([value] * int(np.BUFSIZE * 1.5) +
                   ["string"] +
                   [value] * int(1.5 * np.BUFSIZE), dtype=object)
    out = np.ones(len(arr), dtype=np.intp)

    count = sys.getrefcount(value)
    with pytest.raises(ValueError):
        # Output casting failure:
        np.add(arr, arr, out=out, casting="unsafe")

    assert count == sys.getrefcount(value)
    # output is unchanged after the error, this shows that the iteration
    # was aborted (this is not necessarily defined behaviour)
    assert out[-1] == 1

    with pytest.raises(ValueError):
        # Input casting failure:
        np.add(arr, arr, out=out, dtype=np.intp, casting="unsafe")

    assert count == sys.getrefcount(value)
    # output is unchanged after the error, this shows that the iteration
    # was aborted (this is not necessarily defined behaviour)
    assert out[-1] == 1


@pytest.mark.parametrize("bad_offset", [0, int(np.BUFSIZE * 1.5)])
def test_ufunc_input_casterrors(bad_offset):
    value = 123
    arr = np.array([value] * bad_offset +
                   ["string"] +
                   [value] * int(1.5 * np.BUFSIZE), dtype=object)
    with pytest.raises(ValueError):
        # Force cast inputs, but the buffered cast of `arr` to intp fails:
        np.add(arr, arr, dtype=np.intp, casting="unsafe")


@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("bad_offset", [0, int(np.BUFSIZE * 1.5)])
def test_ufunc_input_floatingpoint_error(bad_offset):
    value = 123
    arr = np.array([value] * bad_offset +
                   [np.nan] +
                   [value] * int(1.5 * np.BUFSIZE))
    with np.errstate(invalid="raise"), pytest.raises(FloatingPointError):
        # Force cast inputs, but the buffered cast of `arr` to intp fails:
        np.add(arr, arr, dtype=np.intp, casting="unsafe")


def test_trivial_loop_invalid_cast():
    # This tests the fast-path "invalid cast", see gh-19904.
    with pytest.raises(TypeError,
            match="cast ufunc 'add' input 0"):
        # the void dtype definitely cannot cast to double:
        np.add(np.array(1, "i,i"), 3, signature="dd->d")


@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
@pytest.mark.parametrize("offset",
        [0, np.BUFSIZE//2, int(1.5*np.BUFSIZE)])
def test_reduce_casterrors(offset):
    # Test reporting of casting errors in reductions, we test various
    # offsets to where the casting error will occur, since these may occur
    # at different places during the reduction procedure. For example
    # the first item may be special.
    value = 123  # relies on python cache (leak-check will still find it)
    arr = np.array([value] * offset +
                   ["string"] +
                   [value] * int(1.5 * np.BUFSIZE), dtype=object)
    out = np.array(-1, dtype=np.intp)

    count = sys.getrefcount(value)
    with pytest.raises(ValueError, match="invalid literal"):
        # This is an unsafe cast, but we currently always allow that.
        # Note that the double loop is picked, but the cast fails.
        # `initial=None` disables the use of an identity here to test failures
        # while copying the first values path (not used when identity exists).
        np.add.reduce(arr, dtype=np.intp, out=out, initial=None)
    assert count == sys.getrefcount(value)
    # If an error occurred during casting, the operation is done at most until
    # the error occurs (the result of which would be `value * offset`) and -1
    # if the error happened immediately.
    # This does not define behaviour, the output is invalid and thus undefined
    assert out[()] < value * offset


def test_object_reduce_cleanup_on_failure():
    # Test cleanup, including of the initial value (manually provided or not)
    with pytest.raises(TypeError):
        np.add.reduce([1, 2, None], initial=4)

    with pytest.raises(TypeError):
        np.add.reduce([1, 2, None])


@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("method",
        [np.add.accumulate, np.add.reduce,
         pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat"),
         pytest.param(lambda x: np.log.at(x, [2]), id="at")])
def test_ufunc_methods_floaterrors(method):
    # adding inf and -inf (or log(-inf) creates an invalid float and warns
    arr = np.array([np.inf, 0, -np.inf])
    with np.errstate(all="warn"):
        with pytest.warns(RuntimeWarning, match="invalid value"):
            method(arr)

    arr = np.array([np.inf, 0, -np.inf])
    with np.errstate(all="raise"):
        with pytest.raises(FloatingPointError):
            method(arr)


def _check_neg_zero(value):
    if value != 0.0:
        return False
    if not np.signbit(value.real):
        return False
    if value.dtype.kind == "c":
        return np.signbit(value.imag)
    return True

@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
def test_addition_negative_zero(dtype):
    dtype = np.dtype(dtype)
    if dtype.kind == "c":
        neg_zero = dtype.type(complex(-0.0, -0.0))
    else:
        neg_zero = dtype.type(-0.0)

    arr = np.array(neg_zero)
    arr2 = np.array(neg_zero)

    assert _check_neg_zero(arr + arr2)
    # In-place ops may end up on a different path (reduce path) see gh-21211
    arr += arr2
    assert _check_neg_zero(arr)


@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
@pytest.mark.parametrize("use_initial", [True, False])
def test_addition_reduce_negative_zero(dtype, use_initial):
    dtype = np.dtype(dtype)
    if dtype.kind == "c":
        neg_zero = dtype.type(complex(-0.0, -0.0))
    else:
        neg_zero = dtype.type(-0.0)

    kwargs = {}
    if use_initial:
        kwargs["initial"] = neg_zero
    else:
        pytest.xfail("-0. propagation in sum currently requires initial")

    # Test various length, in case SIMD paths or chunking play a role.
    # 150 extends beyond the pairwise blocksize; probably not important.
    for i in range(0, 150):
        arr = np.array([neg_zero] * i, dtype=dtype)
        res = np.sum(arr, **kwargs)
        if i > 0 or use_initial:
            assert _check_neg_zero(res)
        else:
            # `sum([])` should probably be 0.0 and not -0.0 like `sum([-0.0])`
            assert not np.signbit(res.real)
            assert not np.signbit(res.imag)

class TestLowlevelAPIAccess:
    def test_resolve_dtypes_basic(self):
        # Basic test for dtype resolution:
        i4 = np.dtype("i4")
        f4 = np.dtype("f4")
        f8 = np.dtype("f8")

        r = np.add.resolve_dtypes((i4, f4, None))
        assert r == (f8, f8, f8)

        # Signature uses the same logic to parse as ufunc (less strict)
        # the following is "same-kind" casting so works:
        r = np.add.resolve_dtypes((
                i4, i4, None), signature=(None, None, "f4"))
        assert r == (f4, f4, f4)

        # Check NEP 50 "weak" promotion also:
        r = np.add.resolve_dtypes((f4, int, None))
        assert r == (f4, f4, f4)

        with pytest.raises(TypeError):
            np.add.resolve_dtypes((i4, f4, None), casting="no")

    def test_weird_dtypes(self):
        S0 = np.dtype("S0")
        # S0 is often converted by NumPy to S1, but not here:
        r = np.equal.resolve_dtypes((S0, S0, None))
        assert r == (S0, S0, np.dtype(bool))

        # Subarray dtypes are weird and may not work fully, we preserve them
        # leading to a TypeError (currently no equal loop for void/structured)
        dts = np.dtype("10i")
        with pytest.raises(TypeError):
            np.equal.resolve_dtypes((dts, dts, None))

    def test_resolve_dtypes_reduction(self):
        i4 = np.dtype("i4")
        with pytest.raises(NotImplementedError):
            np.add.resolve_dtypes((i4, i4, i4), reduction=True)

    @pytest.mark.parametrize("dtypes", [
            (np.dtype("i"), np.dtype("i")),
            (None, np.dtype("i"), np.dtype("f")),
            (np.dtype("i"), None, np.dtype("f")),
            ("i4", "i4", None)])
    def test_resolve_dtypes_errors(self, dtypes):
        with pytest.raises(TypeError):
            np.add.resolve_dtypes(dtypes)

    def test_resolve_dtypes_reduction(self):
        i2 = np.dtype("i2")
        long_ = np.dtype("long")
        # Check special addition resolution:
        res = np.add.resolve_dtypes((None, i2, None), reduction=True)
        assert res == (long_, long_, long_)

    def test_resolve_dtypes_reduction_errors(self):
        i2 = np.dtype("i2")

        with pytest.raises(TypeError):
            np.add.resolve_dtypes((None, i2, i2))

        with pytest.raises(TypeError):
            np.add.signature((None, None, "i4"))

    @pytest.mark.skipif(not hasattr(ct, "pythonapi"),
            reason="`ctypes.pythonapi` required for capsule unpacking.")
    def test_loop_access(self):
        # This is a basic test for the full strided loop access
        data_t = ct.ARRAY(ct.c_char_p, 2)
        dim_t = ct.ARRAY(ct.c_ssize_t, 1)
        strides_t = ct.ARRAY(ct.c_ssize_t, 2)
        strided_loop_t = ct.CFUNCTYPE(
                ct.c_int, ct.c_void_p, data_t, dim_t, strides_t, ct.c_void_p)

        class call_info_t(ct.Structure):
            _fields_ = [
                ("strided_loop", strided_loop_t),
                ("context", ct.c_void_p),
                ("auxdata", ct.c_void_p),
                ("requires_pyapi", ct.c_byte),
                ("no_floatingpoint_errors", ct.c_byte),
            ]

        i4 = np.dtype("i4")
        dt, call_info_obj = np.negative._resolve_dtypes_and_context((i4, i4))
        assert dt == (i4, i4)  # can be used without casting

        # Fill in the rest of the information:
        np.negative._get_strided_loop(call_info_obj)

        ct.pythonapi.PyCapsule_GetPointer.restype = ct.c_void_p
        call_info = ct.pythonapi.PyCapsule_GetPointer(
                ct.py_object(call_info_obj),
                ct.c_char_p(b"numpy_1.24_ufunc_call_info"))

        call_info = ct.cast(call_info, ct.POINTER(call_info_t)).contents

        arr = np.arange(10, dtype=i4)
        call_info.strided_loop(
                call_info.context,
                data_t(arr.ctypes.data, arr.ctypes.data),
                arr.ctypes.shape,  # is a C-array with 10 here
                strides_t(arr.ctypes.strides[0], arr.ctypes.strides[0]),
                call_info.auxdata)

        # We just directly called the negative inner-loop in-place:
        assert_array_equal(arr, -np.arange(10, dtype=i4))

    @pytest.mark.parametrize("strides", [1, (1, 2, 3), (1, "2")])
    def test__get_strided_loop_errors_bad_strides(self, strides):
        i4 = np.dtype("i4")
        dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4))

        with pytest.raises(TypeError, match="fixed_strides.*tuple.*or None"):
            np.negative._get_strided_loop(call_info, fixed_strides=strides)

    def test__get_strided_loop_errors_bad_call_info(self):
        i4 = np.dtype("i4")
        dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4))

        with pytest.raises(ValueError, match="PyCapsule"):
            np.negative._get_strided_loop("not the capsule!")

        with pytest.raises(TypeError, match=".*incompatible context"):
            np.add._get_strided_loop(call_info)

        np.negative._get_strided_loop(call_info)
        with pytest.raises(TypeError):
            # cannot call it a second time:
            np.negative._get_strided_loop(call_info)

    def test_long_arrays(self):
        t = np.zeros((1029, 917), dtype=np.single)
        t[0][0] = 1
        t[28][414] = 1
        tc = np.cos(t)
        assert_equal(tc[0][0], tc[28][414])