1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
|
#LyX 1.5.1 created this file. For more info see http://www.lyx.org/
\lyxformat 276
\begin_document
\begin_header
\textclass mybook
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\spacing onehalf
\papersize default
\use_geometry true
\use_amsmath 2
\use_esint 0
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Part
C-API
\end_layout
\begin_layout Chapter
New Python Types and C-Structures
\end_layout
\begin_layout Quotation
Beware of the man who won't be bothered with details.
\end_layout
\begin_layout Right Address
---
\emph on
William Feather, Sr.
\end_layout
\begin_layout Quotation
The truth is out there.
\end_layout
\begin_layout Right Address
---Chris Carter, The X Files
\end_layout
\begin_layout Standard
NumPy provides a C-API to enable users to extend the system and get access
to the array object for use in other routines.
The best way to truly understand the C-API is to read the source code.
If you are unfamiliar with (C) source code, however, this can be a daunting
experience at first.
Be assured that the task becomes easier with practice, and you may be surprised
at how simple the C-code can be to understand.
Even if you don't think you can write C-code from scratch, it is much easier
to understand and modify already-written source code then create it
\emph on
de novo
\emph default
.
\end_layout
\begin_layout Standard
Python extensions are especially straightforward to understand because they
all have a very similar structure.
Admittedly, NumPy is not a trivial extension to Python, and may take a
little more snooping to grasp.
This is especially true because of the code-generation techniques, which
simplify maintenance of very similar code, but can make the code a little
less readable to beginners.
Still, with a little persistence, the code can be opened to your understanding.
It is my hope, that this guide to the C-API can assist in the process of
becoming familiar with the compiled-level work that can be done with NumPy
in order to squeeze that last bit of necessary speed out of your code.
\end_layout
\begin_layout Standard
Several new types are defined in the C-code.
Most of these are accessible from Python, but a few are not exposed due
to their limited use.
Every new Python type has an associated PyObject * with an internal structure
that includes a pointer to a
\begin_inset Quotes eld
\end_inset
method table
\begin_inset Quotes erd
\end_inset
that defines how the new object behaves in Python.
When you receive a Python object into C code, you always get a pointer
to a
\family typewriter
PyObject
\family default
structure.
Because a
\family typewriter
PyObject
\family default
structure is very generic and defines only
\family typewriter
PyObject_HEAD
\family default
, by itself it is not very interesting.
However, different objects contain more details after the
\family typewriter
PyObject_HEAD
\family default
(but you have to cast to the correct type to access them --- or use accessor
functions or macros).
\end_layout
\begin_layout Section
New Python Types Defined
\end_layout
\begin_layout Standard
Python types are the functional equivalent in C of classes in Python.
By constructing a new Python type you make available a new object for Python.
The ndarray object is an example of a new type defined in C.
New types are defined in C by two basic steps:
\end_layout
\begin_layout Enumerate
creating a C-structure (usually named Py<Name>Object) that is binary-compatible
with the
\family typewriter
PyObject
\family default
structure itself but holds the additional information needed for that particula
r object;
\end_layout
\begin_layout Enumerate
populating the
\family typewriter
PyTypeObject
\family default
table (pointed to by the ob_type member of the
\family typewriter
PyObject
\family default
structure) with pointers to functions that implement the desired behavior
for the type.
\end_layout
\begin_layout Standard
Instead of special method names which define behavior for Python classes,
there are
\begin_inset Quotes eld
\end_inset
function tables
\begin_inset Quotes erd
\end_inset
which point to functions that implement the desired results.
Since Python 2.2, the PyTypeObject itself has become dynamic which allows
C types that can be
\begin_inset Quotes eld
\end_inset
sub-typed
\begin_inset Quotes erd
\end_inset
from other C-types in C, and sub-classed in Python.
The children types inherit the attributes and methods from their parent(s).
\end_layout
\begin_layout Standard
There are two major new types: the ndarray (
\family typewriter
PyArray_Type
\family default
) and the ufunc (
\family typewriter
PyUFunc_Type
\family default
).
Additional types play a supportive role: the
\family typewriter
PyArrayIter_Type
\family default
, the
\family typewriter
PyArrayMultiIter_Type
\family default
, and the
\family typewriter
PyArrayDescr_Type
\family default
.
The
\family typewriter
PyArrayIter_Type
\family default
is the type for a flat iterator for an ndarray (the object that is returned
when getting the flat attribute).
The
\family typewriter
PyArrayMultiIter_Type
\family default
is the type of the object returned when calling
\family typewriter
broadcast
\family default
().
It handles iteration and broadcasting over a collection of nested sequences.
Also, the
\family typewriter
PyArrayDescr_Type
\family default
is the data-type-descriptor type whose instances describe the data.
Finally, there are 21 new scalar-array types which are new Python scalars
corresponding to each of the fundamental data types available for arrays.
An additional 10 other types are place holders that allow the array scalars
to fit into a hierarchy of actual Python types.
\end_layout
\begin_layout Subsection
PyArray_Type
\end_layout
\begin_layout Standard
The Python type of the ndarray is
\family typewriter
PyArray_Type
\family default
\begin_inset LatexCommand index
name "PyArray\\_Type"
\end_inset
.
In C, every ndarray is a pointer to a
\family typewriter
PyArrayObject
\family default
structure.
The ob_type member of this structure contains a pointer to the
\family typewriter
PyArray_Type
\family default
typeobject.
\end_layout
\begin_layout Standard
The
\family typewriter
PyArrayObject
\family default
C-structure contains all of the required information for an array.
All instances of an ndarray (and its subclasses) will have this structure.
For future compatibility, these structure members should normally be accessed
using the provided macros.
If you need a shorter name, then you can make use of
\family typewriter
NPY_AO
\family default
which is defined to be equivalent to
\family typewriter
PyArrayObject
\family default
.
\end_layout
\begin_layout LyX-Code
typedef struct PyArrayObject {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
char *
\emph default
data;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nd;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp *
\emph default
dimensions;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp *
\emph default
strides;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject *
\emph default
base;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_Descr *
\emph default
descr;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
flags;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject *
\emph default
weakreflist;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArrayObject
\emph default
;
\end_layout
\begin_layout Description
PyObject_HEAD This is needed by all Python objects.
It consists of (at least) a reference count member (
\family typewriter
ob_refcnt
\family default
) and a pointer to the typeobject (
\family typewriter
ob_type
\family default
).
(Other elements may also be present if Python was compiled with special
options see Include/object.h in the Python source tree for more information).
The ob_type member points to a Python type object.
\end_layout
\begin_layout Description
data A pointer to the first element of the array.
This pointer can (and normally should) be recast to the data type of the
array.
\end_layout
\begin_layout Description
nd An integer providing the number of dimensions for this array.
When nd is 0, the array is sometimes called a rank-0 array.
Such arrays have undefined dimensions and strides and cannot be accessed.
\family typewriter
NPY_MAXDIMS
\family default
is the largest number of dimensions for any array.
\end_layout
\begin_layout Description
dimensions An array of integers providing the shape in each dimension as
long as nd
\begin_inset Formula $\geq$
\end_inset
1.
The integer is always large enough to hold a pointer on the platform, so
the dimension size is only limited by memory.
\end_layout
\begin_layout Description
strides An array of integers providing for each dimension the number of
bytes that must be skipped to get to the next element in that dimension.
\end_layout
\begin_layout Description
base This member is used to hold a pointer to another Python object that
is related to this array.
There are two use cases: 1) If this array does not own its own memory,
then base points to the Python object that owns it (perhaps another array
object), 2) If this array has the
\family typewriter
NPY_UPDATEIFCOPY
\family default
flag set, then this array is a working copy of a
\begin_inset Quotes eld
\end_inset
misbehaved
\begin_inset Quotes erd
\end_inset
array.
As soon as this array is deleted, the array pointed to by base will be
updated with the contents of this array.
\end_layout
\begin_layout Description
descr A pointer to a data-type descriptor object (see below).
The data-type descriptor object is an instance of a new built-in type which
allows a generic description of memory.
There is a descriptor structure for each data type supported.
This descriptor structure contains useful information about the type as
well as a pointer to a table of function pointers to implement specific
functionality.
\end_layout
\begin_layout Description
flags Flags indicating how the memory pointed to by data is to be interpreted.
Possible flags are
\family typewriter
NPY_C_CONTIGUOUS
\family default
,
\family typewriter
NPY_F_CONTIGUOUS
\family default
,
\family typewriter
NPY_OWNDATA
\family default
,
\family typewriter
NPY_ALIGNED
\family default
,
\family typewriter
NPY_WRITEABLE
\family default
, and
\family typewriter
NPY_UPDATEIFCOPY
\family default
.
\end_layout
\begin_layout Description
weakreflist This member allows array objects to have weak references (using
the weakref module).
\end_layout
\begin_layout Subsection
PyArrayDescr_Type
\end_layout
\begin_layout Standard
The
\family typewriter
PyArrayDescr_Type
\family default
\begin_inset LatexCommand index
name "PyArrayDescr\\_Type"
\end_inset
is the built-in type of the data-type-descriptor objects used to describe
how the bytes comprising the array are to be interpreted.
There are 21 statically-defined
\family typewriter
PyArray_Descr
\family default
objects for the built-in data-types.
While these participate in reference counting, their reference count should
never reach zero.
There is also a dynamic table of user-defined
\family typewriter
PyArray_Descr
\family default
objects that is also maintained.
Once a data-type-descriptor object is
\begin_inset Quotes eld
\end_inset
registered
\begin_inset Quotes erd
\end_inset
it should never be deallocated either.
The function
\family typewriter
PyArray_DescrFromType
\family default
(...) can be used to retrieve a
\family typewriter
PyArray_Descr
\family default
object from an enumerated type-number (either built-in or user-defined).
The format of the structure that lies at the heart of the
\family typewriter
PyArrayDescr_Type
\family default
is.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
PyTypeObject *
\emph default
typeobj;
\end_layout
\begin_layout LyX-Code
\emph on
char
\emph default
kind;
\end_layout
\begin_layout LyX-Code
\emph on
char
\emph default
type;
\end_layout
\begin_layout LyX-Code
\emph on
char
\emph default
byteorder;
\end_layout
\begin_layout LyX-Code
\emph on
char
\emph default
hasobject;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
type_num;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
elsize;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
alignment;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ArrayDescr
\emph default
*subarray;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject
\emph default
*fields;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ArrFuncs
\emph default
*f;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArray_Descr
\emph default
;
\end_layout
\begin_layout Description
typeobj Pointer to a typeobject that is the corresponding Python type for
the elements of this array.
For the builtin types, this points to the corresponding array scalar.
For user-defined types, this should point to a user-defined typeobject.
This typeobject can either inherit from array scalars or not.
If it does not inherit from array scalars, then the
\family typewriter
NPY_USE_GETITEM
\family default
and
\family typewriter
NPY_USE_SETITEM
\family default
flags should be set in the
\family typewriter
hasobject
\family default
flag.
\end_layout
\begin_layout Description
kind A character code indicating the kind of array (using the array interface
typestring notation).
A 'b' represents Boolean, a 'i' represents signed integer, a 'u' represents
unsigned integer, 'f' represents floating point, 'c' represents complex
floating point, 'S' represents 8-bit character string, 'U' represents 32-bit/ch
aracter unicode string, and 'V' repesents arbitrary.
\end_layout
\begin_layout Description
type A traditional character code indicating the data type.
\end_layout
\begin_layout Description
byteorder A character indicating the byte-order: '>' (big-endian), '<' (little-e
ndian), '=' (native), '|' (irrelevant, ignore).
All builtin data-types have byteorder '='.
\end_layout
\begin_layout Description
hasobject A data-type bit-flag that determines if the data-type exhibits
object-array like behavior.
Each bit in this member is a flag which are named as:
\end_layout
\begin_deeper
\begin_layout Description
NPY_ITEM_REFCOUNT\InsetSpace ~
(NPY_ITEM_HASOBJECT) Indicates that items of this data-type
must be reference counted (using
\family typewriter
Py_INCREF
\family default
and
\family typewriter
Py_DECREF
\family default
).
\end_layout
\begin_layout Description
NPY_ITEM_LISTPICKLE Indicates arrays of this data-type must be converted
to a list before pickling.
\end_layout
\begin_layout Description
NPY_ITEM_IS_POINTER Indicates the item is a pointer to some other data-type
\end_layout
\begin_layout Description
NPY_NEEDS_INIT Indicates memory for this data-type must be initialized (set
to 0) on creation.
\end_layout
\begin_layout Description
NPY_NEEDS_PYAPI Indicates this data-type requires the Python C-API during
access (so don't give up the GIL if array access is going to be needed).
\end_layout
\begin_layout Description
NPY_USE_GETITEM On array access use the
\family typewriter
f->getitem
\family default
function pointer instead of the standard conversion to an array scalar.
Must use if you don't define an array scalar to go along with the data-type.
\end_layout
\begin_layout Description
NPY_USE_SETITEM When creating a 0-d array from an array scalar use
\family typewriter
f->setitem
\family default
instead of the standard copy from an array scalar.
Must use if you don't define an array scalar to go along with the data-type.
\end_layout
\begin_layout Description
NPY_FROM_FIELDS The bits that are inherited for the parent data-type if
these bits are set in any field of the data-type.
Currently (
\family typewriter
NPY_NEEDS_INIT
\family default
|
\family typewriter
NPY_LIST_PICKLE
\family default
|
\family typewriter
NPY_ITEM_REFCOUNT
\family default
|
\family typewriter
NPY_NEEDS_PYAPI
\family default
).
\end_layout
\begin_layout Description
NPY_OBJECT_DTYPE_FLAGS Bits set for the object data-type: (
\family typewriter
NPY_LIST_PICKLE
\family default
|
\family typewriter
NPY_USE_GETITEM
\family default
|
\family typewriter
NPY_ITEM_IS_POINTER
\family default
|
\family typewriter
NPY_REFCOUNT
\family default
|
\family typewriter
NPY_NEEDS_INIT
\family default
|
\family typewriter
NPY_NEEDS_PYAPI
\family default
).
\end_layout
\begin_layout Description
PyDataType_FLAGCHK (
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
flags) Return true if all the given flags are set for the data-type object.
\end_layout
\begin_layout Description
PyDataType_REFCHK (
\family typewriter
PyArray_Descr*
\family default
dtype) Equivalent to
\family typewriter
PyDataType_FLAGCHK
\family default
(
\emph on
dtype
\emph default
,
\family typewriter
NPY_ITEM_REFCOUNT
\family default
).
\end_layout
\end_deeper
\begin_layout Description
type_num A number that uniquely identifies the data type.
For new data-types, this number is assigned when the data-type is registered.
\end_layout
\begin_layout Description
elsize For data types that are always the same size (such as long), this
holds the size of the data type.
For flexible data types where different arrays can have a different elementsize
, this should be 0.
\end_layout
\begin_layout Description
alignment A number providing alignment information for this data type.
Specifically, it shows how far from the start of a 2-element structure
(whose first element is a
\family typewriter
char
\family default
), the compiler places an item of this type:
\family typewriter
offsetof(struct {char c; type v;}, v)
\end_layout
\begin_layout Description
subarray If this is non-
\family typewriter
NULL
\family default
, then this data-type descriptor is a C-style contiguous array of another
data-type descriptor.
In other-words, each element that this descriptor describes is actually
an array of some other base descriptor.
This is most useful as the data-type descriptor for a field in another
data-type descriptor.
The fields member should be
\family typewriter
NULL
\family default
if this is non-
\family typewriter
NULL
\family default
(the fields member of the base descriptor can be non-
\family typewriter
NULL
\family default
however).
The
\family typewriter
PyArray_ArrayDescr
\family default
structure is defined using
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_Descr
\emph default
*base;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject
\emph default
*shape;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArray_ArrayDescr;
\end_layout
\begin_layout Description
\InsetSpace ~
The elements of this structure are:
\end_layout
\begin_deeper
\begin_layout Description
base The data-type-descriptor object of the base-type.
\end_layout
\begin_layout Description
shape The shape (always C-style contiguous) of the sub-array as a Python
tuple.
\end_layout
\end_deeper
\begin_layout Description
fields If this is non-NULL, then this data-type-descriptor has fields described
by a Python dictionary whose keys are names (and also titles if given)
and whose values are tuples that describe the fields.
Recall that a data-type-descriptor always describes a fixed-length set
of bytes.
A field is a named sub-region of that total, fixed-length collection.
A field is described by a tuple composed of another data-type-descriptor
and a byte offset.
Optionally, the tuple may contain a title which is normally a Python string.
These tuples are placed in this dictionary keyed by name (and also title
if given).
\end_layout
\begin_layout Description
f A pointer to a structure containing functions that the type needs to implement
internal features.
These functions are not the same thing as the universal functions (ufuncs)
described later.
Their signatures can vary arbitrarily.
Not all of these function pointers must be defined for a given type.
The required members are
\family typewriter
nonzero
\family default
,
\family typewriter
copyswap
\family default
,
\family typewriter
copyswapn
\family default
,
\family typewriter
setitem
\family default
,
\family typewriter
getitem
\family default
, and
\family typewriter
cast
\family default
.
These are assumed to be non-
\family typewriter
NULL
\family default
and
\family typewriter
NULL
\family default
entries will cause a program crash.
The other functions may be
\family typewriter
NULL
\family default
which will just mean reduced functionality for that data-type.
(Also, the nonzero function will be filled in with a default function if
it is
\family typewriter
NULL
\family default
when you register a user-defined data-type).
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_VectorUnaryFunc
\emph default
\emph on
*
\emph default
cast[PyArray_NTYPES];
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_GetItemFunc *
\emph default
getitem;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_SetItemFunc *
\emph default
setitem;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_CopySwapNFunc *
\emph default
copyswapn;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_CopySwapFunc *
\emph default
copyswap;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_CompareFunc *
\emph default
compare;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ArgFunc *
\emph default
argmax;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_DotFunc *
\emph default
dotfunc;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ScanFunc *
\emph default
scanfunc;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_FromStrFunc
\emph default
*fromstr;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_NonzeroFunc *
\emph default
nonzero;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_FillFunc
\emph default
*fill;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_FillWithScalarFunc
\emph default
*fillwithscalar;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_SortFunc
\emph default
*sort[PyArray_NSORTS];
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ArgSortFunc
\emph default
*argsort[PyArray_NSORTS];
\newline
\emph on
PyObject
\emph default
*castdict;
\end_layout
\begin_layout LyX-Code
\emph on
PyArray_ScalarKindFunc
\emph default
*scalarkind;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
**cancastscalarkindto;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
*cancastto;
\end_layout
\begin_layout LyX-Code
\shape italic
int
\shape default
listpickle
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArray_ArrFuncs
\emph default
;
\end_layout
\begin_layout Description
\InsetSpace ~
The concept of a behaved segment is used in the description of the function
pointers.
A behaved segment is one that is aligned and in native machine byte-order
for the data-type.
The
\family typewriter
nonzero
\family default
,
\family typewriter
copyswap
\family default
,
\family typewriter
copyswapn
\family default
,
\family typewriter
getitem
\family default
, and
\family typewriter
setitem
\family default
functions can (and must) deal with mis-behaved arrays.
The other functions require behaved memory segments.
\end_layout
\begin_deeper
\begin_layout Description
cast (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
from,
\family typewriter
void*
\family default
to,
\family typewriter
npy_intp
\family default
n,
\family typewriter
void*
\family default
fromarr,
\family typewriter
void*
\family default
toarr)
\end_layout
\begin_layout Description
\InsetSpace ~
An array of function pointers to cast from the current type to all of the
other builtin types.
Each function casts a contiguous, aligned, and notswapped buffer pointed
at by
\emph on
from
\emph default
to a contiguous, aligned, and notswapped buffer pointed at by
\emph on
to
\emph default
The number of items to cast is given by
\emph on
n
\emph default
, and the arguments
\emph on
fromarr
\emph default
and
\emph on
toarr
\emph default
are interpreted as PyArrayObjects for flexible arrays to get itemsize informati
on.
\end_layout
\begin_layout Description
getitem (
\family typewriter
PyObject*
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that returns a standard Python object from a single
element of the array object
\emph on
arr
\emph default
pointed to by
\emph on
data
\emph default
.
This function must be able to deal with
\begin_inset Quotes eld
\end_inset
misbehaved
\begin_inset Quotes erd
\end_inset
(misaligned and/or swapped) arrays correctly.
\end_layout
\begin_layout Description
setitem (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
item,
\family typewriter
void*
\family default
data,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that sets the Python object
\emph on
item
\emph default
into the array,
\emph on
arr
\emph default
, at the position pointed to by
\emph on
data
\emph default
.
This function deals with
\begin_inset Quotes eld
\end_inset
misbehaved
\begin_inset Quotes erd
\end_inset
arrays.
If successful, a zero is returned, otherwise, a negative one is returned
(and a Python error set).
\end_layout
\begin_layout Description
copyswapn (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
dest,
\family typewriter
npy_intp
\family default
dstride,
\family typewriter
void*
\family default
src,
\family typewriter
npy_intp
\family default
sstride,
\family typewriter
npy_intp
\family default
n,
\family typewriter
int
\family default
swap, void *arr)
\end_layout
\begin_layout Description
copyswap (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
dest,
\family typewriter
void*
\family default
src,
\family typewriter
int
\family default
swap, void *arr)
\end_layout
\begin_layout Description
\InsetSpace ~
These members are both pointers to functions to copy data from
\emph on
src
\emph default
to
\emph on
dest
\emph default
and
\emph on
swap
\emph default
if indicated.
The value of arr is only used for flexible (
\family typewriter
NPY_STRING
\family default
,
\family typewriter
NPY_UNICODE
\family default
, and
\family typewriter
NPY_VOID
\family default
) arrays (and is obtained from
\family typewriter
arr->descr->elsize
\family default
).
The second function copies a single value, while the first loops over n
values with the provided strides.
These functions can deal with misbehaved
\emph on
src
\emph default
data.
If
\emph on
src
\emph default
is NULL then no copy is performed.
If
\emph on
swap
\emph default
is 0, then no byteswapping occurs.
It is assumed that
\emph on
dest
\emph default
and
\emph on
src
\emph default
do not overlap.
If they overlap, then use
\family typewriter
memmove
\family default
(...) first followed by
\family typewriter
copyswap(n)
\family default
with NULL valued
\family typewriter
src
\family default
.
\end_layout
\begin_layout Description
compare (
\family typewriter
int
\family default
) (
\family typewriter
const void*
\family default
d1,
\family typewriter
const void*
\family default
d2,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that compares two elements of the array,
\family typewriter
arr
\family default
, pointed to by
\family typewriter
d1
\family default
and
\family typewriter
d2
\family default
.
This function requires behaved arrays.
The return value is 1 if *
\family typewriter
d1
\family default
> *
\family typewriter
d2
\family default
, 0 if *
\family typewriter
d1
\family default
== *
\family typewriter
d2
\family default
, and -1 if *
\family typewriter
d1
\family default
< *
\family typewriter
d2
\family default
.
The array object arr is used to retrieve itemsize and field information
for flexible arrays.
\end_layout
\begin_layout Description
argmax (
\family typewriter
int
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
npy_intp
\family default
n,
\family typewriter
npy_intp*
\family default
max_ind,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that retrieves the index of the largest of
\family typewriter
n
\family default
elements in
\family typewriter
arr
\family default
beginning at the element pointed to by
\family typewriter
data
\family default
.
This function requires that the memory segment be contiguous and behaved.
The return value is always 0.
The index of the largest element is returned in
\family typewriter
max_ind
\family default
.
\end_layout
\begin_layout Description
dotfunc (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
ip1,
\family typewriter
npy_intp
\family default
is1,
\family typewriter
void*
\family default
ip2,
\family typewriter
npy_intp
\family default
is2,
\family typewriter
void*
\family default
op,
\family typewriter
npy_intp
\family default
n,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that multiplies two
\family typewriter
n
\family default
-length sequences together, adds them, and places the result in element
pointed to by
\family typewriter
op
\family default
of
\family typewriter
arr
\family default
.
The start of the two sequences are pointed to by
\family typewriter
ip1
\family default
and
\family typewriter
ip2
\family default
.
To get to the next element in each sequence requires a jump of
\family typewriter
is1
\family default
and
\family typewriter
is2
\family default
\emph on
bytes
\emph default
, respectively.
This function requires behaved (though not necessarily contiguous) memory.
\end_layout
\begin_layout Description
scanfunc (
\family typewriter
int
\family default
) (
\family typewriter
FILE*
\family default
fd,
\family typewriter
void*
\family default
ip ,
\family typewriter
void*
\family default
sep ,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that scans (scanf style) one element of the correspondi
ng type from the file descriptor
\family typewriter
fd
\family default
into the array memory pointed to by
\family typewriter
ip
\family default
.
The array is assumed to be behaved.
If
\family typewriter
sep
\family default
is not NULL, then a separator string is also scanned from the file before
returning.
The last argument
\family typewriter
arr
\family default
is the array to be scanned into.
A 0 is returned if the scan is successful.
A negative number indicates something went wrong: -1 means the end of file
was reached before the separator string could be scanned, -4 means that
the end of file was reached before the element could be scanned, and -3
means that the element could not be interpreted from the format string.
Requires a behaved array.
\end_layout
\begin_layout Description
fromstr (
\family typewriter
int
\family default
) (
\family typewriter
char*
\family default
str,
\family typewriter
void*
\family default
ip,
\family typewriter
char**
\family default
endptr,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that converts the string pointed to by
\family typewriter
str
\family default
to one element of the corresponding type and places it in the memory location
pointed to by
\family typewriter
ip
\family default
.
After the conversion is completed,
\family typewriter
*endptr
\family default
points to the rest of the string.
The last argument
\family typewriter
arr
\family default
is the array into which ip points (needed for variable-size data-types).
Returns 0 on success or -1 on failure.
Requires a behaved array.
\end_layout
\begin_layout Description
nonzero (
\family typewriter
Bool
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that returns TRUE if the item of
\family typewriter
arr
\family default
pointed to by
\family typewriter
data
\family default
is nonzero.
This function can deal with misbehaved arrays.
\end_layout
\begin_layout Description
fill (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
npy_intp
\family default
length,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that fills a contiguous array of given length with
data.
The first two elements of the array must already be filled-in.
From these two values, a delta will be computed and the values from item
3 to the end will be computed by repeatedly adding this computed delta.
The data buffer must be well-behaved.
\end_layout
\begin_layout Description
fillwithscalar (
\family typewriter
void
\family default
)(
\family typewriter
void*
\family default
buffer,
\family typewriter
npy_intp
\family default
length,
\family typewriter
void*
\family default
value,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to a function that fills a contiguous
\family typewriter
buffer
\family default
of the given
\family typewriter
length
\family default
with a single scalar
\family typewriter
value
\family default
whose address is given.
The final argument is the array which is needed to get the itemsize for
variable-length arrays.
\end_layout
\begin_layout Description
sort (
\family typewriter
int
\family default
) (
\family typewriter
void*
\family default
start,
\family typewriter
npy_intp
\family default
length,
\family typewriter
void*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
An array of function pointers to a particular sorting algorithms.
A particular sorting algorithm is obtained using a key (so far
\family typewriter
PyArray_QUICKSORT
\family default
,
\family typewriter
PyArray_HEAPSORT
\family default
, and
\family typewriter
PyArray_MERGESORT
\family default
are defined).
These sorts are done in-place assuming contiguous and aligned data.
\end_layout
\begin_layout Description
argsort (
\family typewriter
int
\family default
) (
\family typewriter
void*
\family default
start,
\family typewriter
npy_intp*
\family default
result,
\family typewriter
npy_intp
\family default
length, void *arr)
\end_layout
\begin_layout Description
\InsetSpace ~
An array of function pointers to sorting algorithms for this data type.
The same sorting algorithms as for sort are available.
The indices producing the sort are returned in result (which must be initialize
d with indices 0 to length-1 inclusive).
\end_layout
\begin_layout Description
castdict
\end_layout
\begin_layout Description
\InsetSpace ~
Either
\family typewriter
NULL
\family default
or a dictionary containing low-level casting functions for user-defined
data-types.
Each function is wrapped in a
\family typewriter
PyCObject*
\family default
and keyed by the data-type number.
\end_layout
\begin_layout Description
scalarkind (
\family typewriter
PyArray_SCALARKIND
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A function to determine how scalars of this type should be interpreted.
The argument is
\family typewriter
NULL
\family default
or a 0-dimensional array containing the data (if that is needed to determine
the kind of scalar).
The return value must be of type
\family typewriter
PyArray_SCALARKIND
\family default
.
\end_layout
\begin_layout Description
cancastscalarkindto
\end_layout
\begin_layout Description
\InsetSpace ~
Either
\family typewriter
NULL
\family default
or an array of
\family typewriter
PyArray_NSCALARKINDS
\family default
pointers.
These pointers should each be either
\family typewriter
NULL
\family default
or a pointer to an array of integers (terminated by
\family typewriter
PyArray_NOTYPE
\family default
) indicating data-types that a scalar of this data-type of the specified
kind can be cast to safely (this usually means without losing precision).
\end_layout
\begin_layout Description
cancastto
\end_layout
\begin_layout Description
\InsetSpace ~
Either
\family typewriter
NULL
\family default
or an array of integers (terminated by
\family typewriter
PyArray_NOTYPE
\family default
) indicated data-types that this data-type can be cast to safely (this usually
means without losing precision).
\end_layout
\begin_layout Description
listpickle
\end_layout
\begin_layout Description
\InsetSpace ~
Unused.
\end_layout
\end_deeper
\begin_layout Standard
The
\family typewriter
PyArray_Type
\family default
typeobject implements many of the features of Python objects including
the tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer interfaces.
The rich comparison (tp_richcompare) is also used along with new-style
attribute lookup for methods (tp_methods) and properties (tp_getset).
The
\family typewriter
PyArray_Type
\family default
can also be sub-typed.
\end_layout
\begin_layout Tip
The tp_as_number methods use a generic approach to call whatever function
has been registered for handling the operation.
The function PyNumeric_SetOps(..) can be used to register functions to handle
particular mathematical operations (for all arrays).
When the umath module is imported, it sets the numeric operations for all
arrays to the corresponding ufuncs.
\newline
The tp_str and tp_repr methods can also be altered using PyString_SetStringFunc
tion(...).
\end_layout
\begin_layout Subsection
PyUFunc_Type
\end_layout
\begin_layout Standard
The ufunc object is implemented by creation of the
\family typewriter
PyUFunc_Type
\family default
\begin_inset LatexCommand index
name "PyUFunc\\_Type"
\end_inset
.
It is a very simple type that implements only basic getattribute behavior,
printing behavior, and has call behavior which allows these objects to
act like functions.
The basic idea behind the ufunc is to hold a reference to fast 1-dimensional
(vector) loops for each data type that supports the operation.
These one-dimensional loops all have the same signature and are the key
to creating a new ufunc.
They are called by the generic looping code as appropriate to implement
the N-dimensional function.
There are also some generic 1-d loops defined for floating and complexfloating
arrays that allow you to define a ufunc using a single scalar function
(
\emph on
e.g.
\emph default
atanh).
\end_layout
\begin_layout Standard
The core of the ufunc is the
\family typewriter
PyUFuncObject
\family default
which contains all the information needed to call the underlying C-code
loops that perform the actual work.
It has the following structure.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nin;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nout;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nargs;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
identity;
\end_layout
\begin_layout LyX-Code
\emph on
PyUFuncGenericFunction *
\emph default
functions;
\end_layout
\begin_layout LyX-Code
\emph on
void **
\emph default
data;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
ntypes;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
check_return;
\end_layout
\begin_layout LyX-Code
\emph on
char *
\emph default
name;
\end_layout
\begin_layout LyX-Code
\emph on
char *
\emph default
types;
\end_layout
\begin_layout LyX-Code
\emph on
char *
\emph default
doc;
\end_layout
\begin_layout LyX-Code
\emph on
void *
\emph default
ptr;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject *
\emph default
obj;
\end_layout
\begin_layout LyX-Code
\emph on
PyObject *
\emph default
userloops;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyUFuncObject
\emph default
;
\end_layout
\begin_layout Description
PyObject_HEAD required for all Python objects.
\end_layout
\begin_layout Description
nin The number of input arguments.
\end_layout
\begin_layout Description
nout The number of output arguments.
\end_layout
\begin_layout Description
nargs The total number of arguments (
\emph on
nin
\emph default
+
\emph on
nout
\emph default
).
This must be less than
\family typewriter
NPY_MAXARGS
\family default
.
\end_layout
\begin_layout Description
identity Either
\family typewriter
PyUFunc_One
\family default
,
\family typewriter
PyUFunc_Zero
\family default
, or
\family typewriter
PyUFunc_None
\family default
to indicate the identity for this operation.
It is only used for a reduce-like call on an empty array.
\end_layout
\begin_layout Description
functions (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
extradata )
\end_layout
\begin_layout Description
\InsetSpace ~
An array of function pointers --- one for each data type supported by the
ufunc.
This is the vector loop that is called to implement the underlying function
\emph on
dims
\emph default
[0] times.
The first argument,
\emph on
args
\emph default
, is an array of
\emph on
nargs
\emph default
pointers to behaved memory.
Pointers to the data for the input arguments are first, followed by the
pointers to the data for the output arguments.
How many bytes must be skipped to get to the next element in the sequence
is specified by the corresponding entry in the
\emph on
steps
\emph default
array.
The last argument allows the loop to receive extra information.
This is commonly used so that a single, generic vector loop can be used
for multiple functions.
In this case, the actual scalar function to call is passed in as
\emph on
extradata
\emph default
.
The size of this function pointer array is ntypes.
\end_layout
\begin_layout Description
data Extra data to be passed to the 1-d vector loops or
\family typewriter
NULL
\family default
if no extra-data is needed.
This C-array must be the same size (
\emph on
i.e.
\emph default
ntypes) as the functions array.
\family typewriter
NULL
\family default
is used if extra_data is not needed.
Several C-API calls for UFuncs are just 1-d vector loops that make use
of this extra data to receive a pointer to the actual function to call.
\end_layout
\begin_layout Description
ntypes The number of supported data types for the ufunc.
This number specifies how many different 1-d loops (of the builtin data
types) are available.
\end_layout
\begin_layout Description
check_return Obsolete and unused.
However, it is set by the corresponding entry in the main ufunc creation
routine:
\family typewriter
PyUFunc_FromFuncAndData
\family default
(...).
\end_layout
\begin_layout Description
name A string name for the ufunc.
This is used dynamically to build the __doc__ attribute of ufuncs.
\end_layout
\begin_layout Description
types An array of
\emph on
nargs
\series bold
\emph default
\begin_inset Formula $\times$
\end_inset
\series default
\emph on
ntypes
\emph default
8-bit type_numbers which contains the type signature for the function for
each of the supported (builtin) data types.
For each of the
\emph on
ntypes
\emph default
functions, the corresponding set of type numbers in this array shows how
the
\emph on
args
\emph default
argument should be interpreted in the 1-d vector loop.
These type numbers do not have to be the same type and mixed-type ufuncs
are supported.
\end_layout
\begin_layout Description
doc Documentation for the ufunc.
Should not contain the function signature as this is generated dynamically
when __doc__ is retrieved.
\end_layout
\begin_layout Description
ptr Any dynamically allocated memory.
Currently, this is used for dynamic ufuncs created from a python function
to store room for the types, data, and name members.
\end_layout
\begin_layout Description
obj For ufuncs dynamically created from python functions, this member holds
a reference to the underlying Python function.
\end_layout
\begin_layout Description
userloops A dictionary of user-defined 1-d vector loops (stored as CObject
ptrs) for user-defined types.
A loop may be registered by the user for any user-defined type.
It is retrieved by type number.
User defined type numbers are always larger than
\family typewriter
NPY_USERDEF
\family default
.
\end_layout
\begin_layout Subsection
PyArrayIter_Type
\end_layout
\begin_layout Standard
This
\begin_inset LatexCommand index
name "PyArrayIter\\_Type"
\end_inset
is an iterator object that makes it easy to loop over an N-dimensional
array.
It is the object returned from the flat attribute of an ndarray.
It is also used extensively throughout the implementation internals to
loop over an N-dimensional array.
The tp_as_mapping interface is implemented so that the iterator object
can be indexed (using 1-d indexing), and a few methods are implemented
through the tp_methods table.
This object implements the next method and can be used anywhere an iterator
can be used in Python.
\end_layout
\begin_layout Standard
The C-structure corresponding to an object of
\family typewriter
PyArrayIter_Type
\family default
is the
\family typewriter
PyArrayIterObject
\family default
.
The
\family typewriter
PyArrayIterObject
\family default
is used to keep track of a pointer into an N-dimensional array.
It contains associated information used to quickly march through the array.
The pointer can be adjusted in three basic ways: 1) advance to the
\begin_inset Quotes eld
\end_inset
next
\begin_inset Quotes erd
\end_inset
position in the array in a C-style contiguous fashion, 2) advance to an
arbitrary N-dimensional coordinate in the array, and 3) advance to an arbitrary
one-dimensional index into the array.
The members of the
\family typewriter
PyArrayIterObject
\family default
structure are used in these calculations.
Iterator objects keep their own dimension and strides information about
an array.
This can be adjusted as needed for
\begin_inset Quotes eld
\end_inset
broadcasting,
\begin_inset Quotes erd
\end_inset
or to loop over only specific dimensions.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nd_m1;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
index;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
size;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
coordinates
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
dims_m1
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
strides
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
backstrides
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
factors
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
PyArrayObject *
\emph default
ao;
\end_layout
\begin_layout LyX-Code
\emph on
char *
\emph default
dataptr;
\end_layout
\begin_layout LyX-Code
\emph on
Bool
\emph default
contiguous;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArrayIterObject
\emph default
;
\end_layout
\begin_layout Description
nd_m1
\begin_inset Formula $N-1$
\end_inset
where
\begin_inset Formula $N$
\end_inset
is the number of dimensions in the underlying array.
\end_layout
\begin_layout Description
index The current 1-d index into the array.
\end_layout
\begin_layout Description
size The total size of the underlying array.
\end_layout
\begin_layout Description
coordinates An
\begin_inset Formula $N$
\end_inset
-dimensional index into the array.
\end_layout
\begin_layout Description
dims_m1 The size of the array minus 1 in each dimension.
\end_layout
\begin_layout Description
strides The strides of the array.
How many bytes needed to jump to the next element in each dimension.
\end_layout
\begin_layout Description
backstrides How many bytes needed to jump from the end of a dimension back
to its beginning.
Note that
\emph on
backstrides
\emph default
[k]=
\emph on
strides
\emph default
[k]*d
\emph on
ims_m1
\emph default
[k], but it is stored here as an optimization.
\end_layout
\begin_layout Description
factors This array is used in computing an N-d index from a 1-d index.
It contains needed products of the dimensions.
\end_layout
\begin_layout Description
ao A pointer to the underlying ndarray this iterator was created to represent.
\end_layout
\begin_layout Description
dataptr This member points to an element in the ndarray indicated by the
index.
\end_layout
\begin_layout Description
contiguous This flag is true if the underlying array is
\family typewriter
NPY_C_CONTIGUOUS
\family default
.
It is used to simplify calculations when possible.
\end_layout
\begin_layout Standard
How to use an array iterator on a C-level is explained more fully in later
sections.
Typically, you do not need to concern yourself with the internal structure
of the iterator object, and merely interact with it through the use of
the macros
\family typewriter
PyArray_ITER_NEXT
\family default
(it),
\family typewriter
PyArray_ITER_GOTO
\family default
(it, dest), or
\family typewriter
PyArray_ITER_GOTO1D
\family default
(it, index).
All of these macros require the argument
\emph on
it
\emph default
to be a
\family typewriter
PyArrayIterObject*
\family default
.
\end_layout
\begin_layout Subsection
PyArrayMultiIter_Type
\end_layout
\begin_layout Standard
This type provides an iterator that encapsulates the concept of broadcasting.
It allows
\begin_inset Formula $N$
\end_inset
arrays to be broadcast together so that the loop progresses in C-style
contiguous fashion over the broadcasted array.
The corresponding C-structure is the
\family typewriter
PyArrayMultiIterObject
\family default
whose memory layout must begin any object,
\emph on
obj
\emph default
, passed in to the
\family typewriter
PyArray_Broadcast
\family default
(obj) function.
Broadcasting is performed by adjusting array iterators so that each iterator
represents the broadcasted shape and size, but has its strides adjusted
so that the correct element from the array is used at each iteration.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
numiter;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
size;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
index;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nd;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
dimensions
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
\emph on
PyArrayIterObject *
\emph default
iters
\emph on
[NPY_MAXDIMS]
\emph default
;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArrayMultiIterObject
\emph default
;
\end_layout
\begin_layout Description
PyObject_HEAD Needed at the start of every Python object (holds reference
count and type identification).
\end_layout
\begin_layout Description
numiter The number of arrays that need to be broadcast to the same shape.
\end_layout
\begin_layout Description
size The total broadcasted size.
\end_layout
\begin_layout Description
index The current (1-d) index into the broadcasted result.
\end_layout
\begin_layout Description
nd The number of dimensions in the broadcasted result.
\end_layout
\begin_layout Description
dimensions The shape of the broadcasted result (only
\family typewriter
nd
\family default
slots are used).
\end_layout
\begin_layout Description
iters An array of iterator objects that holds the iterators for the arrays
to be broadcast together.
On return, the iterators are adjusted for broadcasting.
\end_layout
\begin_layout Subsection
PyArrayFlags_Type
\end_layout
\begin_layout Standard
When the flags attribute is retrieved from Python, a special builtin object
of this type is constructed.
This special type makes it easier to work with the different flags by accessing
them as attributes or by accessing them as if the object were a dictionary
with the flag names as entries.
\end_layout
\begin_layout Subsection
ScalarArrayTypes
\end_layout
\begin_layout Standard
There is a Python type for each of the different built-in data types that
can be present in the array Most of these are simple wrappers around the
corresponding data type in C.
The C-names for these types are
\series bold
Py
\series default
<TYPE>
\series bold
ArrType_Type
\series default
where <TYPE> can be
\end_layout
\begin_layout Quote
\series bold
Bool
\series default
,
\series bold
Byte
\series default
,
\series bold
Short
\series default
,
\series bold
Int
\series default
,
\series bold
Long
\series default
,
\series bold
LongLong
\series default
,
\series bold
UByte
\series default
,
\series bold
UShort
\series default
,
\series bold
UInt
\series default
,
\series bold
ULong
\series default
,
\series bold
ULongLong
\series default
,
\series bold
Float
\series default
,
\series bold
Double
\series default
,
\series bold
LongDouble
\series default
,
\series bold
CFloat
\series default
,
\series bold
CDouble
\series default
,
\series bold
CLongDouble
\series default
,
\series bold
String
\series default
,
\series bold
Unicode
\series default
,
\series bold
Void
\series default
, and
\series bold
Object
\series default
.
\end_layout
\begin_layout Standard
These type names are part of the C-API and can therefore be created in extension
C-code.
There is also a
\family typewriter
PyIntpArrType_Type
\family default
and a
\family typewriter
PyUIntpArrType_Type
\family default
that are simple substitutes for one of the integer types that can hold
a pointer on the platform.
The structure of these scalar objects is not exposed to C-code.
The function
\family typewriter
PyArray_ScalarAsCtype
\family default
(..) can be used to extract the C-type value from the array scalar and the
function
\family typewriter
PyArray_Scalar
\family default
(...) can be used to construct an array scalar from a C-value.
\end_layout
\begin_layout Section
Other C-Structures
\end_layout
\begin_layout Standard
A few new C-structures were found to be useful in the development of NumPy.
These C-structures are used in at least one C-API call and are therefore
documented here.
The main reason these structures were defined is to make it easy to use
the Python ParseTuple C-API to convert from Python objects to a useful
C-Object.
\end_layout
\begin_layout Subsection
PyArray_Dims
\end_layout
\begin_layout Standard
This structure is very useful when shape and/or strides information is supposed
to be interpreted.
The structure is
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp *
\emph default
ptr;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
len;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArray_Dims
\emph default
;
\end_layout
\begin_layout Standard
The members of this structure are
\end_layout
\begin_layout Description
ptr A pointer to a list of (
\family typewriter
npy_intp
\family default
) integers which usually represent array shape or array strides.
\end_layout
\begin_layout Description
len The length of the list of integers.
It is assumed safe to access
\emph on
ptr
\emph default
[0] to
\emph on
ptr
\emph default
[len-1].
\end_layout
\begin_layout Subsection
PyArray_Chunk
\end_layout
\begin_layout Standard
This is equivalent to the buffer object structure in Python up to the ptr
member.
On 32-bit platforms (
\emph on
i.e.
\emph default
if
\family typewriter
NPY_SIZEOF_INT
\family default
==
\family typewriter
NPY_SIZEOF_INTP
\family default
) or in Python 2.5, the len member also matches an equivalent member of the
buffer object.
It is useful to represent a generic single-segment chunk of memory.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD
\end_layout
\begin_layout LyX-Code
\emph on
PyObject *
\emph default
base;
\end_layout
\begin_layout LyX-Code
\emph on
void *
\emph default
ptr;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp
\emph default
len;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
flags;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArray_Chunk
\emph default
;
\end_layout
\begin_layout Standard
The members are
\end_layout
\begin_layout Description
PyObject_HEAD Necessary for all Python objects.
Included here so that the
\family typewriter
PyArray_Chunk
\family default
structure matches that of the buffer object (at least to the len member).
\end_layout
\begin_layout Description
base The Python object this chunk of memory comes from.
Needed so that memory can be accounted for properly.
\end_layout
\begin_layout Description
ptr A pointer to the start of the single-segment chunk of memory.
\end_layout
\begin_layout Description
len The length of the segment in bytes.
\end_layout
\begin_layout Description
flags Any data flags (
\emph on
e.g.
\emph default
\family typewriter
NPY_WRITEABLE
\family default
) that should be used to interpret the memory.
\end_layout
\begin_layout Subsection
PyArrayInterface
\end_layout
\begin_layout Standard
The
\family typewriter
PyArrayInterface
\family default
\begin_inset LatexCommand index
name "PyArrayInterface"
\end_inset
structure is defined so that NumPy and other extension modules can use
the rapid array interface protocol.
The
\series bold
__array_struct__
\series default
method of an object that supports the rapid array interface protocol should
return a
\family typewriter
PyCObject
\family default
that contains a pointer to a
\family typewriter
PyArrayInterface
\family default
structure with the relevant details of the array.
After the new array is created, the attribute should be
\family typewriter
DECREF
\family default
'd which will free the
\family typewriter
PyArrayInterface
\family default
structure.
Remember to
\family typewriter
INCREF
\family default
the object (whose
\series bold
__array_struct__
\series default
attribute was retrieved) and point the base member of the new
\family typewriter
PyArrayObject
\family default
to this same object.
In this way the memory for the array will be managed correctly.
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
two;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
nd;
\end_layout
\begin_layout LyX-Code
\emph on
char
\emph default
typekind;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
itemsize;
\end_layout
\begin_layout LyX-Code
\emph on
int
\emph default
flags;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp *
\emph default
shape;
\end_layout
\begin_layout LyX-Code
\emph on
npy_intp *
\emph default
strides;
\end_layout
\begin_layout LyX-Code
\emph on
void *
\emph default
data;
\end_layout
\begin_layout LyX-Code
PyObject *descr;
\end_layout
\begin_layout LyX-Code
}
\emph on
PyArrayInterface
\emph default
;
\end_layout
\begin_layout Description
two the integer 2 as a sanity check.
\end_layout
\begin_layout Description
nd the number of dimensions in the array.
\end_layout
\begin_layout Description
typekind A character indicating what kind of array is present according
to the typestring convention with 't' -> bitfield, 'b' -> Boolean, 'i'
-> signed integer, 'u' -> unsigned integer, 'f' -> floating point, 'c'
-> complex floating point, 'O' -> object, 'S' -> string, 'U' -> unicode,
'V' -> void.
\end_layout
\begin_layout Description
itemsize the number of bytes each item in the array requires.
\end_layout
\begin_layout Description
flags any of the bits
\family typewriter
NPY_C_CONTIGUOUS
\family default
(1),
\family typewriter
NPY_F_CONTIGUOUS
\family default
(2),
\family typewriter
NPY_ALIGNED
\family default
(0x100),
\family typewriter
NPY_NOTSWAPPED
\family default
(0x200), or
\family typewriter
NPY_WRITEABLE
\family default
(0x400) to indicate something about the data.
The
\family typewriter
NPY_ALIGNED
\family default
,
\family typewriter
NPY_C_CONTIGUOUS
\family default
, and
\family typewriter
NPY_F_CONTIGUOUS
\family default
flags can actually be determined from the other parameters.
The flag
\family typewriter
NPY_ARR_HAS_DESCR
\family default
(0x800) can also be set to indicate to objects consuming the version 3
array interface that the descr member of the structure is present (it will
be ignored by objects consuming version 2 of the array interface).
\end_layout
\begin_layout Description
shape An array containing the size of the array in each dimension.
\end_layout
\begin_layout Description
strides An array containing the number of bytes to jump to get to the next
element in each dimension.
\end_layout
\begin_layout Description
data A pointer
\emph on
to
\emph default
the first element of the array.
\end_layout
\begin_layout Description
descr A Python object describing the data-type in more detail (currently
an array_description list of tuples).
This can be
\family typewriter
NULL
\family default
if
\emph on
typekind
\emph default
and
\emph on
itemsize
\emph default
provide enough information.
\end_layout
\begin_layout Subsection
Internally used structures
\end_layout
\begin_layout Standard
Internally, the code uses some additional Python objects primarily for memory
management.
These types are not accessible directly from Python, and are not exposed
to the C-API.
They are included here only for completeness and assistance in understanding
the code.
\end_layout
\begin_layout Subsubsection
PyUFuncLoopObject
\end_layout
\begin_layout Standard
A loose wrapper for a C-structure that contains the information needed for
looping.
This is useful if you are trying to understand the ufunc looping code.
The
\family typewriter
PyUFuncLoopObject
\family default
is the associated C-structure.
It is defined in the
\family typewriter
ufuncobject.h
\family default
header.
\end_layout
\begin_layout Subsubsection
PyUFuncReduceObject
\end_layout
\begin_layout Standard
A loose wrapper for the C-structure that contains the information needed
for reduce-like methods of ufuncs.
This is useful if you are trying to understand the reduce, accumulate,
and reduce-at code.
The
\family typewriter
PyUFuncReduceObject
\family default
is the associated C-structure.
It is defined in the
\family typewriter
ufuncobject.h
\family default
header.
\end_layout
\begin_layout Subsubsection
PyUFunc_Loop1d
\end_layout
\begin_layout Standard
A simple linked-list of C-structures containing the information needed to
define a 1-d loop for a ufunc for every defined signature of a user-defined
data-type.
\end_layout
\begin_layout Subsubsection
PyArrayMapIter_Type
\end_layout
\begin_layout Standard
Advanced indexing is handled with this Python type.
It is simply a loose wrapper around the C-structure containing the variables
needed for advanced array indexing.
The associated C-structure,
\family typewriter
PyArrayMapIterObject
\family default
, is useful if you are trying to understand the advanced-index mapping code.
It is defined in the
\family typewriter
arrayobject.h
\family default
header.
This type is not exposed to Python and could be replaced with a C-structure.
As a Python type it takes advantage of reference-counted memory management.
\end_layout
\begin_layout Chapter
Complete API
\end_layout
\begin_layout Quotation
The test of a first-rate intelligence is the ability to hold two opposed
ideas in the mind at the same time, and still retain the ability to function.
\end_layout
\begin_layout Right Address
---
\emph on
F.
Scott Fitzgerald
\end_layout
\begin_layout Quotation
For a successful technology, reality must take precedence over public relations,
for Nature cannot be fooled.
\end_layout
\begin_layout Right Address
---
\emph on
Richard P.
Feynman
\end_layout
\begin_layout Section
Configuration defines
\end_layout
\begin_layout Standard
When NumPy is built, a configuration file is constructed and placed as config.h
in the NumPy include directory.
This configuration file ensures that specific macros are defined and defines
other macros based on whether or not your system has certain features.
It is included by the arrayobject.h file.
\end_layout
\begin_layout Subsection
Guaranteed to be defined
\end_layout
\begin_layout Standard
The
\series bold
SIZEOF_
\series default
<CTYPE> constants are defined so that sizeof information is available to
the pre-processor.
\end_layout
\begin_layout Description
CHAR_BIT The number of bits of a char.
The char is the unit of all sizeof definitions
\end_layout
\begin_layout Description
SIZEOF_SHORT sizeof(short)
\end_layout
\begin_layout Description
SIZEOF_INT sizeof(int)
\end_layout
\begin_layout Description
SIZEOF_LONG sizeof(long)
\end_layout
\begin_layout Description
SIZEOF_LONG_LONG sizeof(longlong) where longlong is defined appropriately
on the platform (A macro defines
\series bold
SIZEOF_LONGLONG
\series default
as well.)
\end_layout
\begin_layout Description
SIZEOF_PY_LONG_LONG
\end_layout
\begin_layout Description
SIZEOF_FLOAT sizeof(float)
\end_layout
\begin_layout Description
SIZEOF_DOUBLE sizeof(double)
\end_layout
\begin_layout Description
SIZEOF_LONG_DOUBLE sizeof(longdouble) (A macro defines
\series bold
SIZEOF_LONGDOUBLE
\series default
as well.)
\end_layout
\begin_layout Description
SIZEOF_PY_INTPTR_T Size of a pointer on this platform (sizeof(void *)) (A
macro defines SIZEOF_INTP as well.)
\end_layout
\begin_layout Subsection
Possible defines
\end_layout
\begin_layout Standard
These defines will cause the compilation to ignore compatibility code that
is placed in NumPy and use the system code instead.
If they are not defined, then the system does not have that capability.
\end_layout
\begin_layout Description
HAVE_LONGDOUBLE_FUNCS System has C99 long double math functions.
\end_layout
\begin_layout Description
HAVE_FLOAT_FUNCS System has C99 float math functions.
\end_layout
\begin_layout Description
HAVE_INVERSE_HYPERBOLIC System has inverse hyperbolic functions: asinh,
acosh, and atanh.
\end_layout
\begin_layout Description
HAVE_INVERSE_HYPERBOLIC_FLOAT System has C99 float extensions to inverse
hyperbolic functions: asinhf, acoshf, atanhf
\end_layout
\begin_layout Description
HAVE_INVERSE_HYPERBOLIC_LONGDOUBLE System has C99 long double extensions
to inverse hyperbolic functions: asinhl, acoshl, atanhl.
\end_layout
\begin_layout Description
HAVE_ISNAN System has an isnan function.
\end_layout
\begin_layout Description
HAVE_ISINF System has an isinf function.
\end_layout
\begin_layout Description
HAVE_LOG1P System has the log1p function:
\begin_inset Formula $\log\left(x+1\right)$
\end_inset
.
\end_layout
\begin_layout Description
HAVE_EXPM1 System has the expm1 function:
\begin_inset Formula $\exp\left(x\right)-1$
\end_inset
.
\end_layout
\begin_layout Description
HAVE_RINT System has the rint function.
\end_layout
\begin_layout Section
Array Data Types
\end_layout
\begin_layout Standard
The standard array can have 21 different data types (and has some support
for adding your own types).
These data types all have an enumerated type, an enumerated type-character,
and a corresponding array scalar Python type object (placed in a hierarchy).
There are also standard C typedefs to make it easier to manipulate elements
of the given data type.
For the numeric types, there are also bit-width equivalent C typedefs and
named typenumbers that make it easier to select the precision desired.
\end_layout
\begin_layout Warning
The names for the types in c code follows c naming conventions more closely.
The Python names for these types follow Python conventions.
Thus, NPY_FLOAT picks up a 32-bit float in C, but
\begin_inset Quotes eld
\end_inset
float_
\begin_inset Quotes erd
\end_inset
in python corresponds to a 64-bit double.
The bit-width names can be used in both Python and C for clarity.
\end_layout
\begin_layout Subsection
Enumerated Types
\end_layout
\begin_layout Standard
There is a list of enumerated types defined providing the basic 21 data
types plus some useful generic names.
Whenever the code requires a type number, one of these enumerated types
is requested.
The types are all called
\series bold
NPY_
\series default
<NAME> where <NAME> can be
\end_layout
\begin_layout Quote
\series bold
BOOL
\series default
,
\series bold
BYTE
\series default
,
\series bold
UBYTE
\series default
,
\series bold
SHORT
\series default
,
\series bold
USHORT
\series default
,
\series bold
INT
\series default
,
\series bold
UINT
\series default
,
\series bold
LONG
\series default
,
\series bold
ULONG
\series default
,
\series bold
LONGLONG
\series default
,
\series bold
ULONGLONG
\series default
,
\series bold
FLOAT
\series default
,
\series bold
DOUBLE
\series default
,
\series bold
LONGDOUBLE
\series default
,
\series bold
CFLOAT
\series default
,
\series bold
CDOUBLE
\series default
,
\series bold
CLONGDOUBLE
\series default
,
\series bold
OBJECT
\series default
,
\series bold
STRING
\series default
,
\series bold
UNICODE
\series default
,
\series bold
VOID
\end_layout
\begin_layout Quote
\series bold
NTYPES
\series default
,
\series bold
NOTYPE
\series default
,
\series bold
USERDEF
\series default
,
\series bold
DEFAULT_TYPE
\end_layout
\begin_layout Standard
The various character codes indicating certain types are also part of an
enumerated list.
References to type characters (should they be needed at all) should always
use these enumerations.
The form of them is
\series bold
NPY_
\series default
<NAME>
\series bold
LTR
\series default
where <NAME> can be
\end_layout
\begin_layout Quote
\series bold
BOOL
\series default
,
\series bold
BYTE
\series default
,
\series bold
UBYTE
\series default
,
\series bold
SHORT
\series default
,
\series bold
USHORT
\series default
,
\series bold
INT
\series default
,
\series bold
UINT
\series default
,
\series bold
LONG
\series default
,
\series bold
ULONG
\series default
,
\series bold
LONGLONG
\series default
,
\series bold
ULONGLONG
\series default
,
\series bold
FLOAT
\series default
,
\series bold
DOUBLE
\series default
,
\series bold
LONGDOUBLE
\series default
,
\series bold
CFLOAT
\series default
,
\series bold
CDOUBLE
\series default
,
\series bold
CLONGDOUBLE
\series default
,
\series bold
OBJECT
\series default
,
\series bold
STRING
\series default
,
\series bold
VOID
\series default
\end_layout
\begin_layout Quote
\series bold
INTP
\series default
,
\series bold
UINTP
\end_layout
\begin_layout Quote
\series bold
GENBOOL
\series default
,
\series bold
SIGNED
\series default
,
\series bold
UNSIGNED
\series default
,
\series bold
FLOATING
\series default
,
\series bold
COMPLEX
\end_layout
\begin_layout Standard
The latter group of <NAME>s corresponds to letters used in the array interface
typestring specification.
\end_layout
\begin_layout Subsection
Defines
\end_layout
\begin_layout Subsubsection
Max and min values for integers
\end_layout
\begin_layout Description
NPY_MAX_INT
\series medium
<bits>
\end_layout
\begin_layout Description
NPY_MAX_UINT
\series medium
<bits>
\end_layout
\begin_layout Description
NPY_MIN_INT
\series medium
<bits>
\series default
\end_layout
\begin_layout Description
\InsetSpace ~
These are defined for <bits> = 8, 16, 32, 64, 128, and 256 and provide
the maximum (minimum) value of the corresponding (unsigned) integer type.
Note: the actual integer type may not be available on all platforms (i.e.
128-bit and 256-bit integers are rare).
\end_layout
\begin_layout Description
NPY_MIN_
\series medium
<type>
\end_layout
\begin_layout Description
\InsetSpace ~
This is defined for <type> =
\series bold
BYTE
\series default
,
\series bold
SHORT
\series default
,
\series bold
INT
\series default
,
\series bold
LONG
\series default
,
\series bold
LONGLONG
\series default
,
\series bold
INTP
\end_layout
\begin_layout Description
NPY_MAX_
\series medium
<type>
\end_layout
\begin_layout Description
\InsetSpace ~
This is defined for all defined for <type> =
\series bold
BYTE
\series default
,
\series bold
UBYTE
\series default
,
\series bold
SHORT
\series default
,
\series bold
USHORT
\series default
,
\series bold
INT
\series default
,
\series bold
UINT
\series default
,
\series bold
LONG
\series default
,
\series bold
ULONG
\series default
,
\series bold
LONGLONG
\series default
,
\series bold
ULONGLONG
\series default
,
\series bold
INTP
\series default
,
\series bold
UINTP
\end_layout
\begin_layout Subsubsection
Number of bits in data types
\end_layout
\begin_layout Standard
All
\series bold
NPY_SIZEOF_
\series default
<CTYPE> constants have corresponding
\series bold
NPY_BITSOF_
\series default
<CTYPE> constants defined.
The
\series bold
NPY_BITSOF_
\series default
<CTYPE> constants provide the number of bits in the data type.
Specifically, the available <CTYPE>s are
\end_layout
\begin_layout Quote
\series bold
BOOL
\series default
,
\series bold
CHAR
\series default
,
\series bold
SHORT
\series default
,
\series bold
INT
\series default
,
\series bold
LONG
\series default
,
\series bold
LONGLONG
\series default
,
\series bold
FLOAT
\series default
,
\series bold
DOUBLE
\series default
,
\series bold
LONGDOUBLE
\end_layout
\begin_layout Subsubsection
Bit-width references to enumerated typenums
\end_layout
\begin_layout Standard
All of the numeric data types (integer, floating point, and complex) have
constants that are defined to be a specific enumerated type number.
Exactly which enumerated type a bit-width type refers to is platform dependent.
In particular, the constants available are
\series bold
PyArray_
\series default
<NAME><BITS> where <NAME> is
\series bold
INT
\series default
,
\series bold
UINT
\series default
,
\series bold
FLOAT
\series default
,
\series bold
COMPLEX
\series default
and <BITS> can be 8, 16, 32, 64, 80, 96, 128, 160, 192, 256, and 512.
Obviously not all bit-widths are available on all platforms for all the
kinds of numeric types.
Commonly 8-, 16-, 32-, 64-bit integers; 32-, 64-bit floats; and 64-, 128-bit
complex types are available.
\end_layout
\begin_layout Subsubsection
Integer that can hold a pointer
\end_layout
\begin_layout Standard
The constants
\series bold
PyArray_INTP
\series default
and
\series bold
PyArray_UINTP
\series default
refer to an enumerated integer type that is large enough to hold a pointer
on the platform.
Index arrays should always be converted to
\series bold
PyArray_INTP
\series default
, because the dimension of the array is of type npy_intp.
\end_layout
\begin_layout Subsection
C-type names
\end_layout
\begin_layout Standard
There are standard variable types for each of the numeric data types and
the bool data type.
Some of these are already available in the C-specification.
You can create variables in extension code with these types.
\end_layout
\begin_layout Subsubsection
Boolean
\end_layout
\begin_layout Description
npy_bool unsigned char; The constants NPY_FALSE and NPY_TRUE are also defined.
\end_layout
\begin_layout Subsubsection
(Un)Signed Integer
\end_layout
\begin_layout Standard
Unsigned versions of the integers can be defined by pre-pending a 'u' to
the front of the integer name.
\end_layout
\begin_layout Description
npy_(u)byte (unsigned) char
\end_layout
\begin_layout Description
npy_(u)short (unsigned) short
\end_layout
\begin_layout Description
npy_(u)int (unsigned) int
\end_layout
\begin_layout Description
npy_(u)long (unsigned) long int
\end_layout
\begin_layout Description
npy_(u)longlong (unsigned long long int)
\end_layout
\begin_layout Description
npy_(u)intp (unsigned) Py_intptr_t (an integer that is the size of a pointer
on the platform).
\end_layout
\begin_layout Subsubsection
(Complex) Floating point
\end_layout
\begin_layout Description
npy_(c)float float
\end_layout
\begin_layout Description
npy_(c)double double
\end_layout
\begin_layout Description
npy_(c)longdouble long double
\end_layout
\begin_layout Standard
complex types are structures with
\series bold
.real
\series default
and
\series bold
.imag
\series default
members (in that order).
\end_layout
\begin_layout Subsubsection
Bit-width names
\end_layout
\begin_layout Standard
There are also typedefs for signed integers, unsigned integers, floating
point, and complex floating point types of specific bit-widths.
The available type names are
\end_layout
\begin_layout Quote
\series bold
npy_int
\series default
<bits>,
\series bold
npy_uint
\series default
<bits>,
\series bold
npy_float
\series default
<bits>, and
\series bold
npy_complex
\series default
<bits>
\end_layout
\begin_layout Standard
where <bits> is the number of bits in the type and can be
\series bold
8
\series default
,
\series bold
16
\series default
,
\series bold
32
\series default
,
\series bold
64
\series default
, 128, and 256 for integer types; 16,
\series bold
32
\series default
,
\series bold
64
\series default
, 80, 96, 128, and 256 for floating-point types; and 32,
\series bold
64
\series default
,
\series bold
128
\series default
, 160, 192, and 512 for complex-valued types.
Which bit-widths are available is platform dependent.
The bolded bit-widths are usually available on all platforms.
\end_layout
\begin_layout Subsection
Printf Formatting
\end_layout
\begin_layout Standard
For help in printing, the following strings are defined as the correct format
specifier in printf and related commands.
\end_layout
\begin_layout Quote
\series bold
NPY_LONGLONG_FMT
\series default
,
\series bold
NPY_ULONGLONG_FMT
\series default
,
\series bold
NPY_INTP_FMT
\series default
,
\series bold
NPY_UINTP_FMT
\series default
,
\series bold
NPY_LONGDOUBLE_FMT
\end_layout
\begin_layout Section
Array API
\begin_inset LatexCommand index
name "ndarray!C-API|("
\end_inset
\begin_inset LatexCommand index
name "C-API!array|("
\end_inset
\end_layout
\begin_layout Subsection
Array structure and data access
\end_layout
\begin_layout Standard
These macros all access the PyArrayObject structure members.
The input argument, obj, can be any
\family typewriter
PyObject*
\family default
that is directly interpretable as a
\family typewriter
PyArrayObject*
\family default
(any instance of the
\series bold
PyArray_Type
\series default
and its sub-types).
\end_layout
\begin_layout Description
PyArray_DATA (
\family typewriter
void*
\family default
) (
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
PyArray_BYTES (
\family typewriter
char*
\family default
) (
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
These two macros are similar and obtain the pointer to the data-buffer
for the array.
The first macro can (and should be) assigned to a particular pointer where
the second is for generic processing.
If you have not guaranteed a contiguous and/or aligned array then be sure
you understand how to access the data in the array to avoid memory and/or
alignment problems.
\end_layout
\begin_layout Description
PyArray_DIMS (
\family typewriter
npy_intp*
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
PyArray_STRIDES (
\family typewriter
npy_intp*
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
PyArray_DIM (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
arr,
\family typewriter
int
\family default
n)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the shape in the
\emph on
n
\emph default
\begin_inset Formula $^{\textrm{th}}$
\end_inset
dimension.
\end_layout
\begin_layout Description
PyArray_STRIDE (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
arr,
\family typewriter
int
\family default
n)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the stride in the
\emph on
n
\emph default
\begin_inset Formula $^{\textrm{th}}$
\end_inset
dimension.
\end_layout
\begin_layout Description
PyArray_BASE (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
PyArray_DESCR (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
PyArray_FLAGS (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
PyArray_ITEMSIZE (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the itemsize for the elements of this array.
\end_layout
\begin_layout Description
PyArray_TYPE (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (builtin) typenumber for the elements of this array.
\end_layout
\begin_layout Description
PyArray_GETITEM (
\family typewriter
PyObject
\family default
*) (
\family typewriter
PyObject*
\family default
arr,
\family typewriter
void*
\family default
itemptr)
\end_layout
\begin_layout Description
\InsetSpace ~
Get a Python object from the ndarray,
\emph on
arr
\emph default
, at the location pointed to by itemptr.
Return
\family typewriter
NULL
\family default
on failure.
\end_layout
\begin_layout Description
PyArray_SETITEM (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
arr,
\family typewriter
void*
\family default
itemptr,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert obj and place it in the ndarray,
\emph on
arr
\emph default
, at the place pointed to by itemptr.
Return -1 if an error occurs or 0 on success.
\end_layout
\begin_layout Description
PyArray_SIZE (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the total size (in number of elements) of the array.
\end_layout
\begin_layout Description
PyArray_Size (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns 0 if
\emph on
obj
\emph default
is not a sub-class of bigndarray.
Otherwise, returns the total number of elements in the array.
Safer version of
\family typewriter
PyArray_SIZE
\family default
(
\emph on
obj
\emph default
).
\end_layout
\begin_layout Description
PyArray_NBYTES (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the total number of bytes consumed by the array.
\end_layout
\begin_layout Subsubsection
Data access
\end_layout
\begin_layout Standard
These functions and macros provide easy access to elements of the ndarray
from C.
These work for all arrays.
You may need to take care when accessing the data in the array, however,
if it is not in machine byte-order, misaligned, or not writeable.
In other words, be sure to respect the state of the flags unless you know
what you are doing, or have previously guaranteed an array that is writeable,
aligned, and in machine byte-order using PyArray_FromAny.
If you wish to handle all types of arrays, the copyswap function for each
type is useful for handling misbehaved arrays.
Some platforms (e.g.
Solaris) do not like misaligned data and will crash if you de-reference
a misaligned pointer.
Other platforms (e.g.
x86 Linux) will just work more slowly with misaligned data.
\end_layout
\begin_layout Description
PyArray_GetPtr (
\family typewriter
void*
\family default
) (
\family typewriter
PyArrayObject*
\family default
aobj,
\family typewriter
npy_intp*
\family default
ind)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a pointer to the data of the ndarray,
\emph on
aobj
\emph default
, at the N-dimensional index given by the c-array,
\emph on
ind
\emph default
, (which must be at least
\emph on
aobj
\emph default
->nd in size).
You may want to typecast the returned pointer to the data type of the ndarray.
\end_layout
\begin_layout Description
PyArray_GETPTR1 (
\family typewriter
void*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
<npy_intp>
\family default
i)
\end_layout
\begin_layout Description
PyArray_GETPTR2 (
\family typewriter
void*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
<npy_intp>
\family default
i,
\family typewriter
<npy_intp>
\family default
j)
\end_layout
\begin_layout Description
PyArray_GETPTR3 (
\family typewriter
void*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
<npy_intp>
\family default
i,
\family typewriter
<npy_intp>
\family default
j,
\family typewriter
<npy_intp>
\family default
k)
\end_layout
\begin_layout Description
PyArray_GETPTR4 (
\family typewriter
void*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
<npy_intp>
\family default
i,
\family typewriter
<npy_intp>
\family default
j,
\family typewriter
<npy_intp>
\family default
k,
\family typewriter
<npy_intp>
\family default
l)
\end_layout
\begin_layout Description
\InsetSpace ~
Quick, inline access to the element at the given coordinates in the ndarray,
\emph on
obj
\emph default
, which must have respectively 1, 2, 3, or 4 dimensions (this is not checked).
The corresponding
\emph on
i
\emph default
,
\emph on
j
\emph default
,
\emph on
k
\emph default
, and
\emph on
l
\emph default
coordinates can be any integer but will be interpreted as
\family typewriter
npy_intp
\family default
.
You may want to typecast the returned pointer to the data type of the ndarray.
\end_layout
\begin_layout Subsection
Creating arrays
\end_layout
\begin_layout Subsubsection
From scratch
\end_layout
\begin_layout Description
PyArray_NewFromDescr (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyTypeObject*
\family default
subtype,
\family typewriter
PyArray_Descr*
\family default
descr,
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
npy_intp*
\family default
strides,
\family typewriter
void*
\family default
data,
\family typewriter
int
\family default
flags,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
This is the main array creation function.
Most new arrays are created with this flexible function.
The returned object is an object of Python-type
\emph on
subtype
\emph default
, which must be a subtype of
\family typewriter
PyArray_Type
\family default
.
The array has
\emph on
nd
\emph default
dimensions, described by
\emph on
dims
\emph default
.
The data-type descriptor of the new array is
\emph on
descr
\emph default
.
If
\emph on
subtype
\emph default
is not
\family typewriter
&PyArray_Type
\family default
(
\emph on
e.g.
\emph default
a Python subclass of the ndarray), then
\emph on
obj
\emph default
is the object to pass to the
\series bold
__array_finalize__
\series default
method of the subclass.
If
\emph on
data
\emph default
is
\family typewriter
NULL
\family default
, then new memory will be allocated and
\emph on
flags
\emph default
can be non-zero to indicate a Fortran-style contiguous array.
If
\emph on
data
\emph default
is not
\family typewriter
NULL
\family default
, then it is assumed to point to the memory to be used for the array and
the
\emph on
flags
\emph default
argument is used as the new flags for the array (except the state of
\family typewriter
NPY_OWNDATA
\family default
and
\family typewriter
UPDATEIFCOPY
\family default
flags of the new array will be reset).
In addition, if
\emph on
data
\emph default
is non-NULL, then
\emph on
strides
\emph default
can also be provided.
If
\emph on
strides
\emph default
is
\family typewriter
NULL
\family default
, then the array strides are computed as C-style contiguous (default) or
Fortran-style contiguous (
\emph on
flags
\emph default
is nonzero for
\emph on
data
\emph default
=
\family typewriter
NULL
\family default
or
\emph on
flags
\emph default
&
\family typewriter
NPY_F_CONTIGUOUS
\family default
is nonzero non-NULL
\emph on
data
\emph default
).
Any provided
\emph on
dims
\emph default
and
\emph on
strides
\emph default
are copied into newly allocated dimension and strides arrays for the new
array object.
\end_layout
\begin_layout Description
PyArray_New (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyTypeObject*
\family default
subtype,
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
type_num,
\family typewriter
npy_intp*
\family default
strides,
\family typewriter
void*
\family default
data,
\family typewriter
int
\family default
itemsize,
\family typewriter
int
\family default
flags,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
This is similar to
\family typewriter
PyArray
\family default
\series bold
_
\family typewriter
\series default
DescrNew
\family default
(...) except you specify the data-type descriptor with
\emph on
type_num
\emph default
and
\emph on
itemsize
\emph default
, where
\emph on
type_num
\emph default
corresponds to a builtin (or user-defined) type.
If the type always has the same number of bytes, then itemsize is ignored.
Otherwise, itemsize specifies the particular size of this array.
\end_layout
\begin_layout Warning
If data is passed to
\family typewriter
PyArray_NewFromDescr
\family default
or
\family typewriter
PyArray_New
\family default
, this memory must not be deallocated until the new array is deleted.
If this data came from another Python object, this can be accomplished
using
\family typewriter
Py_INCREF
\family default
on that object and setting the base member of the new array to point to
that object.
If strides are passed in they must be consistent with the dimensions, the
itemsize, and the data of the array.
\end_layout
\begin_layout Description
PyArray_SimpleNew (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new unitialized array of type,
\emph on
typenum
\emph default
, whose size in each of
\emph on
nd
\emph default
dimensions is given by the integer array,
\emph on
dims
\emph default
.
This function cannot be used to create a flexible-type array (no itemsize
given).
\end_layout
\begin_layout Description
PyArray_SimpleNewFromData (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
typenum,
\family typewriter
void*
\family default
data)
\end_layout
\begin_layout Description
\InsetSpace ~
Create an array wrapper around
\emph on
data
\emph default
pointed to by the given pointer.
The array flags will have a default that the data area is well-behaved
and C-style contiguous.
The shape of the array is given by the
\emph on
dims
\emph default
c-array of length
\emph on
nd
\emph default
.
The data-type of the array is indicated by
\emph on
typenum
\emph default
.
\end_layout
\begin_layout Description
PyArray_SimpleNewFromDescr (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
PyArray_Descr*
\family default
descr)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new array with the provided data-type descriptor,
\emph on
descr
\emph default
, of the shape deteremined by
\emph on
nd
\emph default
and
\emph on
dims
\emph default
.
\end_layout
\begin_layout Description
PyArray_FILLWBYTE (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
val)
\end_layout
\begin_layout Description
\InsetSpace ~
Fill the array pointed to by
\emph on
obj
\emph default
---which must be a (subclass of) bigndarray---with the contents of
\emph on
val
\emph default
(evaluated as a byte).
\end_layout
\begin_layout Description
PyArray_Zeros (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new
\emph on
nd
\emph default
-dimensional array with shape given by
\emph on
dims
\emph default
and data type given by
\emph on
dtype
\emph default
.
If
\emph on
fortran
\emph default
is non-zero, then a Fortran-order array is created, otherwise a C-order
array is created.
Fill the memory with zeros (or the 0 object if
\emph on
dtype
\emph default
corresponds to
\family typewriter
PyArray_OBJECT
\family default
).
\end_layout
\begin_layout Description
PyArray_ZEROS (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
type_num,
\family typewriter
int
\family default
fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Macro form of
\family typewriter
PyArray_Zeros
\family default
which takes a type-number instead of a data-type object.
\end_layout
\begin_layout Description
PyArray_Empty (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new
\emph on
nd
\emph default
-dimensional array with shape given by
\emph on
dims
\emph default
and data type given by
\emph on
dtype
\emph default
.
If
\emph on
fortran
\emph default
is non-zero, then a Fortran-order array is created, otherwise a C-order
array is created.
The array is uninitialized unless the data type corresponds to
\family typewriter
PyArray_OBJECT
\family default
in which case the array is filled with
\family typewriter
Py_None
\family default
.
\end_layout
\begin_layout Description
PyArray_EMPTY (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Macro form of
\family typewriter
PyArray_Empty
\family default
which takes a type-number,
\emph on
typenum
\emph default
, instead of a data-type object.
\end_layout
\begin_layout Description
PyArray_Arange (
\family typewriter
PyObject*
\family default
) (
\family typewriter
double
\family default
start,
\family typewriter
double
\family default
stop,
\family typewriter
double
\family default
step,
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new 1-dimensional array of data-type,
\emph on
typenum
\emph default
, that ranges from
\emph on
start
\emph default
to
\emph on
stop
\emph default
(exclusive) in increments of
\emph on
step
\emph default
.
Equivalent to
\series bold
arange
\series default
(
\emph on
start
\emph default
,
\emph on
stop
\emph default
,
\emph on
step
\emph default
, dtype).
\end_layout
\begin_layout Description
PyArray_ArangeObj (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
start,
\family typewriter
PyObject*
\family default
stop,
\family typewriter
PyObject*
\family default
step,
\family typewriter
PyArray_Descr*
\family default
descr)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new 1-dimensional array of data-type determined by
\family typewriter
descr
\family default
, that ranges from
\family typewriter
start
\family default
to
\family typewriter
stop
\family default
(exclusive) in increments of
\family typewriter
step
\family default
.
Equivalent to arange(
\family typewriter
start
\family default
,
\family typewriter
stop
\family default
,
\family typewriter
step
\family default
,
\family typewriter
typenum
\family default
).
\end_layout
\begin_layout Subsubsection
From other objects
\end_layout
\begin_layout Description
PyArray_FromAny (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
min_depth,
\family typewriter
int
\family default
max_depth,
\family typewriter
int
\family default
requirements,
\family typewriter
PyObject*
\family default
context)
\end_layout
\begin_layout Description
\InsetSpace ~
This is the main function used to obtain an array from any nested sequence,
or object that exposes the array interface,
\family typewriter
op
\family default
.
The parameters allow specification of the required
\emph on
type
\emph default
, the minimum (
\emph on
min_depth
\emph default
) and maximum (
\emph on
max_depth
\emph default
) number of dimensions acceptable, and other
\emph on
requirements
\emph default
for the array.
The
\emph on
dtype
\emph default
argument needs to be a
\family typewriter
PyArray_Descr
\family default
structure indicating the desired data-type (including required byteorder).
The
\emph on
dtype
\emph default
argument may be NULL, indicating that any data-type (and byteorder) is
acceptable.
If you want to use
\family typewriter
NULL
\family default
for the
\emph on
dtype
\emph default
and ensure the array is notswapped then use
\family typewriter
PyArray_CheckFromAny
\family default
.
A value of 0 for either of the depth parameters causes the parameter to
be ignored.
Any of the following array flags can be added (
\emph on
e.g.
\emph default
using |) to get the
\emph on
requirements
\emph default
argument.
If your code can handle general (
\emph on
e.g.
\emph default
strided, byte-swapped, or unaligned arrays) then
\emph on
requirements
\emph default
may be 0.
Also, if
\emph on
op
\emph default
is not already an array (or does not expose the array interface), then
a new array will be created (and filled from
\emph on
op
\emph default
using the sequence protocol).
The new array will have
\family typewriter
NPY_DEFAULT
\family default
as its flags member.
The
\emph on
context
\emph default
argument is passed to the
\series bold
__array__
\series default
method of
\emph on
op
\emph default
and is only used if the array is constructed that way.
\end_layout
\begin_deeper
\begin_layout Description
NPY_C_CONTIGUOUS Make sure the returned array is C-style contiguous
\end_layout
\begin_layout Description
NPY_F_CONTIGUOUS Make sure the returned array is Fortran-style contiguous.
\end_layout
\begin_layout Description
NPY_ALIGNED Make sure the returned array is aligned on proper boundaries
for its data type.
An aligned array has the data pointer and every strides factor as a multiple
of the alignment factor for the data-type-descriptor.
\end_layout
\begin_layout Description
NPY_WRITEABLE Make sure the returned array can be written to.
\end_layout
\begin_layout Description
NPY_ENSURECOPY Make sure a copy is made of
\emph on
op
\emph default
.
If this flag is not present, data is not copied if it can be avoided.
\end_layout
\begin_layout Description
NPY_ENSUREARRAY Make sure the result is a base-class ndarray or bigndarray.
By default, if
\emph on
op
\emph default
is an instance of a subclass of the bigndarray, an instance of that same
subclass is returned.
If this flag is set, an ndarray object will be returned instead.
\end_layout
\begin_layout Description
NPY_FORCECAST Force a cast to the output type even if it cannot be done
safely.
Without this flag, a data cast will occur only if it can be done safely,
otherwise an error is reaised.
\end_layout
\begin_layout Description
NPY_UPDATEIFCOPY If
\emph on
op
\emph default
is already an array, but does not satisfy the requirements, then a copy
is made (which will satisfy the requirements).
If this flag is present and a copy (of an object that is already an array)
must be made, then the corresponding
\family typewriter
NPY_UPDATEIFCOPY
\family default
flag is set in the returned copy and
\emph on
op
\emph default
is made to be read-only.
When the returned copy is deleted (presumably after your calculations are
complete), its contents will be copied back into
\emph on
op
\emph default
and the
\emph on
op
\emph default
array will be made writeable again.
If
\emph on
op
\emph default
is not writeable to begin with, then an error is raised.
If
\emph on
op
\emph default
is not already an array, then this flag has no effect.
\end_layout
\begin_layout Description
NPY_BEHAVED
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
NPY_WRITEABLE
\end_layout
\begin_layout Description
NPY_CARRAY
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_BEHAVED
\end_layout
\begin_layout Description
NPY_CARRAY_RO
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_FARRAY
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_BEHAVED
\end_layout
\begin_layout Description
NPY_FARRAY_RO
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_DEFAULT
\family typewriter
NPY_CARRAY
\end_layout
\begin_layout Description
NPY_IN_ARRAY
\family typewriter
NPY_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_IN_FARRAY
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_INOUT_ARRAY
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_INOUT_FARRAY
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_OUT_ARRAY
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
NPY_UPDATEIFCOPY
\end_layout
\begin_layout Description
NPY_OUT_FARRAY
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
UPDATEIFCOPY
\end_layout
\end_deeper
\begin_layout Description
PyArray_CheckFromAny (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
min_depth,
\family typewriter
int
\family default
max_depth,
\family typewriter
int
\family default
requirements,
\family typewriter
PyObject*
\family default
context)
\end_layout
\begin_layout Description
\InsetSpace ~
Nearly identical to
\family typewriter
PyArray_FromAny
\family default
(...) except
\emph on
requirements
\emph default
can contain
\family typewriter
NPY_NOTSWAPPED
\family default
(over-riding the specification in
\emph on
dtype
\emph default
) and
\family typewriter
NPY_ELEMENTSTRIDES
\family default
which indicates that the array should be aligned in the sense that the
strides are multiples of the element size.
\end_layout
\begin_layout Description
NPY_NOTSWAPPED Make sure the returned array has a data-type descriptor that
is in machine byte-order, over-riding any specification in the
\emph on
dtype
\emph default
argument.
Normally, the byte-order requirement is determined by the
\emph on
dtype
\emph default
argument.
If this flag is set and the dtype argument does not indicate a machine
byte-order descriptor (or is NULL and the object is already an array with
a data-type descriptor that is not in machine byte-order), then a new data-type
descriptor is created and used with its byte-order field set to native.
\end_layout
\begin_layout Description
NPY_BEHAVED_NS
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_NOTSWAPPED
\end_layout
\begin_layout Description
NPY_ELEMENTSTRIDES Make sure the returned array has strides that are multiples
of the element size.
\end_layout
\begin_layout Description
PyArray_FromArray (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
newtype,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Special case of
\family typewriter
PyArray_FromAny
\family default
for when
\emph on
op
\emph default
is already an array but it needs to be of a specific
\emph on
newtype
\emph default
(including byte-order) or has certain
\emph on
requirements
\emph default
.
\end_layout
\begin_layout Description
PyArray_FromStructInterface (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an ndarray object from a Python object that exposes the
\series bold
__array_struct__
\series default
method and follows the array interface protocol.
If the object does not contain this method then a borrowed reference to
\family typewriter
Py_NotImplemented
\family default
is returned.
\end_layout
\begin_layout Description
PyArray_FromInterface (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an ndarray object from a Python object that exposes the
\series bold
__array_shape__
\series default
and
\series bold
__array_typestr__
\series default
methods following the array interface protocol.
If the object does not contain one of these method then a borrowed reference
to
\family typewriter
Py_NotImplemented
\family default
is returned.
\end_layout
\begin_layout Description
PyArray_FromArrayAttr (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
PyObject*
\family default
context)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an ndarray object from a Python object that exposes the
\series bold
__array__
\series default
method.
The
\series bold
__array__
\series default
method can take 0, 1, or 2 arguments ([dtype, context]) where
\emph on
context
\emph default
is used to pass information about where the
\series bold
__array__
\series default
method is being called from (currently only used in ufuncs).
\end_layout
\begin_layout Description
PyArray_ContiguousFromAny (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
min_depth,
\family typewriter
int
\family default
max_depth)
\end_layout
\begin_layout Description
\InsetSpace ~
This function returns a (C-style) contiguous and behaved function array
from any nested sequence or array interface exporting object,
\emph on
op
\emph default
, of (non-flexible) type given by the enumerated
\emph on
typenum
\emph default
, of minimum depth
\emph on
min_depth
\emph default
, and of maximum depth
\emph on
max_depth
\emph default
.
Equivalent to a call to
\family typewriter
PyArray_FromAny
\family default
with requirements set to
\family typewriter
NPY_DEFAULT
\family default
and the type_num member of the type argument set to
\emph on
typenum
\emph default
.
\end_layout
\begin_layout Description
PyArray_FromObject (PyObject *) (PyObject * op, int typenum, int min_depth,
int max_depth)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an aligned and in native-byteorder array from any nested sequence
or array-interface exporting object, op, of a type given by the enumerated
typenum.
The minimum number of dimensions the array can have is given by min_depth
while the maximum is max_depth.
This is equivalent to a call to PyArray_FromAny with requirements set to
BEHAVED.
\end_layout
\begin_layout Description
PyArray_EnsureArray (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
This function
\series bold
steals a reference
\series default
to
\family typewriter
op
\family default
and makes sure that
\family typewriter
op
\family default
is a base-class ndarray.
It special cases array scalars, but otherwise calls
\series bold
PyArray_FromAny
\series default
(
\family typewriter
op
\family default
, NULL, 0, 0, NPY_ENSUREARRAY).
\end_layout
\begin_layout Description
PyArray_FromString (
\family typewriter
PyObject*
\family default
) (
\family typewriter
char*
\family default
string,
\family typewriter
npy_intp
\family default
slen,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
npy_intp
\family default
num,
\family typewriter
char*
\family default
sep)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a one-dimensional ndarray of a single type from a binary or (ASCII)
text
\family typewriter
string
\family default
of length
\family typewriter
slen
\family default
.
The data-type of the array to-be-created is given by
\family typewriter
dtype
\family default
.
If num is -1, then
\series bold
copy
\series default
the entire string and return an appropriately sized array, otherwise,
\family typewriter
num
\family default
is the number of items to
\series bold
copy
\series default
from the string.
If
\family typewriter
sep
\family default
is NULL (or
\begin_inset Quotes eld
\end_inset
\begin_inset Quotes erd
\end_inset
), then interpret the string as bytes of binary data, otherwise convert
the sub-strings separated by
\family typewriter
sep
\family default
to items of data-type
\family typewriter
dtype
\family default
.
Some data-types may not be readable in text mode and an error will be raised
if that occurs.
All errors return NULL.
\end_layout
\begin_layout Description
PyArray_FromFile (
\family typewriter
PyObject*
\family default
) (
\family typewriter
FILE*
\family default
fp,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
npy_intp
\family default
num,
\family typewriter
char*
\family default
sep)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a one-dimensional ndarray of a single type from a binary or text
file.
The open file pointer is
\family typewriter
fp
\family default
, the data-type of the array to be created is given by
\family typewriter
dtype
\family default
.
This must match the data in the file.
If
\family typewriter
num
\family default
is -1, then read until the end of the file and return an appropriately
sized array, otherwise,
\family typewriter
num
\family default
is the number of items to read.
If
\family typewriter
sep
\family default
is NULL (or
\begin_inset Quotes eld
\end_inset
\begin_inset Quotes erd
\end_inset
), then read from the file in binary mode, otherwise read from the file
in text mode with
\family typewriter
sep
\family default
providing the item separator.
Some array types cannot be read in text mode in which case an error is
raised.
\end_layout
\begin_layout Description
PyArray_FromBuffer (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
buf,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
npy_intp
\family default
count,
\family typewriter
npy_intp
\family default
offset)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a one-dimensional ndarray of a single type from an object,
\family typewriter
buf
\family default
, that exports the (single-segment) buffer protocol (or has an attribute
__buffer__ that returns an object that exports the buffer protocol).
A writeable buffer will be tried first followed by a read-only buffer.
The NPY_WRITEABLE flag of the returned array will reflect which one was
successful.
The data is assumed to start at
\family typewriter
offset
\family default
bytes from the start of the memory location for the object.
The type of the data in the buffer will be interpreted depending on the
data-type descriptor,
\family typewriter
dtype.
\family default
If
\family typewriter
count
\family default
is negative then it will be determined from the size of the buffer and
the requested itemsize, otherwise,
\family typewriter
count
\family default
represents how many elements should be converted from the buffer.
\end_layout
\begin_layout Description
PyArray_CopyInto (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
dest,
\family typewriter
PyArrayObject*
\family default
src)
\end_layout
\begin_layout Description
\InsetSpace ~
Copy from the source array,
\family typewriter
src
\family default
, into the destination array,
\family typewriter
dest
\family default
, performing a data-type conversion if necessary.
If an error occurs return -1 (otherwise 0).
The shape of
\family typewriter
src
\family default
must be broadcastable to the shape of
\family typewriter
dest
\family default
.
The data areas of dest and src must not overlap.
\end_layout
\begin_layout Description
PyArray_MoveInto (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
dest,
\family typewriter
PyArrayObject*
\family default
src)
\end_layout
\begin_layout Description
\InsetSpace ~
Move data from the source array,
\family typewriter
src
\family default
, into the destination array,
\family typewriter
dest
\family default
, performing a data-type conversion if necessary.
If an error occurs return -1 (otherwise 0).
The shape of
\family typewriter
src
\family default
must be broadcastable to the shape of
\family typewriter
dest
\family default
.
The data areas of dest and src may overlap.
\end_layout
\begin_layout Description
PyArray_GETCONTIGUOUS (
\family typewriter
PyArrayObject*
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
If
\family typewriter
op
\family default
is already (C-style) contiguous and well-behaved then just return a reference,
otherwise return a (contiguous and well-behaved) copy of the array.
The parameter op must be a (sub-class of an) ndarray and no checking for
that is done.
\end_layout
\begin_layout Description
PyArray_FROM_O (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert
\family typewriter
obj
\family default
to an ndarray.
The argument can be any nested sequence or object that exports the array
interface.
This is a macro form of
\family typewriter
PyArray_FromAny
\family default
using
\family typewriter
NULL
\family default
, 0, 0, 0 for the other arguments.
Your code must be able to handle any data-type descriptor and any combination
of data-flags to use this macro.
\end_layout
\begin_layout Description
PyArray_FROM_OF (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Similar to
\family typewriter
PyArray_FROM_O
\family default
except it can take an argument of
\emph on
requirements
\emph default
indicating properties the resulting array must have.
Available requirements that can be enforced are
\family typewriter
NPY_CONTIGUOUS
\family default
,
\family typewriter
NPY_F_CONTIGUOUS
\family default
,
\family typewriter
NPY_ALIGNED
\family default
,
\family typewriter
NPY_WRITEABLE
\family default
,
\family typewriter
NPY_NOTSWAPPED
\family default
,
\family typewriter
NPY_ENSURECOPY
\family default
,
\family typewriter
NPY_UPDATEIFCOPY
\family default
,
\family typewriter
NPY_FORCECAST
\family default
, and
\family typewriter
NPY_ENSUREARRAY
\family default
.
Standard combinations of flags can also be used:
\end_layout
\begin_layout Description
PyArray_FROM_OT (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Similar to
\family typewriter
PyArray_FROM_O
\family default
except it can take an argument of
\emph on
typenum
\emph default
specifying the type-number the returned array.
\end_layout
\begin_layout Description
PyArray_FROM_OTF (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Combination of
\family typewriter
PyArray_FROM_OF
\family default
and
\family typewriter
PyArray_FROM_OT
\family default
allowing both a
\emph on
typenum
\emph default
and a
\emph on
flags
\emph default
argument to be provided..
\end_layout
\begin_layout Description
PyArray_FROMANY (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
min,
\family typewriter
int
\family default
max,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Similar to
\family typewriter
PyArray_FromAny
\family default
except the data-type is specified using a typenumber.
\family typewriter
PyArray_DescrFromType
\family default
(
\emph on
typenum
\emph default
) is passed directly to
\family typewriter
PyArray_FromAny
\family default
.
This macro also adds
\family typewriter
NPY_DEFAULT
\family default
to requirements if
\family typewriter
NPY_ENSURECOPY
\family default
is passed in as requirements.
\end_layout
\begin_layout Description
PyArray_CheckAxis (
\family typewriter
PyObject*
\family default
)(
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int*
\family default
axis,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Encapsulate the functionality of functions and methods that take the axis=
keyword and work properly with None as the axis argument.
The input array is
\family typewriter
obj
\family default
, while
\family typewriter
*axis
\family default
is a converted integer (so that >=MAXDIMS is the None value), and
\family typewriter
requirements
\family default
gives the needed properties of
\family typewriter
obj
\family default
.
The output is a converted version of the input so that requirements are
met and if needed a flattening has occurred.
On output negative values of
\family typewriter
*axis
\family default
are converted and the new value is checked to ensure consistency with the
shape of
\family typewriter
obj
\family default
.
\end_layout
\begin_layout Subsection
Dealing with types
\end_layout
\begin_layout Subsubsection
General check of Python Type
\end_layout
\begin_layout Description
PyArray_Check (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is a Python object whose type is a sub-type of
\family typewriter
PyArray_Type
\family default
.
\end_layout
\begin_layout Description
PyArray_CheckExact (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is a Python object with type
\family typewriter
PyArray_Type
\family default
.
\end_layout
\begin_layout Description
PyArray_HasArrayInterface (op, out)
\end_layout
\begin_layout Description
\InsetSpace ~
If
\family typewriter
op
\family default
implements any part of the array interface, then
\family typewriter
out
\family default
will contain a new reference to the newly created ndarray using the interface
or
\family typewriter
out
\family default
will contain
\family typewriter
NULL
\family default
if an error during conversion occurs.
Otherwise, out will contain a borrowed reference to
\family typewriter
Py_NotImplemented
\family default
and no error condition is set.
\end_layout
\begin_layout Description
PyArray_HasArrayInterfaceType (op, type, context, out)
\end_layout
\begin_layout Description
\InsetSpace ~
If
\family typewriter
op
\family default
implements any part of the array interface, then
\family typewriter
out
\family default
will contain a new reference to the newly created ndarray using the interface
or
\family typewriter
out
\family default
will contain
\family typewriter
NULL
\family default
if an error during conversion occurs.
Otherwise, out will contain a borrowed reference to Py_NotImplemented and
no error condition is set.
This version allows setting of the type and context in the part of the
array interface that looks for the
\series bold
__array__
\series default
attribute.
\end_layout
\begin_layout Description
PyArray_IsZeroDim (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is an instance of (a subclass of)
\family typewriter
PyArray_Type
\family default
and has 0 dimensions.
\end_layout
\begin_layout Description
PyArray_IsScalar (op, cls)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is an instance of
\family typewriter
Py<cls>ArrType_Type
\family default
.
\end_layout
\begin_layout Description
PyArray_CheckScalar (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is either an array scalar (an instance of a sub-type of
\family typewriter
PyGenericArr_Type
\family default
), or an instance of (a sub-class of)
\family typewriter
PyArray_Type
\family default
whose dimensionality is 0.
\end_layout
\begin_layout Description
PyArray_IsPythonScalar (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is a builtin Python
\begin_inset Quotes eld
\end_inset
scalar
\begin_inset Quotes erd
\end_inset
object (int, float, complex, str, unicode, long, bool).
\end_layout
\begin_layout Description
PyArray_IsAnyScalar (op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is either a Python scalar or an array scalar (an instance of a sub-type
of
\family typewriter
PyGenericArr_Type
\family default
).
\end_layout
\begin_layout Subsubsection
Data-type checking
\end_layout
\begin_layout Standard
For the typenum macros, the argument is an integer representing an enumerated
array data type.
For the array type checking macros the argument must be a
\family typewriter
PyObject*
\family default
that can be directly interpreted as a
\family typewriter
PyArrayObject*
\family default
.
\end_layout
\begin_layout Description
PyTypeNum_ISUNSIGNED (num)
\end_layout
\begin_layout Description
PyDataType_ISUNSIGNED (descr)
\end_layout
\begin_layout Description
PyArray_ISUNSIGNED (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents an unsigned integer.
\end_layout
\begin_layout Description
PyTypeNum_ISSIGNED (num)
\end_layout
\begin_layout Description
PyDataType_ISSIGNED (descr)
\end_layout
\begin_layout Description
PyArray_ISSIGNED (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents a signed integer.
\end_layout
\begin_layout Description
PyTypeNum_ISINTEGER (num)
\end_layout
\begin_layout Description
PyDataType_ISINTEGER (descr)
\end_layout
\begin_layout Description
PyArray_ISINTEGER (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents any integer.
\end_layout
\begin_layout Description
PyTypeNum_ISFLOAT (num)
\end_layout
\begin_layout Description
PyDataType_ISFLOAT (descr)
\end_layout
\begin_layout Description
PyArray_ISFLOAT (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents any floating point number.
\end_layout
\begin_layout Description
PyTypeNum_ISCOMPLEX (num)
\end_layout
\begin_layout Description
PyDataType_ISCOMPLEX (descr)
\end_layout
\begin_layout Description
PyArray_ISCOMPLEX (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents any complex floating point number.
\end_layout
\begin_layout Description
PyTypeNum_ISNUMBER (num)
\end_layout
\begin_layout Description
PyDataType_ISNUMBER (descr)
\end_layout
\begin_layout Description
PyArray_ISNUMBER (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents any integer, floating point, or complex floating point
number.
\end_layout
\begin_layout Description
PyTypeNum_ISSTRING (num)
\end_layout
\begin_layout Description
PyDataType_ISSTRING (descr)
\end_layout
\begin_layout Description
PyArray_ISSTRING (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents a string data type.
\end_layout
\begin_layout Description
PyTypeNum_ISPYTHON (num)
\end_layout
\begin_layout Description
PyDataType_ISPYTHON (descr)
\end_layout
\begin_layout Description
PyArray_ISPYTHON (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents an enumerated type corresponding to one of the standard
Python scalar (bool, int, float, or complex).
\end_layout
\begin_layout Description
PyTypeNum_ISFLEXIBLE (num)
\end_layout
\begin_layout Description
PyDataType_ISFLEXIBLE (descr)
\end_layout
\begin_layout Description
PyArray_ISFLEXIBLE (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents one of the flexible array types (
\family typewriter
NPY_STRING
\family default
,
\family typewriter
NPY_UNICODE
\family default
, or
\family typewriter
NPY_VOID
\family default
).
\end_layout
\begin_layout Description
PyTypeNum_ISUSERDEF (num)
\end_layout
\begin_layout Description
PyDataType_ISUSERDEF (descr)
\end_layout
\begin_layout Description
PyArray_ISUSERDEF (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents a user-defined type.
\end_layout
\begin_layout Description
PyTypeNum_ISEXTENDED (num)
\end_layout
\begin_layout Description
PyDataType_ISEXTENDED (descr)
\end_layout
\begin_layout Description
PyArray_ISEXTENDED (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type is either flexible or user-defined.
\end_layout
\begin_layout Description
PyTypeNum_ISOBJECT (num)
\end_layout
\begin_layout Description
PyDataType_ISOBJECT (descr)
\end_layout
\begin_layout Description
PyArray_ISOBJECT (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents object data type.
\end_layout
\begin_layout Description
PyTypeNum_ISBOOL (num)
\end_layout
\begin_layout Description
PyDataType_ISBOOL (descr)
\end_layout
\begin_layout Description
PyArray_ISBOOL (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type represents Boolean data type.
\end_layout
\begin_layout Description
PyDataType_HASFIELDS (descr)
\end_layout
\begin_layout Description
PyArray_HASFIELDS (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Type has fields associated with it.
\end_layout
\begin_layout Description
PyArray_ISNOTSWAPPED (m)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of the ndarray
\emph on
m
\emph default
is in machine byte-order according to the array's data-type descriptor.
\end_layout
\begin_layout Description
PyArray_ISBYTESWAPPED (m)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of the ndarray
\emph on
m
\emph default
is
\series bold
not
\series default
in machine byte-order according to the array's data-type descriptor.
\end_layout
\begin_layout Description
PyArray_EquivTypes (
\family typewriter
Bool
\family default
) (
\family typewriter
PyArray_Descr*
\family default
type1,
\family typewriter
PyArray_Descr*
\family default
type2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return
\family typewriter
NPY_TRUE
\family default
if
\emph on
type1
\emph default
and
\emph on
type2
\emph default
actually represent equivalent types for this platform (the fortran member
of each type is ignored).
For example, on 32-bit platforms,
\family typewriter
NPY_LONG
\family default
and
\family typewriter
NPY_INT
\family default
are equivalent.
Otherwise return
\family typewriter
NPY_FALSE
\family default
.
\end_layout
\begin_layout Description
PyArray_EquivArrTypes (
\family typewriter
Bool
\family default
) (
\family typewriter
PyArrayObject*
\family default
a1,
\family typewriter
PyArrayObject
\family default
* a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return
\family typewriter
NPY_TRUE
\family default
if
\emph on
a1
\emph default
and
\emph on
a2
\emph default
are arrays with equivalent types for this platform.
\end_layout
\begin_layout Description
PyArray_EquivTypenums (
\family typewriter
Bool
\family default
) (
\family typewriter
int
\family default
typenum1,
\family typewriter
int
\family default
typenum2)
\end_layout
\begin_layout Description
\InsetSpace ~
Special case of
\family typewriter
PyArray_EquivTypes
\family default
(...) that does not accept flexible data types but may be easier to call.
\end_layout
\begin_layout Description
PyArray_EquivByteorders (int) (<byteorder> b1, <byteorder> b2)
\end_layout
\begin_layout Description
\InsetSpace ~
True if byteorder characters (
\family typewriter
NPY_LITTLE
\family default
,
\family typewriter
NPY_BIG
\family default
,
\family typewriter
NPY_NATIVE
\family default
,
\family typewriter
NPY_IGNORE
\family default
) are either equal or equivalent as to their specification of a native byte
order.
Thus, on a little-endian machine
\family typewriter
NPY_LITTLE
\family default
and
\family typewriter
NPY_NATIVE
\family default
are equivalent where they are not equivalent on a big-endian machine.
\end_layout
\begin_layout Subsubsection
Converting data types
\end_layout
\begin_layout Description
PyArray_Cast (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr,
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Mainly for backwards compatibility to the Numeric C-API and for simple
casts to non-flexible types.
Return a new array object with the elements of
\emph on
arr
\emph default
cast to the data-type
\emph on
typenum
\emph default
which must be one of the enumerated types and not a flexible type.
\end_layout
\begin_layout Description
PyArray_CastToType (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr,
\family typewriter
PyArray_Descr*
\family default
type,
\family typewriter
int
\family default
fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array of the
\emph on
type
\emph default
specified, casting the elements of
\emph on
arr
\emph default
as appropriate.
The fortran argument specifies the ordering of the output array.
\end_layout
\begin_layout Description
PyArray_CastTo (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
out,
\family typewriter
PyArrayObject*
\family default
in)
\end_layout
\begin_layout Description
\InsetSpace ~
Cast the elements of the array
\emph on
in
\emph default
into the array
\emph on
out
\emph default
.
The output array should be writeable, have an integer-multiple of the number
of elements in the input array (more than one copy can be placed in out),
and have a data type that is one of the builtin types.
Returns 0 on success and -1 if an error occurs.
\end_layout
\begin_layout Description
PyArray_GetCastFunc (
\family typewriter
PyArray_VectorUnaryFunc*
\family default
) (
\family typewriter
PyArray_Descr*
\family default
from,
\family typewriter
int
\family default
totype)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the low-level casting function to cast from the given descriptor
to the builtin type number.
If no casting function exists return
\family typewriter
NULL
\family default
and set an error.
Using this function instead of direct access to
\emph on
from
\emph default
->f->cast will allow support of any user-defined casting functions added
to a descriptors casting dictionary.
\end_layout
\begin_layout Description
PyArray_CanCastSafely (
\family typewriter
int
\family default
) (
\family typewriter
int
\family default
fromtype,
\family typewriter
int
\family default
totype)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns non-zero if an array of data type
\emph on
fromtype
\emph default
can be cast to an array of data type
\emph on
totype
\emph default
without losing information.
An exception is that 64-bit integers are allowed to be cast to 64-bit floating
point values even though this can lose precision on large integers so as
not to proliferate the use of long doubles without explict requests.
Flexible array types are not checked according to their lengths with this
function.
\end_layout
\begin_layout Description
PyArray_CanCastTo (
\family typewriter
int
\family default
) (
\family typewriter
PyArray_Descr*
\family default
fromtype,
\family typewriter
PyArray_Descr*
\family default
totype)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns non-zero if an array of data type
\emph on
fromtype
\emph default
(which can include flexible types) can be cast safely to an array of data
type
\emph on
totype
\emph default
(which can include flexible types).
This is basically a wrapper around
\family typewriter
PyArray_CanCastSafely
\family default
with additional support for size checking if
\emph on
fromtype
\emph default
and
\emph on
totype
\emph default
are
\family typewriter
NPY_STRING
\family default
or
\family typewriter
NPY_UNICODE
\family default
.
\end_layout
\begin_layout Description
PyArray_ObjectType (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
int
\family default
mintype)
\end_layout
\begin_layout Description
\InsetSpace ~
This function is useful for determining a common type that two or more
arrays can be converted to.
It only works for non-flexible array types as no itemsize information is
passed.
The
\emph on
mintype
\emph default
argument represents the minimum type acceptable, and
\emph on
op
\emph default
represents the object that will be converted to an array.
The return value is the enumerated typenumber that represents the data-type
that
\emph on
op
\emph default
should have.
\end_layout
\begin_layout Description
PyArray_ArrayType (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
mintype,
\family typewriter
PyArray_Descr*
\family default
outtype)
\end_layout
\begin_layout Description
\InsetSpace ~
This function works similarly to
\family typewriter
PyArray_ObjectType
\family default
(...) except it handles flexible arrays.
The
\emph on
mintype
\emph default
argument can have an itemsize member and the
\emph on
outtype
\emph default
argument will have an itemsize member at least as big but perhaps bigger
depending on the object
\emph on
op
\emph default
.
\end_layout
\begin_layout Description
PyArray_ConvertToCommonType (
\family typewriter
PyArrayObject**
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
int*
\family default
n)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert a sequence of Python objects contained in
\emph on
op
\emph default
to an array of ndarrays each having the same data type.
The type is selected based on the typenumber (larger type number is chosen
over a smaller one) ignoring objects that are only scalars.
The length of the sequence is returned in
\emph on
n
\emph default
, and an
\emph on
n
\emph default
-length array of
\family typewriter
PyArrayObject
\family default
pointers is the return value (or
\family typewriter
NULL
\family default
if an error occurs).
The returned array must be freed by the caller of this routine (using
\family typewriter
PyDataMem_FREE
\family default
) and all the array objects in it
\family typewriter
DECREF
\family default
'd or a memory-leak will occur.
The example template-code below shows a typically usage.
\end_layout
\begin_layout LyX-Code
mps = PyArray_ConvertToCommonType(obj, &n);
\end_layout
\begin_layout LyX-Code
if (mps==NULL) return NULL;
\end_layout
\begin_layout LyX-Code
<code>
\end_layout
\begin_layout LyX-Code
<before return>
\end_layout
\begin_layout LyX-Code
for (i=0; i<n; i++) Py_DECREF(mps[i]);
\end_layout
\begin_layout LyX-Code
PyDataMem_FREE(mps);
\end_layout
\begin_layout LyX-Code
<return>
\end_layout
\begin_layout Description
PyArray_Zero (
\family typewriter
char*
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to newly created memory of size
\emph on
arr
\emph default
->itemsize that holds the representation of 0 for that type.
The returned pointer,
\emph on
ret
\emph default
,
\series bold
must be freed
\series default
using
\family typewriter
\emph on
PyDataMem_FREE
\family default
\emph default
(ret) when it is not needed anymore.
\end_layout
\begin_layout Description
PyArray_One (
\family typewriter
char*
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to newly created memory of size
\emph on
arr
\emph default
->itemsize that holds the representation of 1 for that type.
The returned pointer,
\emph on
ret
\emph default
,
\series bold
must be freed
\series default
using
\family typewriter
PyDataMem_FREE
\family default
(ret) when it is not needed anymore.
\end_layout
\begin_layout Description
PyArray_ValidType (
\family typewriter
int
\family default
) (
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns
\family typewriter
NPY_TRUE
\family default
if
\family typewriter
\emph on
typenum
\family default
\emph default
represents a valid type-number (builtin or user-defined or character code).
Otherwise, this function returns
\family typewriter
NPY_FALSE
\family default
.
\end_layout
\begin_layout Subsubsection
New data types
\end_layout
\begin_layout Description
PyArray_InitArrFuncs (
\family typewriter
void
\family default
) (
\family typewriter
PyArray_ArrFuncs*
\family default
f)
\end_layout
\begin_layout Description
\InsetSpace ~
Initialize all function pointers and members to
\family typewriter
NULL
\family default
.
\end_layout
\begin_layout Description
PyArray_RegisterDataType (
\family typewriter
int
\family default
) (
\family typewriter
PyArray_Descr*
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Register a data-type as a new user-defined data type for arrays.
The type must have most of its entries filled in.
This is not always checked and errors can produce segfaults.
In particular, the typeobj member of the
\family typewriter
dtype
\family default
structure must be filled with a Python type that has a fixed-size element-size
that corresponds to the elsize member of
\emph on
dtype
\emph default
.
Also the
\family typewriter
f
\family default
member must have the required functions: nonzero, copyswap, copyswapn,
getitem, setitem, and cast (some of the cast functions may be
\family typewriter
NULL
\family default
if no support is desired).
To avoid confusion, you should choose a unique character typecode but this
is not enforced and not relied on internally.
\end_layout
\begin_layout Description
\InsetSpace ~
A user-defined type number is returned that uniquely identifies the type.
A pointer to the new structure can then be obtained from
\family typewriter
PyArray_DescrFromType
\family default
using the returned type number.
A -1 is returned if an error occurs.
If this
\family typewriter
\emph on
dtype
\family default
\emph default
has already been registered (checked only by the address of the pointer),
then return the previously-assigned type-number.
\end_layout
\begin_layout Description
PyArray_RegisterCastFunc (
\family typewriter
int
\family default
) (
\family typewriter
PyArray_Descr*
\family default
descr,
\family typewriter
int
\family default
totype,
\family typewriter
PyArray_VectorUnaryFunc*
\family default
castfunc)
\end_layout
\begin_layout Description
\InsetSpace ~
Register a low-level casting function,
\emph on
castfunc
\emph default
, to convert from the data-type,
\emph on
descr
\emph default
, to the given data-type number,
\emph on
totype
\emph default
.
Any old casting function is over-written.
A
\family typewriter
0
\family default
is returned on success or a
\family typewriter
-1
\family default
on failure.
\end_layout
\begin_layout Description
PyArray_RegisterCanCast (
\family typewriter
int
\family default
) (
\family typewriter
PyArray_Descr*
\family default
descr,
\family typewriter
int
\family default
totype,
\family typewriter
PyArray_SCALARKIND
\family default
scalar)
\end_layout
\begin_layout Description
\InsetSpace ~
Register the data-type number,
\emph on
totype
\emph default
, as castable from data-type object,
\emph on
descr
\emph default
, of the given
\emph on
scalar
\emph default
kind.
Use
\emph on
scalar
\emph default
=
\family typewriter
NPY_NOSCALAR
\family default
to register that an array of data-type
\emph on
descr
\emph default
can be cast safely to a data-type whose type_number is
\emph on
totype
\emph default
.
\end_layout
\begin_layout Subsubsection
Special functions for PyArray_OBJECT
\end_layout
\begin_layout Description
PyArray_INCREF (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Used for an array,
\emph on
op
\emph default
, that contains any Python objects.
It increments the reference count of every object in the array according
to the data-type of
\emph on
op
\emph default
.
A -1 is returned if an error occurs, otherwise 0 is returned.
\end_layout
\begin_layout Description
PyArray_Item_INCREF (
\family typewriter
void
\family default
) (
\family typewriter
char*
\family default
ptr,
\family typewriter
PyArray_Descr*
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
A function to INCREF all the objects at the location
\emph on
ptr
\emph default
according to the data-type
\emph on
dtype
\emph default
.
If
\emph on
ptr
\emph default
is the start of a record with an object at any offset, then this will (recursiv
ely) increment the reference count of all object-like items in the record.
\end_layout
\begin_layout Description
PyArray_XDECREF (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Used for an array,
\emph on
op
\emph default
, that contains any Python objects.
It decrements the reference count of every object in the array according
to the data-type of
\emph on
op
\emph default
.
Normal return value is 0.
A -1 is returned if an error occurs.
\end_layout
\begin_layout Description
PyArray_Item_XDECREF (
\family typewriter
void
\family default
) (
\family typewriter
char*
\family default
ptr,
\family typewriter
PyArray_Descr*
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
A function to XDECREF all the object-like items at the loacation
\emph on
ptr
\emph default
as recorded in the data-type,
\emph on
dtype
\emph default
.
This works recursively so that if
\family typewriter
dtype
\family default
itself has fields with data-types that contain object-like items, all the
object-like fields will be XDECREF
\family typewriter
'd
\family default
.
\end_layout
\begin_layout Description
PyArray_FillObjectArray (
\family typewriter
void
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Fill a newly created array with a single value obj at all locations in
the structure with object data-types.
No checking is performed but
\emph on
arr
\emph default
must be of data-type
\family typewriter
PyArray_OBJECT
\family default
and be single-segment and uninitialized (no previous objects in position).
Use
\family typewriter
PyArray_DECREF
\family default
(
\emph on
arr
\emph default
) if you need to decrement all the items in the object array prior to calling
this function.
\end_layout
\begin_layout Subsection
Array flags
\end_layout
\begin_layout Subsubsection
Basic Array Flags
\end_layout
\begin_layout Standard
An ndarray can have a data segment that is not a simple contiguous chunk
of well-behaved memory you can manipulate.
It may not be aligned with word boundaries (very important on some platforms).
It might have its data in a different byte-order than the machine recognizes.
It might not be writeable.
It might be in Fortan-contiguous order.
The array flags are used to indicate what can be said about data associated
with an array.
\end_layout
\begin_layout Description
NPY_C_CONTIGUOUS The data area is in C-style contiguous order (last index
varies the fastest).
\end_layout
\begin_layout Description
NPY_F_CONTIGUOUS The data area is in Fortran-style contiguous order (first
index varies the fastest).
\end_layout
\begin_layout Description
NPY_OWNDATA The data area is owned by this array.
\end_layout
\begin_layout Description
NPY_ALIGNED The data area is aligned appropriately (for all strides).
\end_layout
\begin_layout Description
NPY_WRITEABLE The data area can be written to.
\end_layout
\begin_layout Description
\InsetSpace ~
Notice that the above 3 flags are are defined so that a new, well-behaved
array has these flags defined as true.
\end_layout
\begin_layout Description
NPY_UPDATEIFCOPY The data area represents a (well-behaved) copy whose informatio
n should be transferred back to the original when this array is deleted.
\end_layout
\begin_layout Subsubsection
Combinations of array flags
\end_layout
\begin_layout Description
NPY_BEHAVED
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
NPY_WRITEABLE
\end_layout
\begin_layout Description
NPY_CARRAY
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_BEHAVED
\end_layout
\begin_layout Description
NPY_CARRAY_RO
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_FARRAY
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_BEHAVED
\end_layout
\begin_layout Description
NPY_FARRAY_RO
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Description
NPY_DEFAULT
\family typewriter
NPY_CARRAY
\end_layout
\begin_layout Description
NPY_UPDATE_ALL
\family typewriter
NPY_C_CONTIGUOUS
\family default
|
\family typewriter
NPY_F_CONTIGUOUS
\family default
|
\family typewriter
NPY_ALIGNED
\end_layout
\begin_layout Subsubsection
Flag-like constants
\end_layout
\begin_layout Standard
These constants are used in PyArray_FromAny (and its macro forms) to specify
desired properties of the new array.
\end_layout
\begin_layout Description
NPY_FORCECAST Cast to the desired type, even if it can't be done without
losing information.
\end_layout
\begin_layout Description
NPY_ENSURECOPY Make sure the resulting array is a copy of the original.
\end_layout
\begin_layout Description
NPY_ENSUREARRAY Make sure the resulting object is an actual ndarray (or
bigndarray), and not a sub-class.
\end_layout
\begin_layout Description
NPY_NOTSWAPPED Only used in
\family typewriter
PyArray_CheckFromAny
\family default
to over-ride the byteorder of the data-type object passed in.
\end_layout
\begin_layout Description
NPY_BEHAVED_NS
\family typewriter
NPY_ALIGNED
\family default
|
\family typewriter
NPY_WRITEABLE
\family default
|
\family typewriter
NPY_NOTSWAPPED
\end_layout
\begin_layout Subsubsection
Flag checking
\end_layout
\begin_layout Standard
For all of these macros
\emph on
arr
\emph default
must be an instance of a (subclass of)
\family typewriter
PyArray_Type
\family default
, but no checking is done.
\end_layout
\begin_layout Description
PyArray_CHKFLAGS (arr, flags)
\end_layout
\begin_layout Description
\InsetSpace ~
The first parameter, arr, must be an ndarray or subclass.
The parameter,
\emph on
flags
\emph default
, should be an integer consisting of bitwise combinations of the possible
flags an array can have:
\family typewriter
NPY_C_CONTIGUOUS
\family default
,
\family typewriter
NPY_F_CONTIGUOUS
\family default
,
\family typewriter
NPY_OWNDATA
\family default
,
\family typewriter
NPY_ALIGNED
\family default
,
\family typewriter
NPY_WRITEABLE
\family default
,
\family typewriter
NPY_UPDATEIFCOPY
\family default
.
\end_layout
\begin_layout Description
PyArray_ISCONTIGUOUS (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
arr
\emph default
is C-style contiguous.
\end_layout
\begin_layout Description
PyArray_ISFORTRAN (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
arr
\emph default
is Fortran-style contiguous.
\end_layout
\begin_layout Description
PyArray_ISWRITEABLE (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
can be written to
\end_layout
\begin_layout Description
PyArray_ISALIGNED (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is properly aligned on the machine.
\end_layout
\begin_layout Description
PyArray_ISBEHAVED (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evalutes true if the data area of
\emph on
arr
\emph default
is aligned and writeable and in machine byte-order according to its descriptor.
\end_layout
\begin_layout Description
PyArray_ISBEHAVED_RO (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is aligned and in machine byte-order.
\end_layout
\begin_layout Description
PyArray_ISCARRAY (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is C-style contiguous, and
\family typewriter
PyArray_ISBEHAVED
\family default
(
\emph on
arr
\emph default
) is true.
\end_layout
\begin_layout Description
PyArray_ISFARRAY (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is Fortran-style contiguous and
\family typewriter
PyArray_ISBEHAVED
\family default
(
\emph on
arr
\emph default
) is true.
\end_layout
\begin_layout Description
PyArray_ISCARRAY_RO (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is C-style contiguous, aligned, and in machine byte-order.
\end_layout
\begin_layout Description
PyArray_ISFARRAY_RO (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
is Fortran-style contiguous, aligned, and in machine byte-order
\series bold
.
\end_layout
\begin_layout Description
PyArray_ISONESEGMENT (arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if the data area of
\emph on
arr
\emph default
consists of a single (C-style or Fortran-style) contiguous segment.
\end_layout
\begin_layout Description
PyArray_UpdateFlags (
\family typewriter
void
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr,
\family typewriter
int
\family default
flagmask)
\end_layout
\begin_layout Description
\InsetSpace ~
The
\family typewriter
NPY_C_CONTIGUOUS
\family default
,
\family typewriter
NPY_ALIGNED
\family default
, and
\family typewriter
NPY_F_CONTIGUOUS
\family default
array flags can be
\begin_inset Quotes eld
\end_inset
calculated
\begin_inset Quotes erd
\end_inset
from the array object itself.
This routine updates one or more of these flags of
\emph on
arr
\emph default
as specified in
\emph on
flagmask
\emph default
by performing the required calculation.
\end_layout
\begin_layout Warning
It is important to keep the flags updated (using PyArray_UpdateFlags can
help) whenever a manipulation with an array is performed that might cause
them to change.
Later calculations in NumPy that rely on the state of these flags do not
repeat the calculation to update them.
\end_layout
\begin_layout Subsection
Array method alternative API
\end_layout
\begin_layout Subsubsection
Conversion
\end_layout
\begin_layout Description
PyArray_GetField (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
offset)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
getfield
\series default
(
\emph on
dtype
\emph default
,
\emph on
offset
\emph default
).
Return a new array of the given
\emph on
dtype
\emph default
using the data in the current array at a specified
\emph on
offset
\emph default
in bytes.
The
\emph on
offset
\emph default
plus the itemsize of the new array type must be less than
\emph on
self
\emph default
->descr->elsize or an error is raised.
The same shape and strides as the original array are used.
Therefore, this function has the effect of returning a field from a record
array.
But, it can also be used to select specific bytes or groups of bytes from
any array type.
\end_layout
\begin_layout Description
PyArray_SetField (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
int
\family default
offset,
\family typewriter
PyObject*
\family default
val)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
setfield
\series default
(
\emph on
val
\emph default
,
\emph on
dtype
\emph default
,
\emph on
offset
\emph default
).
Set the field starting at
\emph on
offset
\emph default
in bytes and of the given
\emph on
dtype
\emph default
to
\emph on
val
\emph default
.
The
\emph on
offset
\emph default
plus
\emph on
dtype
\emph default
->elsize must be less than
\emph on
self
\emph default
->descr->elsize or an error is raised.
Otherwise, the
\emph on
val
\emph default
argument is converted to an array and copied into the field pointed to.
If necessary, the elements of
\emph on
val
\emph default
are repeated to fill the destination array, But, the number of elements
in the destination must be an integer multiple of the number of elements
in
\emph on
val
\emph default
.
\end_layout
\begin_layout Description
PyArray_Byteswap (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
Bool
\family default
inplace)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
byteswap
\series default
(
\emph on
inplace
\emph default
).
Return an array whose data area is byteswapped.
If
\emph on
inplace
\emph default
is non-zero, then do the byteswap inplace and return a reference to self.
Otherwise, create a byteswapped copy and leave self unchanged.
\end_layout
\begin_layout Description
PyArray_NewCopy (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
old,
\family typewriter
NPY_ORDER
\family default
order)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
copy
\series default
(
\emph on
fortran
\emph default
).
Make a copy of the
\emph on
old
\emph default
array.
The returned array is always aligned and writeable with data interpreted
the same as the old array.
If
\emph on
order
\emph default
is
\family typewriter
NPY_CORDER
\family default
, then a C-style contiguous array is returned.
If
\emph on
order
\emph default
is
\family typewriter
NPY_FORTRANORDER
\family default
, then a Fortran-style contiguous array is returned.
If
\emph on
order is
\emph default
\family typewriter
NPY_ANYORDER
\family default
, then the array returned is Fortran-style contiguous only if the old one
is; otherwise, it is C-style contiguous.
\end_layout
\begin_layout Description
PyArray_ToList (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
tolist
\series default
().
Return a nested Python list from
\emph on
self
\emph default
.
\end_layout
\begin_layout Description
PyArray_ToString (PyObject*) (PyArrayObject* self, NPY_ORDER order)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
tostring
\series default
(
\emph on
order
\emph default
).
Return the bytes of this array in a Python string.
\end_layout
\begin_layout Description
PyArray_ToFile (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
FILE*
\family default
fp,
\family typewriter
char*
\family default
sep,
\family typewriter
char*
\family default
format)
\end_layout
\begin_layout Description
\InsetSpace ~
Write the contents of
\emph on
self
\emph default
to the file pointer
\emph on
fp
\emph default
in C-style contiguous fashion.
Write the data as binary bytes if
\family typewriter
\emph on
sep
\family default
\emph default
is the string
\begin_inset Quotes eld
\end_inset
\begin_inset Quotes erd
\end_inset
or
\family typewriter
NULL
\family default
.
Otherwise, write the contents of
\emph on
self
\emph default
as text using the
\family typewriter
\emph on
sep
\family default
\emph default
string as the item separator.
Each item will be printed to the file.
If the
\emph on
format
\emph default
string is not
\family typewriter
NULL
\family default
or
\begin_inset Quotes eld
\end_inset
\begin_inset Quotes erd
\end_inset
, then it is a Python print statement format string showing how the items
are to be written.
\end_layout
\begin_layout Description
PyArray_Dump (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
self,
\family typewriter
PyObject*
\family default
file,
\family typewriter
int
\family default
protocol)
\end_layout
\begin_layout Description
\InsetSpace ~
Pickle the object in
\emph on
self
\emph default
to the given
\emph on
file
\emph default
(either a string or a Python file object).
If
\emph on
file
\emph default
is a Python string it is considered to be the name of a file which is then
opened in binary mode.
The given
\emph on
protocol
\emph default
is used (if
\emph on
protocol
\emph default
is negative, or the highest available is used).
This is a simple wrapper around cPickle.dump(
\emph on
self
\emph default
,
\emph on
file
\emph default
,
\emph on
protocol
\emph default
).
\end_layout
\begin_layout Description
PyArray_Dumps (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
self,
\family typewriter
int
\family default
protocol)
\end_layout
\begin_layout Description
\InsetSpace ~
Pickle the object in
\emph on
self
\emph default
to a Python string and return it.
Use the Pickle
\emph on
protocol
\emph default
provided (or the highest available if
\emph on
protocol
\emph default
is negative).
\end_layout
\begin_layout Description
PyArray_FillWithScalar (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Fill the array,
\emph on
arr
\emph default
, with the given scalar object,
\emph on
obj
\emph default
.
The object is first converted to the data type of
\emph on
arr
\emph default
, and then copied into every location.
A -1 is returned if an error occurs, otherwise 0 is returned.
\end_layout
\begin_layout Description
PyArray_View (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Descr*
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
view
\series default
(
\emph on
dtype
\emph default
).
Return a new view of the array
\emph on
self
\emph default
as possibly a different data-type,
\emph on
dtype
\emph default
.
If
\emph on
dtype
\emph default
is
\family typewriter
NULL
\family default
, then the returned array will have the same data type as
\emph on
self
\emph default
.
The new data-type must be consistent with the size of
\emph on
self
\emph default
.
Either the itemsizes must be identical, or
\emph on
self
\emph default
must be single-segment and the total number of bytes must be the same.
In the latter case the dimensions of the returned array will be altered
in the last (or first for Fortran-style contiguous arrays) dimension.
The data area of the returned array and self is exactly the same.
\end_layout
\begin_layout Subsubsection
Shape Manipulation
\end_layout
\begin_layout Description
PyArray_Newshape (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Dims*
\family default
newshape)
\end_layout
\begin_layout Description
\InsetSpace ~
Result will be a new array (pointing to the same memory location as
\emph on
self
\emph default
if possible), but having a shape given by
\emph on
newshape
\emph default
.
If the new shape is not compatible with the strides of
\emph on
self
\emph default
, then a copy of the array with the new specified shape will be returned.
\end_layout
\begin_layout Description
PyArray_Reshape (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
shape)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\family typewriter
\emph on
self
\family default
\emph default
.
\series bold
reshape
\series default
(
\family typewriter
\emph on
shape
\family default
\emph default
) where
\emph on
shape
\emph default
is a sequence.
Converts
\emph on
shape
\emph default
to a
\family typewriter
PyArray_Dims
\family default
structure and calls
\family typewriter
PyArray_Newshape
\family default
internally.
\end_layout
\begin_layout Description
PyArray_Squeeze (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
squeeze
\series default
().
Return a new view of
\emph on
self
\emph default
with all of the dimensions of length 1 removed from the shape.
\end_layout
\begin_layout Warning
matrix objects are always 2-dimensional.
Therefore,
\family typewriter
PyArray_Squeeze
\family default
has no effect on arrays of matrix sub-class.
\end_layout
\begin_layout Description
PyArray_SwapAxes (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
a1,
\family typewriter
int
\family default
a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
swapaxes
\series default
(
\emph on
a1
\emph default
,
\emph on
a2
\emph default
).
The returned array is a new view of the data in
\emph on
self
\emph default
with the given axes,
\emph on
a1
\emph default
and
\emph on
a2
\emph default
, swapped.
\end_layout
\begin_layout Description
PyArray_Resize (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Dims*
\family default
newshape,
\family typewriter
int
\family default
refcheck, NPY_ORDER fortran)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
resize
\series default
(
\emph on
newshape
\emph default
, refcheck
\family typewriter
=
\family default
\emph on
refcheck
\emph default
, order=
\shape italic
fortran
\shape default
).
This function only works on single-segment arrays.
It changes the shape of
\emph on
self
\emph default
inplace and will reallocate the memory for
\emph on
self
\emph default
if
\emph on
newshape
\emph default
has a different total number of elements then the old shape.
If reallocation is necessary, then
\emph on
self
\emph default
must own its data, have
\emph on
self
\emph default
-
\family typewriter
>base==NULL
\family default
, have
\emph on
self
\emph default
-
\family typewriter
>weakrefs==NULL
\family default
, and (unless refcheck is 0) not be referenced by any other array.
A reference to the new array is returned.
The
\shape italic
fortran
\shape default
argument can be NPY_ANYORDER, NPY_CORDER, or NPY_FORTRANORDER.
This argument is used if the number of dimension is (or is being resized
to be) greater than 2.
It currently has no effect.
Eventually it could be used to determine how the resize operation should
view the data when constructing a differently-dimensioned array.
\end_layout
\begin_layout Description
PyArray_Transpose (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyArray_Dims*
\family default
permute)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
transpose
\series default
(
\emph on
permute
\emph default
).
Permute the axes of the ndarray object
\emph on
self
\emph default
according to the data structure
\emph on
permute
\emph default
and return the result.
If
\emph on
permute
\emph default
is
\family typewriter
NULL
\family default
, then the resulting array has its axes reversed.
For example if
\emph on
self
\emph default
has shape
\begin_inset Formula $10\times20\times30$
\end_inset
, and
\emph on
permute
\family typewriter
\emph default
.ptr
\family default
is (0,2,1) the shape of the result is
\begin_inset Formula $10\times30\times20.$
\end_inset
If
\emph on
permute
\emph default
is
\family typewriter
NULL
\family default
, the shape of the result is
\begin_inset Formula $30\times20\times10.$
\end_inset
\end_layout
\begin_layout Description
PyArray_Flatten (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
NPY_ORDER
\family default
order)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
flatten
\series default
(
\emph on
order
\emph default
).
Return a 1-d copy of the array.
If
\emph on
order
\emph default
is
\family typewriter
NPY_FORTRANORDER
\family default
the elements are scanned out in Fortran order (first-dimension varies the
fastest).
If
\emph on
order
\emph default
is
\family typewriter
NPY_CORDER
\family default
, the elements of
\family typewriter
self
\family default
are scanned in C-order (last dimension varies the fastest).
If
\emph on
order
\emph default
\family typewriter
NPY_ANYORDER
\family default
, then the result of
\family typewriter
PyArray_ISFORTRAN
\family default
(
\emph on
self
\emph default
) is used to determine which order to flatten.
\end_layout
\begin_layout Description
PyArray_Ravel (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
NPY_ORDER
\family default
order)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.ravel(
\emph on
order
\emph default
).
Same basic functionality as
\family typewriter
PyArray_Flatten
\family default
(
\emph on
self
\emph default
,
\emph on
order
\emph default
) except if
\emph on
order
\emph default
is 0 and
\emph on
self
\emph default
is C-style contiguous, the shape is altered but no copy is performed.
\end_layout
\begin_layout Subsubsection
Item selection and manipulation
\end_layout
\begin_layout Description
PyArray_TakeFrom (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
indices,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
ret,
\family typewriter
NPY_CLIPMODE
\family default
clipmode)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
take
\series default
(
\emph on
indices
\emph default
,
\emph on
axis
\emph default
,
\emph on
ret
\emph default
,
\emph on
clipmode
\emph default
) except
\emph on
axis
\emph default
=None in Python is obtained by setting
\emph on
axis
\emph default
=
\family typewriter
NPY_MAXDIMS
\family default
in C.
Extract the items from self indicated by the integer-valued
\emph on
indices
\emph default
along the given
\emph on
axis.
\emph default
The clipmode argument can be
\family typewriter
NPY_RAISE
\family default
,
\family typewriter
NPY_WRAP
\family default
, or
\family typewriter
NPY_CLIP
\family default
to indicate what to do with out-of-bound indices.
The
\emph on
ret
\emph default
argument can specify an output array rather than having one created internally.
\end_layout
\begin_layout Description
PyArray_PutTo (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
values,
\family typewriter
PyObject*
\family default
indices,
\family typewriter
NPY_CLIPMODE
\family default
clipmode)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.put(
\emph on
values
\emph default
,
\emph on
indices
\emph default
,
\emph on
clipmode
\emph default
).
Put
\emph on
values
\emph default
into
\emph on
self
\emph default
at the corresponding (flattened)
\emph on
indices
\emph default
.
If
\emph on
values
\emph default
is too small it will be repeated as necessary.
\end_layout
\begin_layout Description
PyArray_PutMask (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
values,
\family typewriter
PyObject*
\family default
mask)
\end_layout
\begin_layout Description
\InsetSpace ~
Place the
\emph on
values
\emph default
in
\emph on
self
\emph default
wherever corresponding positions (using a flattened context) in
\emph on
mask
\emph default
are true.
The
\emph on
mask
\emph default
and
\emph on
self
\emph default
arrays must have the same total number of elements.
If
\emph on
values
\emph default
is too small, it will be repeated as necessary.
\end_layout
\begin_layout Description
PyArray_Repeat (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
op,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
repeat
\series default
(
\emph on
op
\emph default
,
\emph on
axis
\emph default
).
Copy the elements of
\emph on
self
\emph default
,
\emph on
op
\emph default
times along the given
\emph on
axis
\emph default
.
Either
\emph on
op
\emph default
is a scalar integer or a sequence of length
\emph on
self
\emph default
->dimensions[
\emph on
axis
\emph default
] indicating how many times to repeat each item along the axis.
\end_layout
\begin_layout Description
PyArray_Choose (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArrayObject*
\family default
ret,
\family typewriter
NPY_CLIPMODE
\family default
clipmode)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
choose
\series default
(
\emph on
op
\emph default
,
\emph on
ret
\emph default
,
\emph on
clipmode
\emph default
).
Create a new array by selecting elements from the sequence of arrays in
\emph on
op
\emph default
based on the integer values in
\emph on
self
\emph default
.
The arrays must all be broadcastable to the same shape and the entries
in
\emph on
self
\emph default
should be between 0 and len(
\emph on
op
\emph default
).
The output is placed in
\emph on
ret
\emph default
unless it is
\family typewriter
NULL
\family default
in which case a new output is created.
The
\emph on
clipmode
\emph default
argument determines behavior for when entries in
\emph on
self
\emph default
are not between 0 and len(
\emph on
op
\emph default
).
\end_layout
\begin_deeper
\begin_layout Description
NPY_RAISE raise a ValueError;
\end_layout
\begin_layout Description
NPY_WRAP wrap values <0 by adding len(
\emph on
op
\emph default
) and values >=len(
\emph on
op
\emph default
) by subtracting len(
\emph on
op
\emph default
) until they are in range;
\end_layout
\begin_layout Description
NPY_CLIP all values are clipped to the region [0, len(
\emph on
op
\emph default
) ).
\end_layout
\end_deeper
\begin_layout Description
PyArray_Sort (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
sort
\series default
(
\emph on
axis
\emph default
).
Return an array with the items of
\emph on
self
\emph default
sorted along
\emph on
axis
\emph default
.
\end_layout
\begin_layout Description
PyArray_ArgSort (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
argsort
\series default
(
\emph on
axis
\emph default
).
Return an array of indices such that selection of these indices along the
given
\family typewriter
axis
\family default
would return a sorted version of
\emph on
self
\emph default
.
If
\emph on
self
\emph default
->descr is a data-type with fields defined, then self->descr->names is used
to determine the sort order.
A comparison where the first field is equal will use the second field and
so on.
To alter the sort order of a record array, create a new data-type with
a different order of names and construct a view of the array with that
new data-type.
\end_layout
\begin_layout Description
PyArray_LexSort (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
sort_keys,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Given a sequence of arrays (
\emph on
sort_keys
\emph default
) of the same shape, return an array of indices (similar to
\family typewriter
PyArray_ArgSort
\family default
(...)) that would sort the arrays lexicographically.
A lexicographic sort specifies that when two keys are found to be equal,
the order is based on comparison of subsequent keys.
A merge sort (which leaves equal entries unmoved) is required to be defined
for the types.
The sort is accomplished by sorting the indices first using the first
\emph on
sort_key
\emph default
and then using the second
\emph on
sort_key
\emph default
and so forth.
This is equivalent to the lexsort(
\emph on
sort_keys
\emph default
,
\emph on
axis
\emph default
) Python command.
Because of the way the merge-sort works, be sure to understand the order
the
\emph on
sort_keys
\emph default
must be in (reversed from the order you would use when comparing two elements).
\end_layout
\begin_layout Description
\InsetSpace ~
If these arrays are all collected in a record array, then
\family typewriter
PyArray_Sort
\family default
(...) can also be used to sort the array directly.
\end_layout
\begin_layout Description
PyArray_SearchSorted (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
values)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
searchsorted
\series default
(
\emph on
values
\emph default
).
Assuming
\emph on
self
\emph default
is a 1-d array in ascending order representing bin boundaries then the
output is an array the same shape as
\emph on
values
\emph default
of bin numbers, giving the bin into which each item in
\emph on
values
\emph default
would be placed.
No checking is done on whether or not self is in ascending order.
\end_layout
\begin_layout Description
PyArray_Diagonal (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
offset,
\family typewriter
int
\family default
axis1,
\family typewriter
int
\family default
axis2)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
diagonal
\series default
(
\emph on
offset
\emph default
,
\emph on
axis1
\emph default
,
\emph on
axis2
\emph default
).
Return the
\emph on
offset
\emph default
diagonals of the 2-d arrays defined by
\emph on
axis1
\emph default
and
\emph on
axis2
\emph default
.
\end_layout
\begin_layout Description
PyArray_Nonzero (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
nonzero
\series default
().
Returns a tuple of index arrays that select elements of
\emph on
self
\emph default
that are nonzero.
If (nd=
\family typewriter
PyArray_NDIM
\family default
(
\family typewriter
self
\family default
))==1, then a single index array is returned.
The index arrays have data type
\family typewriter
NPY_INTP
\family default
.
If a tuple is returned (nd
\begin_inset Formula $\neq$
\end_inset
1), then its length is nd.
\end_layout
\begin_layout Description
PyArray_Compress (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
condition,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
compress
\series default
(
\emph on
condition
\emph default
,
\emph on
axis
\emph default
).
Return the elements along
\emph on
axis
\emph default
corresponding to elements of
\emph on
condition
\emph default
that are true.
\end_layout
\begin_layout Subsubsection
Calculation
\end_layout
\begin_layout Tip
Pass in NPY_MAXDIMS for axis in order to achieve the same effect that is
obtained by passing in axis = None in Python (treating the array as a 1-d
array).
\end_layout
\begin_layout Description
PyArray_ArgMax (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
argmax
\series default
(
\emph on
axis
\emph default
).
Return the index of the largest element of
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
\end_layout
\begin_layout Description
PyArray_ArgMin (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
argmin
\series default
(
\emph on
axis
\emph default
).
Return the index of the smallest element of
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
\end_layout
\begin_layout Description
PyArray_Max (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
max
\series default
(
\emph on
axis
\emph default
).
Return the largest element of
\emph on
self
\emph default
along the given
\emph on
axis
\emph default
.
\end_layout
\begin_layout Description
PyArray_Min (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
min
\series default
(
\emph on
axis
\emph default
).
Return the smallest element of
\emph on
self
\emph default
along the given
\emph on
axis
\emph default
.
\end_layout
\begin_layout Description
PyArray_Ptp (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
ptp
\series default
(
\emph on
axis
\emph default
).
Return the difference between the largest element of
\emph on
self
\emph default
along
\emph on
axis
\emph default
and the smallest element of
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
\end_layout
\begin_layout Note
The rtype argument specifies the data-type the reduction should take place
over.
This is important if the data-type of the array is not
\begin_inset Quotes eld
\end_inset
large
\begin_inset Quotes erd
\end_inset
enough to handle the output.
By default, all integer data-types are made at least as large as NPY_LONG
for the
\begin_inset Quotes eld
\end_inset
add
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
multiply
\begin_inset Quotes erd
\end_inset
ufuncs (which form the basis for mean, sum, cumsum, prod, and cumprod functions
).
\end_layout
\begin_layout Description
PyArray_Mean (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
mean
\series default
(
\emph on
axis
\emph default
,
\emph on
rtype
\emph default
).
Returns the mean of the elements along the given
\emph on
axis
\emph default
, using the enumerated type
\emph on
rtype
\emph default
as the data type to sum in.
Default sum behavior is obtained using
\family typewriter
PyArray_NOTYPE
\family default
for
\emph on
rtype
\emph default
.
\end_layout
\begin_layout Description
PyArray_Trace (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
offset,
\family typewriter
int
\family default
axis1,
\family typewriter
int
\family default
axis2,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
trace
\series default
(
\emph on
offset
\emph default
,
\emph on
axis1
\emph default
,
\emph on
axis2
\emph default
,
\emph on
rtype
\emph default
).
Return the sum (using
\emph on
rtype
\emph default
as the data type of summation) over the
\emph on
offset
\emph default
diagonal elements of the 2-d arrays defined by
\emph on
axis1
\emph default
and
\emph on
axis2
\emph default
variables.
A positive offset chooses diagonals above the main diagonal.
A negative offset selects diagonals below the main diagonal.
\end_layout
\begin_layout Description
PyArray_Clip (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
PyObject*
\family default
min,
\family typewriter
PyObject*
\family default
max)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
clip
\series default
(
\emph on
min
\emph default
,
\emph on
max
\emph default
).
Clip an array,
\emph on
self
\emph default
, so that values larger than
\emph on
max
\emph default
are fixed to
\emph on
max
\emph default
and values less than
\emph on
min
\emph default
are fixed to
\emph on
min
\emph default
.
\end_layout
\begin_layout Description
PyArray_Conjugate (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
conjugate
\series default
() and
\emph on
self
\emph default
.
\series bold
conj
\series default
() Return the complex conjugate of
\emph on
self
\emph default
.
If
\emph on
self
\emph default
is not of complex data type, then return
\emph on
self
\emph default
with an reference.
\end_layout
\begin_layout Description
PyArray_Round (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
decimals,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
round
\series default
(
\emph on
decimals
\emph default
,
\emph on
out
\emph default
).
Returns the array with elements rounded to the nearest decimal place.
The decimal place is defined as the
\begin_inset Formula $10^{-\textrm{decimals}}$
\end_inset
digit so that negative
\emph on
decimals
\emph default
cause rounding to the nearest 10's, 100's, etc.
If out is
\family typewriter
NULL
\family default
, then the output array is created, otherwise the output is placed in
\family typewriter
\emph on
out
\family default
\emph default
which must be the correct size and type.
\end_layout
\begin_layout Description
PyArray_Std (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
std
\series default
(
\emph on
axis
\emph default
,
\emph on
rtype
\emph default
).
Return the standard deviation using data along
\emph on
axis
\emph default
converted to data type
\emph on
rtype
\emph default
.
\end_layout
\begin_layout Description
PyArray_Sum (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
sum
\series default
(
\family typewriter
\emph on
axis
\family default
\emph default
,
\family typewriter
\emph on
rtype
\family default
\emph default
).
Return 1-d vector sums of elements in
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
Perform the sum after converting data to data type
\emph on
rtype
\emph default
.
\end_layout
\begin_layout Description
PyArray_CumSum (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
cumsum
\series default
(
\family typewriter
\emph on
axis
\family default
\emph default
,
\family typewriter
\emph on
rtype
\family default
\emph default
).
Return cumulative 1-d sums of elements in
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
Perform the sum after converting data to data type
\emph on
rtype
\emph default
.
\end_layout
\begin_layout Description
PyArray_Prod (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
prod
\series default
(
\emph on
axis
\emph default
,
\emph on
rtype
\emph default
).
Return 1-d products of elements in
\emph on
self
\emph default
along
\emph on
axis
\emph default
.
Perform the product after converting data to data type
\emph on
rtype
\emph default
.
\end_layout
\begin_layout Description
PyArray_CumProd (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
int
\family default
rtype,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
cumprod
\series default
(
\emph on
axis
\emph default
,
\emph on
rtype
\emph default
).
Return 1-d cumulative products of elements in
\family typewriter
self
\family default
along
\family typewriter
axis
\family default
.
Perform the product after converting data to data type
\family typewriter
rtype
\family default
.
\end_layout
\begin_layout Description
PyArray_All (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
all
\series default
(
\emph on
axis
\emph default
).
Return an array with True elements for every 1-d sub-array of
\family typewriter
self
\family default
defined by
\family typewriter
axis
\family default
in which all the elements are True.
\end_layout
\begin_layout Description
PyArray_Any (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
self,
\family typewriter
int
\family default
axis,
\family typewriter
PyArrayObject*
\family default
out)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\emph on
self
\emph default
.
\series bold
any
\series default
(
\emph on
axis
\emph default
).
Return an array with True elements for every 1-d sub-array of
\emph on
self
\emph default
defined by
\emph on
axis
\emph default
in which any of the elements are True.
\end_layout
\begin_layout Subsection
Functions
\end_layout
\begin_layout Subsubsection
Array Functions
\end_layout
\begin_layout Description
PyArray_AsCArray (
\family typewriter
int
\family default
) (
\family typewriter
PyObject**
\family default
op,
\family typewriter
void*
\family default
ptr,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
nd,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
itemsize)
\end_layout
\begin_layout Description
\InsetSpace ~
Sometimes it is useful to access a multidimensional array as a C-style
multi-dimensional array so that algorithms can be implemented using C's
a[i][j][k] syntax.
This routine returns a pointer,
\emph on
ptr
\emph default
, that simulates this kind of C-style array, for 1-, 2-, and 3-d ndarrays.
\end_layout
\begin_deeper
\begin_layout Description
op The address to any Python object.
This Python object will be replaced with an equivalent well-behaved, C-style
contiguous, ndarray of the given data type specifice by the last two arguments.
Be sure that stealing a reference in this way to the input object is justified.
\end_layout
\begin_layout Description
ptr The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d)
variable where ctype is the equivalent C-type for the data type.
On return,
\emph on
ptr
\emph default
will be addressable as a 1-d, 2-d, or 3-d array.
\end_layout
\begin_layout Description
dims An output array that contains the shape of the array object.
This array gives boundaries on any looping that will take place.
\end_layout
\begin_layout Description
nd The dimensionality of the array (1, 2, or 3).
\end_layout
\begin_layout Description
typenum The expected data type of the array.
\end_layout
\begin_layout Description
itemsize This argument is only needed when
\emph on
typenum
\emph default
represents a flexible array.
Otherwise it should be 0.
\end_layout
\end_deeper
\begin_layout Note
The simulation of a C-style array is not complete for 2-d and 3-d arrays.
For example, the simulated arrays of pointers cannot be passed to subroutines
expecting specific, statically-defined 2-d and 3-d arrays.
To pass to functions requiring those kind of inputs, you must statically
define the required array and copy data.
\end_layout
\begin_layout Description
PyArray_Free (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
void*
\family default
ptr)
\end_layout
\begin_layout Description
\InsetSpace ~
Must be called with the same objects and memory locations returned from
\family typewriter
PyArray_AsCArray
\family default
(...).
This function cleans up memory that otherwise would get leaked.
\end_layout
\begin_layout Description
PyArray_Concatenate (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Join the sequence of objects in
\emph on
obj
\emph default
together along
\emph on
axis
\emph default
into a single array.
If the dimensions or types are not compatible an error is raised.
\end_layout
\begin_layout Description
PyArray_InnerProduct (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj1,
\family typewriter
PyObject*
\family default
obj2)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute a product-sum over the last dimensions of
\emph on
obj1
\emph default
and
\emph on
obj2
\emph default
.
Neither array is conjugated.
\end_layout
\begin_layout Description
PyArray_MatrixProduct (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj1,
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute a product-sum over the last dimension of
\emph on
obj1
\emph default
and the second-to-last dimension of
\emph on
obj2
\emph default
.
For 2-d arrays this is a matrix-product.
Neither array is conjugated.
\end_layout
\begin_layout Description
PyArray_CopyAndTranspose (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject
\family default
* op)
\end_layout
\begin_layout Description
\InsetSpace ~
A specialized copy and transpose function that works only for 2-d arrays.
The returned array is a transposed copy of
\emph on
op
\emph default
.
\end_layout
\begin_layout Description
PyArray_Correlate (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
op1,
\family typewriter
PyObject*
\family default
op2,
\family typewriter
int
\family default
mode)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the 1-d correlation of the 1-d arrays
\emph on
op1
\emph default
and
\emph on
op2
\emph default
.
The correlation is computed at each output point by multiplying
\emph on
op1
\emph default
by a shifted version of
\emph on
op2
\emph default
and summing the result.
As a result of the shift, needed values outside of the defined range of
\emph on
op1
\emph default
and
\emph on
op2
\emph default
are interpreted as zero.
The mode determines how many shifts to return: 0 - return only shifts that
did not need to assume zero-values; 1 - return an object that is the same
size as
\emph on
op1
\emph default
, 2 - return all possible shifts (any overlap at all is accepted).
\end_layout
\begin_layout Description
PyArray_Where (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
condition,
\family typewriter
PyObject*
\family default
x,
\family typewriter
PyObject*
\family default
y)
\end_layout
\begin_layout Description
\InsetSpace ~
If both
\family typewriter
x
\family default
and
\family typewriter
y
\family default
are
\family typewriter
NULL
\family default
, then return
\family typewriter
PyArray_Nonzero
\family default
(
\family typewriter
\emph on
condition
\family default
\emph default
).
Otherwise, both
\emph on
x
\emph default
and
\emph on
y
\emph default
must be given and the object returned is shaped like
\emph on
condition
\emph default
and has elements of
\emph on
x
\emph default
and
\emph on
y
\emph default
where
\emph on
condition
\emph default
is respectively True or False.
\end_layout
\begin_layout Subsubsection
Other functions
\end_layout
\begin_layout Description
PyArray_CheckStrides (
\family typewriter
Bool
\family default
) (
\family typewriter
int
\family default
elsize,
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp
\family default
numbytes,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
npy_intp*
\family default
newstrides)
\end_layout
\begin_layout Description
\InsetSpace ~
Determine if
\emph on
newstrides
\emph default
is a strides array consistent with the memory of an
\emph on
nd
\emph default
-dimensional array with shape
\family typewriter
dims
\family default
and element-size,
\emph on
elsize
\emph default
.
The
\emph on
newstrides
\emph default
array is checked to see if jumping by the provided number of bytes in each
direction will ever mean jumping more than
\emph on
numbytes
\emph default
which is the assumed size of the available memory segment.
If
\emph on
numbytes
\emph default
is 0, then an equivalent
\emph on
numbytes
\emph default
is computed assuming
\emph on
nd
\emph default
,
\emph on
dims
\emph default
, and
\emph on
elsize
\emph default
refer to a single-segment array.
Return
\family typewriter
NPY_TRUE
\family default
if
\emph on
newstrides
\emph default
is acceptable, otherwise return
\family typewriter
NPY_FALSE
\family default
.
\end_layout
\begin_layout Description
PyArray_MultiplyList (
\family typewriter
npy_intp
\family default
) (
\family typewriter
npy_intp*
\family default
seq,
\family typewriter
int
\family default
n)
\end_layout
\begin_layout Description
PyArray_MultiplyIntList (
\family typewriter
int
\family default
) (
\family typewriter
int*
\family default
seq,
\family typewriter
int
\family default
n)
\end_layout
\begin_layout Description
\InsetSpace ~
Both of these routines multiply an
\emph on
n
\emph default
-length array,
\emph on
seq
\emph default
, of integers and return the result.
No overflow checking is performed.
\end_layout
\begin_layout Description
PyArray_CompareLists (
\family typewriter
int
\family default
) (
\family typewriter
npy_intp*
\family default
l1,
\family typewriter
npy_intp*
\family default
l2,
\family typewriter
int
\family default
n)
\end_layout
\begin_layout Description
\InsetSpace ~
Given two
\emph on
n
\emph default
-length arrays of integers,
\emph on
l1
\emph default
, and
\emph on
l2
\emph default
, return 1 if the lists are identical; otherwise, return 0.
\end_layout
\begin_layout Subsection
Array Iterators
\end_layout
\begin_layout Standard
An array iterator is a simple way to access the elements of an N-dimensional
array quickly and efficiently.
Section
\begin_inset LatexCommand ref
reference "sec:array_iterator"
\end_inset
provides more description and examples of this useful approach to looping
over an array.
\end_layout
\begin_layout Description
PyArray_IterNew (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array iterator object from the array,
\emph on
arr
\emph default
.
This is equivalent to
\emph on
arr
\emph default
.
\series bold
flat
\series default
.
The array iterator object makes it easy to loop over an N-dimensional non-conti
guous array in C-style contiguous fashion.
\end_layout
\begin_layout Description
PyArray_IterAllButAxis (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
arr,
\family typewriter
int
\family default
*axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array iterator that will iterate over all axes but the one provided
in
\emph on
*axis
\emph default
.
The returned iterator cannot be used with
\family typewriter
PyArray_ITER_GOTO1D
\family default
.
This iterator could be used to write something similar to what ufuncs do
wherein the loop over the largest axis is done by a separate sub-routine.
If
\emph on
*axis
\emph default
is negative then
\emph on
*axis
\emph default
will be set to the axis having the smallest stride and that axis will be
used.
\end_layout
\begin_layout Description
PyArray_BroadcastToShape (
\family typewriter
PyObject*
\family default
)(
\family typewriter
PyObject*
\family default
arr,
\family typewriter
npy_intp
\family default
*dimensions,
\family typewriter
int
\family default
nd)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array iterator that is broadcast to iterate as an array of the
shape provided by
\emph on
dimensions
\emph default
and
\emph on
nd
\emph default
.
\end_layout
\begin_layout Description
PyArrayIter_Check (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates true if
\emph on
op
\emph default
is an array iterator (or instance of a subclass of the array iterator type).
\end_layout
\begin_layout Description
PyArray_ITER_RESET (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
iterator)
\end_layout
\begin_layout Description
\InsetSpace ~
Reset an
\emph on
iterator
\emph default
to the beginning of the array.
\end_layout
\begin_layout Description
PyArray_ITER_NEXT (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
iterator)
\end_layout
\begin_layout Description
\InsetSpace ~
Incremement the index and the dataptr members of the
\emph on
iterator
\emph default
to point to the next element of the array.
If the array is not (C-style) contiguous, also increment the N-dimensional
coordinates array.
\end_layout
\begin_layout Description
PyArray_ITER_DATA (
\family typewriter
void*
\family default
)(
\family typewriter
PyObject*
\family default
iterator)
\end_layout
\begin_layout Description
\InsetSpace ~
A pointer to the current element of the array.
\end_layout
\begin_layout Description
PyArray_ITER_GOTO (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
iterator,
\family typewriter
npy_intp*
\family default
destination)
\end_layout
\begin_layout Description
\InsetSpace ~
Set the
\emph on
iterator
\emph default
index, dataptr, and coordinates members to the location in the array indicated
by the N-dimensional c-array,
\emph on
destination
\emph default
, which must have size at least
\emph on
iterator
\emph default
->nd_m1+1.
\end_layout
\begin_layout Description
PyArray_ITER_GOTO1D (
\family typewriter
PyObject*
\family default
iterator,
\family typewriter
npy_intp
\family default
index)
\end_layout
\begin_layout Description
\InsetSpace ~
Set the
\emph on
iterator
\emph default
index and dataptr to the location in the array indicated by the integer
\emph on
index
\emph default
which points to an element in the C-styled flattened array.
\end_layout
\begin_layout Description
PyArray_ITER_NOTDONE (
\family typewriter
int
\family default
)(
\family typewriter
PyObject*
\family default
iterator)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates TRUE as long as the iterator has not looped through all of the
elements, otherwise it evaluates FALSE.
\end_layout
\begin_layout Subsection
Broadcasting (multi-iterators)
\end_layout
\begin_layout Description
PyArray_MultiIterNew (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
num, ...)
\end_layout
\begin_layout Description
\InsetSpace ~
A simplified interface to broadcasting.
This function takes the number of arrays to broadcast and then
\emph on
num
\emph default
extra (
\family typewriter
PyObject*
\family default
) arguments.
These arguments are converted to arrays and iterators are created.
\family typewriter
PyArray_Broadcast
\family default
is then called on the resulting multi-iterator object.
The resulting, broadcasted mult-iterator object is then returned.
A broadcasted operation can then be performed using a single loop and using
\family typewriter
PyArray_MultiIter_NEXT
\family default
(..)
\end_layout
\begin_layout Description
PyArray_MultiIter_RESET (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
multi)
\end_layout
\begin_layout Description
\InsetSpace ~
Reset all the iterators to the beginning in a multi-iterator object,
\emph on
multi
\emph default
.
\end_layout
\begin_layout Description
PyArray_MultiIter_NEXT (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
multi)
\end_layout
\begin_layout Description
\InsetSpace ~
Advance each iterator in a multi-iterator object,
\emph on
multi
\emph default
, to its next (broadcasted) element.
\end_layout
\begin_layout Description
PyArray_MultiIter_DATA (
\family typewriter
void*
\family default
)(
\family typewriter
PyObject*
\family default
multi,
\family typewriter
int
\family default
i)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the data-pointer of the
\emph on
i
\emph default
\begin_inset Formula $^{\textrm{th}}$
\end_inset
iterator in a multi-iterator object.
\end_layout
\begin_layout Description
PyArray_MultiIter_NEXTi (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
multi,
\family typewriter
int
\family default
i)
\end_layout
\begin_layout Description
\InsetSpace ~
Advance the pointer of only the
\emph on
i
\emph default
\begin_inset Formula $^{\textrm{th}}$
\end_inset
iterator.
\end_layout
\begin_layout Description
PyArray_MultiIter_GOTO (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
multi,
\family typewriter
npy_intp*
\family default
destination)
\end_layout
\begin_layout Description
\InsetSpace ~
Advance each iterator in a multi-iterator object,
\emph on
multi
\emph default
, to the given
\begin_inset Formula $N$
\end_inset
-dimensional
\emph on
destination
\emph default
where
\begin_inset Formula $N$
\end_inset
is the number of dimensions in the broadcasted array.
\end_layout
\begin_layout Description
PyArray_MultiIter_GOTO1D (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
multi,
\family typewriter
npy_intp
\family default
index)
\end_layout
\begin_layout Description
\InsetSpace ~
Advance each iterator in a multi-iterator object,
\emph on
multi
\emph default
, to the corresponding location of the
\emph on
index
\emph default
into the flattened broadcasted array.
\end_layout
\begin_layout Description
PyArray_MultiIter_NOTDONE (
\family typewriter
int
\family default
)(
\family typewriter
PyObject*
\family default
multi)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates TRUE as long as the multi-iterator has not looped through all
of the elements (of the broadcasted result), otherwise it evaluates FALSE.
\end_layout
\begin_layout Description
PyArray_Broadcast (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayMultiIterObject*
\family default
mit)
\end_layout
\begin_layout Description
\InsetSpace ~
This function encapsulates the broadcasting rules.
The
\emph on
mit
\emph default
container should already contain iterators for all the arrays that need
to be broadcast.
On return, these iterators will be adjusted so that iteration over each
simultaneously will accomplish the broadcasting.
A negative number is returned if an error occurs.
\end_layout
\begin_layout Description
PyArray_RemoveSmallest (
\family typewriter
int
\family default
) (
\family typewriter
PyArrayMultiIterObject*
\family default
mit)
\end_layout
\begin_layout Description
\InsetSpace ~
This function takes a multi-iterator object that has been previously
\begin_inset Quotes eld
\end_inset
broadcasted,
\begin_inset Quotes erd
\end_inset
finds the dimension with the smallest
\begin_inset Quotes eld
\end_inset
sum of strides
\begin_inset Quotes erd
\end_inset
in the broadcasted result and adapts all the iterators so as not to iterate
over that dimension (by effectively making them of length-1 in that dimension).
The corresponding dimension is returned unless
\emph on
mit
\emph default
->nd is 0, then -1 is returned.
This function is useful for constructing ufunc-like routines that broadcast
their inputs correctly and then call a strided 1-d version of the routine
as the inner-loop.
This 1-d version is usually optimized for speed and for this reason the
loop should be performed over the axis that won't require large stride
jumps.
\end_layout
\begin_layout Subsection
Array Scalars
\end_layout
\begin_layout Description
PyArray_Return (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyArrayObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
This function checks to see if
\emph on
arr
\emph default
is a 0-dimensional array and, if so, returns the appropriate array scalar.
It should be used whenever 0-dimensional arrays could be returned to Python.
\end_layout
\begin_layout Description
PyArray_Scalar (
\family typewriter
PyObject*
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
PyArray_Descr*
\family default
dtype,
\family typewriter
PyObject*
\family default
itemsize)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array scalar object of the given enumerated
\emph on
typenum
\emph default
and
\emph on
itemsize
\emph default
by
\series bold
copying
\series default
from memory pointed to by
\emph on
data
\emph default
.
If
\emph on
swap
\emph default
is nonzero then this function will byteswap the data if appropriate to
the data-type because array scalars are always in correct machine-byte
order.
\end_layout
\begin_layout Description
PyArray_ToScalar (
\family typewriter
PyObject*
\family default
) (
\family typewriter
void*
\family default
data,
\family typewriter
PyArrayObject*
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array scalar object of the type and itemsize indicated by the
array object
\emph on
arr
\emph default
copied from the memory pointed to by
\emph on
data
\emph default
and swapping if the data in
\emph on
arr
\emph default
is not in machine byte-order.
\end_layout
\begin_layout Description
PyArray_FromScalar (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
scalar,
\family typewriter
PyArray_Descr*
\family default
outcode)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 0-dimensional array of type determined by
\emph on
outcode
\emph default
from
\emph on
scalar
\emph default
which should be an array-scalar object.
If
\emph on
outcode
\emph default
is NULL, then the type is determined from
\family typewriter
\emph on
scalar
\family default
\emph default
.
\end_layout
\begin_layout Description
PyArray_ScalarAsCtype (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
scalar,
\family typewriter
void*
\family default
ctypeptr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return in
\emph on
ctypeptr
\emph default
a pointer to the actual value in an array scalar.
There is no error checking so
\emph on
scalar
\emph default
must be an array-scalar object, and ctypeptr must have enough space to
hold the correct type.
For flexible-sized types, a pointer to the data is copied into the memory
of
\emph on
ctypeptr
\emph default
, for all other types, the actual data is copied into the address pointed
to by
\emph on
ctypeptr
\emph default
.
\end_layout
\begin_layout Description
PyArray_CastScalarToCtype (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
scalar,
\family typewriter
void*
\family default
ctypeptr,
\family typewriter
PyArray_Descr*
\family default
outcode)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the data (cast to the data type indicated by
\emph on
outcode
\emph default
) from the array-scalar,
\emph on
scalar
\emph default
, into the memory pointed to by
\emph on
ctypeptr
\emph default
(which must be large enough to handle the incoming memory).
\end_layout
\begin_layout Description
PyArray_TypeObjectFromType (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
type)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a scalar type-object from a type-number,
\emph on
type
\emph default
.
Equivalent to
\family typewriter
PyArray_DescrFromType
\family default
(
\emph on
type
\emph default
)->typeobj except for reference counting and error-checking.
Returns a new reference to the typeobject on success or
\family typewriter
NULL
\family default
on failure.
\end_layout
\begin_layout Description
PyArray_ScalarKind (
\family typewriter
NPY_SCALARKIND
\family default
) (
\family typewriter
int
\family default
typenum,
\family typewriter
PyArrayObject**
\family default
arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the kind of scalar represented by
\emph on
typenum
\emph default
and the array in
\emph on
*arr
\emph default
(if
\emph on
arr
\emph default
is not
\family typewriter
NULL
\family default
).
The array is assumed to be rank-0 and only used if
\emph on
typenum
\emph default
represents a signed integer.
If
\emph on
arr
\emph default
is not
\family typewriter
NULL
\family default
and the first element is negative then
\family typewriter
NPY_INTNEG_SCALAR
\family default
is returned, otherwise
\family typewriter
NPY_INTPOS_SCALAR
\family default
is returned.
The possible return values are
\family typewriter
NPY_
\family default
<kind>
\family typewriter
_SCALAR
\family default
where <kind> can be
\series bold
INTPOS
\series default
,
\series bold
INTNEG
\series default
,
\series bold
FLOAT
\series default
,
\series bold
COMPLEX
\series default
,
\series bold
BOOL
\series default
, or
\series bold
OBJECT
\series default
.
\family typewriter
NPY_NOSCALAR
\family default
is also an enumerated value
\family typewriter
NPY_SCALARKIND
\family default
variables can take on.
\end_layout
\begin_layout Description
PyArray_CanCoerceScalar (
\family typewriter
int
\family default
) (
\family typewriter
char
\family default
thistype,
\family typewriter
char
\family default
neededtype,
\family typewriter
NPY_SCALARKIND
\family default
scalar)
\end_layout
\begin_layout Description
\InsetSpace ~
Implements the rules for scalar coercion.
Scalars are only silently coerced from thistype to neededtype if this function
returns nonzero.
If scalar is
\family typewriter
NPY_NOSCALAR
\family default
, then this function is equivalent to
\family typewriter
PyArray_CanCastSafely
\family default
.
The rule is that scalars of the same KIND can be coerced into arrays of
the same KIND.
This rule means that high-precision scalars will never cause low-precision
arrays of the same KIND to be upcast.
\end_layout
\begin_layout Subsection
Data-type descriptors
\end_layout
\begin_layout Warning
Data-type objects must be reference counted so be aware of the action on
the data-type reference of different C-API calls.
The standard rule is that when a data-type object is returned it is a new
reference.
Functions that take
\family typewriter
PyArray_Descr*
\family default
objects and return arrays steal references to the data-type their inputs
unless otherwise noted.
Therefore, you must own a reference to any data-type object used as input
to such a function.
\end_layout
\begin_layout Description
PyArrayDescr_Check (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates as true if
\emph on
obj
\emph default
is a data-type object (
\family typewriter
PyArray_Descr*
\family default
).
\end_layout
\begin_layout Description
PyArray_DescrNew (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
PyArray_Descr*
\family default
obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new data-type object copied from
\emph on
obj
\emph default
(the fields reference is just updated so that the new object points to
the same fields dictionary if any).
\end_layout
\begin_layout Description
PyArray_DescrNewFromType (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new data-type object from the built-in (or user-registered) data-type
indicated by
\emph on
typenum
\emph default
.
All builtin types should not have any of their fields changed.
This creates a new copy of the
\family typewriter
PyArray_Descr
\family default
structure so that you can fill it in as appropriate.
This function is especially needed for flexible data-types which need to
have a new elsize member in order to be meaningful in array construction.
\end_layout
\begin_layout Description
PyArray_DescrNewByteorder (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
PyArray_Descr*
\family default
obj,
\family typewriter
char
\family default
newendian)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new data-type object with the byteorder set according to
\emph on
newendian
\emph default
.
All referenced data-type objects (in subdescr and fields members of the
data-type object) are also changed (recursively).
If a byteorder of
\family typewriter
NPY_IGNORE
\family default
is encountered it is left alone.
If newendian is
\family typewriter
NPY_SWAP
\family default
, then all byte-orders are swapped.
Other valid newendian values are
\family typewriter
NPY_NATIVE
\family default
,
\family typewriter
NPY_LITTLE
\family default
, and
\family typewriter
NPY_BIG
\family default
which all cause the returned data-typed descriptor (and all it's referenced
data-type descriptors) to have the corresponding byte-order.
\end_layout
\begin_layout Description
PyArray_DescrFromObject (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
PyArray_Descr*
\family default
mintype)
\end_layout
\begin_layout Description
\InsetSpace ~
Determine an appropriate data-type object from the object
\emph on
op
\emph default
(which should be a
\begin_inset Quotes eld
\end_inset
nested
\begin_inset Quotes erd
\end_inset
sequence object) and the minimum data-type descriptor mintype (which can
be
\family typewriter
NULL
\family default
).
Similar in behavior to array(
\emph on
op
\emph default
).dtype.
Don't confuse this function with
\family typewriter
PyArray_DescrConverter
\family default
.
This function essentially looks at all the objects in the (nested) sequence
and determines the data-type from the elements it finds.
\end_layout
\begin_layout Description
PyArray_DescrFromScalar (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
PyObject*
\family default
scalar)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a data-type object from an array-scalar object.
No checking is done to be sure that
\emph on
scalar
\emph default
is an array scalar.
If no suitable data-type can be determined, then a data-type of NPY_OBJECT
is returned by default.
\end_layout
\begin_layout Description
PyArray_DescrFromType (
\family typewriter
PyArray_Descr*
\family default
) (
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a data-type object corresponding to
\emph on
typenum
\emph default
.
The
\emph on
typenum
\emph default
can be one of the enumerated types, a character code for one of the enumerated
types, or a user-defined type.
\end_layout
\begin_layout Description
PyArray_DescrConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Descr**
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any compatible Python object,
\emph on
obj
\emph default
, to a data-type object in
\emph on
dtype
\emph default
.
A large number of Python objects can be converted to data-type objects.
See Chapter
\begin_inset LatexCommand ref
reference "cha:Data-descriptor-objects"
\end_inset
for a complete description.
This version of the converter converts None objects to a
\family typewriter
NPY_DEFAULT_TYPE
\family default
data-type object.
This function can be used with the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
character code in PyArg_ParseTuple processing.
\end_layout
\begin_layout Description
PyArray_DescrConverter2 (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Descr**
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any compatible Python object,
\emph on
obj
\emph default
, to a data-type object in
\emph on
dtype
\emph default
.
This version of the converter converts None objects so that the returned
data-type is
\family typewriter
NULL
\family default
.
This function can also be used with the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
character in PyArg_ParseTuple processing.
\end_layout
\begin_layout Description
Pyarray_DescrAlignConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Descr**
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Like
\family typewriter
PyArray_DescrConverter
\family default
except it aligns C-struct-like objects on word-boundaries as the compiler
would.
\end_layout
\begin_layout Description
Pyarray_DescrAlignConverter2 (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Descr**
\family default
dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
Like
\family typewriter
PyArray_DescrConverter2
\family default
except it aligns C-struct-like objects on word-boundaries as the compiler
would.
\end_layout
\begin_layout Description
PyArray_FieldNames (
\family typewriter
PyObject*
\family default
)(
\family typewriter
PyObject*
\family default
dict)
\end_layout
\begin_layout Description
\InsetSpace ~
Take the fields dictionary,
\family typewriter
\emph on
dict
\family default
\emph default
, such as the one attached to a data-type object and construct an ordered-list
of field names such as is stored in the names field of the
\family typewriter
PyArray_Descr
\family default
object.
\end_layout
\begin_layout Subsection
Conversion Utilities
\end_layout
\begin_layout Subsubsection
For use with
\family typewriter
PyArg_ParseTuple
\end_layout
\begin_layout Standard
All of these functions can be used in
\family typewriter
PyArg_ParseTuple
\family default
(...) with the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
format specifier to automatically convert any Python object to the required
C-object.
All of these functions return
\family typewriter
NPY_SUCCEED
\family default
if successful and
\family typewriter
NPY_FAIL
\family default
if not.
The first argument to all of these function is a Python object.
The second argument is the
\series bold
address
\series default
of the C-type to convert the Python object to.
\end_layout
\begin_layout Warning
Be sure to understand what steps you should take to manage the memory when
using these conversion functions.
These functions can require freeing memory, and/or altering the reference
counts of specific objects based on your use.
\end_layout
\begin_layout Description
PyArray_Converter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyObject**
\family default
address)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any Python object to a
\family typewriter
PyArrayObject
\family default
.
If
\family typewriter
PyArray_Check
\family default
(
\family typewriter
\emph on
obj
\family default
\emph default
) is TRUE then its reference count is incremented and a reference placed
in
\emph on
address
\emph default
.
If
\emph on
obj
\emph default
is not an array, then convert it to an array using
\family typewriter
PyArray_FromAny
\family default
.
No matter what is returned, you must DECREF the object returned by this
routine in
\emph on
address
\emph default
when you are done with it.
\end_layout
\begin_layout Description
PyArray_OutputConverter (
\family typewriter
int
\family default
)(
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArrayObject**
\family default
address)
\end_layout
\begin_layout Description
\InsetSpace ~
This is a default converter for output arrays given to functions.
If
\emph on
obj
\emph default
is
\family typewriter
Py_None
\family default
or
\family typewriter
NULL
\family default
, then
\emph on
*address
\emph default
will be
\family typewriter
NULL
\family default
but the call will succeed.
If
\family typewriter
PyArray_Check
\family default
(
\emph on
obj
\emph default
) is TRUE then it is returned in
\emph on
*address
\emph default
without incrementing its reference count.
\end_layout
\begin_layout Description
PyArray_IntpConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Dims*
\family default
seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any Python sequence,
\emph on
obj
\emph default
, smaller than
\family typewriter
NPY_MAXDIMS
\family default
to a C-array of
\family typewriter
npy_intp
\family default
.
The Python object could also be a single number.
The
\emph on
seq
\emph default
variable is a pointer to a structure with members ptr and len.
On successful return,
\emph on
seq
\emph default
->ptr contains a pointer to memory that must be freed to avoid a memory
leak.
The restriction on memory size allows this converter to be conveniently
used for sequences intended to be interpreted as array shapes.
\end_layout
\begin_layout Description
PyArray_BufferConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
PyArray_Chunk*
\family default
buf)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any Python object,
\emph on
obj
\emph default
, with a (single-segment) buffer interface to a variable with members that
detail the object's use of its chunk of memory.
The
\emph on
buf
\emph default
variable is a pointer to a structure with base, ptr, len, and flags members.
The
\family typewriter
PyArray_Chunk
\family default
structure is binary compatibile with the Python's buffer object (through
its len member on 32-bit platforms and its ptr member on 64-bit platforms
or in Python 2.5).
On return, the base member is set to
\emph on
obj
\emph default
(or its base if
\emph on
obj
\emph default
is already a buffer object pointing to another object).
If you need to hold on to the memory be sure to INCREF the base member.
The chunk of memory is pointed to by
\emph on
buf
\emph default
->ptr member and has length
\emph on
buf
\emph default
->len.
The flags member of
\emph on
buf
\emph default
is
\family typewriter
NPY_BEHAVED_RO
\family default
with the
\family typewriter
NPY_WRITEABLE
\family default
flag set if
\emph on
obj
\emph default
has a writeable buffer interface.
\end_layout
\begin_layout Description
PyArray_AxisConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject
\family default
* obj,
\family typewriter
int*
\family default
axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert a Python object,
\emph on
obj
\emph default
, representing an axis argument to the proper value for passing to the functions
that take an integer axis.
Specifically, if
\emph on
obj
\emph default
is None,
\emph on
axis
\emph default
is set to
\family typewriter
NPY_MAXDIMS
\family default
which is interpreted correctly by the C-API functions that take axis arguments.
\end_layout
\begin_layout Description
PyArray_BoolConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
Bool*
\family default
value)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any Python object,
\emph on
obj
\emph default
, to
\family typewriter
NPY_TRUE
\family default
or
\family typewriter
NPY_FALSE
\family default
, and place the result in
\emph on
value
\emph default
.
\end_layout
\begin_layout Description
PyArray_ByteorderConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
char*
\family default
endian)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert Python strings into the corresponding byte-order character: '>',
'<', 's', '=', or '|'.
\end_layout
\begin_layout Description
PyArray_SortkindConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
NPY_SORTKIND*
\family default
sort)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert Python strings into one of
\family typewriter
NPY_QUICKSORT
\family default
(starts with 'q' or 'Q') ,
\family typewriter
NPY_HEAPSORT
\family default
(starts with 'h' or 'H'), or
\family typewriter
NPY_MERGESORT
\family default
(starts with 'm' or 'M').
\end_layout
\begin_layout Description
PyArray_SearchsideConverter (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
NPY_SEARCHSIDE*
\family default
side)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert Python strings into one of
\family typewriter
NPY_SEARCHLEFT
\family default
(starts with 'l' or 'L'), or
\family typewriter
NPY_SEARCHRIGHT
\family default
(starts with 'r' or 'R').
\end_layout
\begin_layout Subsubsection
Other conversions
\end_layout
\begin_layout Description
PyArray_PyIntAsInt (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert all kinds of Python objects (including arrays and array scalars)
to a standard integer.
On error, -1 is returned and an exception set.
You may find useful the macro:
\end_layout
\begin_layout LyX-Code
#define error_converting(x) (((x) == -1) && PyErr_Occurred()
\end_layout
\begin_layout Description
PyArray_PyIntAsIntp (
\family typewriter
npy_intp
\family default
) (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert all kinds of Python objects (including arrays and array scalars)
to a (platform-pointer-sized) integer.
On error, -1 is returned and an exception set.
\end_layout
\begin_layout Description
PyArray_IntpFromSequence (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
seq,
\family typewriter
npy_intp*
\family default
vals,
\family typewriter
int
\family default
maxvals)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert any Python sequence (or single Python number) passed in as
\emph on
seq
\emph default
to (up to)
\emph on
maxvals
\emph default
pointer-sized integers and place them in the
\emph on
vals
\emph default
array.
The sequence can be smaller then
\emph on
maxvals
\emph default
as the number of converted objects is returned.
\end_layout
\begin_layout Description
PyArray_TypestrConvert (
\family typewriter
int
\family default
) (
\family typewriter
int
\family default
itemsize,
\family typewriter
int
\family default
gentype)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert typestring characters (with
\emph on
itemsize
\emph default
) to basic enumerated data types.
The typestring character corresponding to signed and unsigned integers,
floating point numbers, and complex-floating point numbers are recognized
and converted.
Other values of gentype are returned.
This function can be used to convert, for example, the string 'f4' to
\family typewriter
NPY_FLOAT32
\family default
.
\end_layout
\begin_layout Subsection
Miscellaneous
\end_layout
\begin_layout Subsubsection
Importing the API
\end_layout
\begin_layout Standard
In order to make use of the C-API from another extension module, the
\family typewriter
import_array
\family default
() command must be used.
If the extension module is self-contained in a single .c file, then that
is all that needs to be done.
If, however, the extension module involves multiple files where the C-API
is needed then some additional steps must be taken.
\end_layout
\begin_layout Description
import_array (void) (void)
\end_layout
\begin_layout Description
\InsetSpace ~
This function must be called in the initialization section of a module
that will make use of the C-API.
It imports the module where the function-pointer table is stored and points
the correct variable to it.
\end_layout
\begin_layout Description
PY_ARRAY_UNIQUE_SYMBOL
\end_layout
\begin_layout Description
NO_IMPORT_ARRAY
\end_layout
\begin_layout Description
\InsetSpace ~
Using these #defines you can use the C-API in multiple files for a single
extension module.
In each file you must define
\family typewriter
PY_ARRAY_UNIQUE_SYMBOL
\family default
to some name that will hold the C-API (
\emph on
e.g.
\emph default
myextension_ARRAY_API).
This must be done
\series bold
before
\series default
including the numpy/arrayobject.h file.
In the module intialization routine you call
\family typewriter
import_array
\family default
().
In addition, in the files that do not have the module initialization sub_routin
e define
\family typewriter
NO_IMPORT_ARRAY
\family default
prior to including numpy/arrayobject.h.
\end_layout
\begin_layout Description
\InsetSpace ~
Suppose I have two files coolmodule.c and coolhelper.c which need to be compiled
and linked into a single extension module.
Suppose coolmodule.c contains the required initcool module initialization
function (with the import_array() function called).
Then, coolmodule.c would have at the top:
\end_layout
\begin_layout LyX-Code
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
\end_layout
\begin_layout LyX-Code
#include numpy/arrayobject.h
\end_layout
\begin_layout Description
\InsetSpace ~
On the other hand, coolhelper.c would contain at the top:
\end_layout
\begin_layout LyX-Code
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
\end_layout
\begin_layout LyX-Code
#define NO_IMPORT_ARRAY
\end_layout
\begin_layout LyX-Code
#include numpy/arrayobject.h
\end_layout
\begin_layout Description
PyArray_GetNDArrayCVersion (
\family typewriter
unsigned
\family default
\family typewriter
int
\family default
) (
\family typewriter
void
\family default
)
\end_layout
\begin_layout Description
\InsetSpace ~
This just returns the value
\family typewriter
NPY_VERSION
\family default
.
Because it is in the C-API, however, comparing the output of this function
from the value defined in the current header gives a way to test if the
C-API has changed thus requiring a re-compilation of extension modules
that use the C-API.
\end_layout
\begin_layout Subsubsection
Internal Flexibility
\end_layout
\begin_layout Description
PyArray_SetNumericOps (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
dict)
\end_layout
\begin_layout Description
\InsetSpace ~
NumPy stores an internal table of Python callable objects that are used
to implement arithmetic operations for arrays as well as certain array
calculation methods.
This function allows the user to replace any or all of these Python objects
with their own versions.
The keys of the dictionary,
\emph on
dict
\emph default
, are the named functions to replace and the paired value is the Python
callable object to use.
Care should be taken that the function used to replace an internal array
operation does not itself call back to that internal array operation (unless
you have designed the function to handle that), or an unchecked infinite
recursion can result (possibly causing program crash).
The key names that represent operations that can be replaced are:
\end_layout
\begin_layout Quote
\series bold
add
\series default
,
\series bold
subtract
\series default
,
\series bold
multiply
\series default
,
\series bold
divide
\series default
,
\series bold
remainder
\series default
,
\series bold
power
\series default
,
\series bold
square, reciprocal, ones_like, sqrt
\series default
,
\series bold
negative
\series default
,
\series bold
absolute
\series default
,
\series bold
invert
\series default
,
\series bold
left_shift
\series default
,
\series bold
right_shift
\series default
,
\series bold
bitwise_and
\series default
,
\series bold
bitwise_xor
\series default
,
\series bold
bitwise_or
\series default
,
\series bold
less
\series default
,
\series bold
less_equal
\series default
,
\series bold
equal
\series default
,
\series bold
not_equal
\series default
,
\series bold
greater
\series default
,
\series bold
greater_equal
\series default
,
\series bold
floor_divide
\series default
,
\series bold
true_divide
\series default
,
\series bold
logical_or
\series default
,
\series bold
logical_and
\series default
,
\series bold
floor
\series default
,
\series bold
ceil
\series default
,
\series bold
maximum
\series default
,
\series bold
minimum
\series default
,
\series bold
rint
\series default
.
\end_layout
\begin_layout Description
\InsetSpace ~
These functions are included here because they are used at least once in
the array object's methods.
The function returns -1 (without setting a Python Error) if one of the
objects being assigned is not callable.
\end_layout
\begin_layout Description
PyArray_GetNumericOps (
\family typewriter
PyObject*
\family default
) (
\family typewriter
void
\family default
)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a Python dictionary containing the callable Python objects stored
in the the internal arithmetic operation table.
The keys of this dictionary are given in the explanation for
\family typewriter
PyArray_SetNumericOps
\family default
.
\end_layout
\begin_layout Description
PyArray_SetStringFunction (
\family typewriter
void
\family default
) (
\family typewriter
PyObject*
\family default
op,
\family typewriter
int
\family default
repr)
\end_layout
\begin_layout Description
\InsetSpace ~
This function allows you to alter the tp_str and tp_repr methods of the
array object to any Python function.
Thus you can alter what happens for all arrays when str(arr) or repr(arr)
is called from Python.
The function to be called is passed in as
\emph on
op
\emph default
.
If
\emph on
repr
\emph default
is non-zero, then this function will be called in response to repr(arr),
otherwise the function will be called in response to str(arr).
No check on whether or not
\emph on
op
\emph default
is callable is performed.
The callable passed in to
\emph on
op
\emph default
should expect an array argument and should return a string to be printed.
\end_layout
\begin_layout Subsubsection
Memory management
\end_layout
\begin_layout Description
PyDataMem_NEW (
\family typewriter
char*
\family default
) (
\family typewriter
size_t
\family default
nbytes)
\end_layout
\begin_layout Description
PyDataMem_FREE (
\family typewriter
char*
\family default
ptr)
\end_layout
\begin_layout Description
PyDataMem_RENEW (
\family typewriter
char*
\family default
) (
\family typewriter
void *
\family default
ptr,
\family typewriter
size_t
\family default
newbytes)
\end_layout
\begin_layout Description
\InsetSpace ~
Macros to allocate, free, and reallocate memory.
These macros are used internally to create arrays.
\end_layout
\begin_layout Description
PyDimMem_NEW (
\family typewriter
npy_intp*
\family default
) (nd)
\end_layout
\begin_layout Description
PyDimMem_FREE (
\family typewriter
npy_intp*
\family default
ptr)
\end_layout
\begin_layout Description
PyDimMem_RENEW (
\family typewriter
npy_intp*
\family default
) (
\family typewriter
npy_intp*
\family default
ptr,
\family typewriter
npy_intp
\family default
newnd)
\end_layout
\begin_layout Description
\InsetSpace ~
Macros to allocate, free, and reallocate dimension and strides memory.
\end_layout
\begin_layout Description
PyArray_malloc (nbytes)
\end_layout
\begin_layout Description
PyArray_free (ptr)
\end_layout
\begin_layout Description
PyArray_realloc (ptr, nbytes)
\end_layout
\begin_layout Description
\InsetSpace ~
These macros use different memory allocators, depending on the constant
\family typewriter
NPY_USE_PYMEM
\family default
.
The system malloc is used when NPY_USE_PYMEM is 0, if NPY_USE_PYMEM is
1, then the Python memory allocator is used.
\end_layout
\begin_layout Subsubsection
Threading support
\end_layout
\begin_layout Standard
These macros are only meaningful if
\family typewriter
NPY_ALLOW_THREADS
\family default
evaluates True during compilation of the extension module.
Otherwise, these macros are equivalent to whitespace.
Python uses a single Global Interpreter Lock (GIL) for each Python process
so that only a single thread may excecute at a time (even on multi-cpu
machines).
When calling out to a compiled function that may take time to compute (and
does not have side-effects for other threads like updated global variables),
the GIL should be released so that other Python threads can run while the
time-consuming calculations are performed.
This can be accomplished using two groups of macros.
Typically, if one macro in a group is used in a code block, all of them
must be used in the same code block.
Currently,
\family typewriter
NPY_ALLOW_THREADS
\family default
is defined to the python-defined
\family typewriter
WITH_THREADS
\family default
constant unless the environment variable
\family typewriter
NPY_NOSMP
\family default
is set in which case
\family typewriter
NPY_ALLOW_THREADS
\family default
is defined to be 0.
\end_layout
\begin_layout Description
Group\InsetSpace ~
1 This group is used to call code that may take some time but does
not use any Python C-API calls.
Thus, the GIL should be released during its calculation.
\end_layout
\begin_deeper
\begin_layout Description
NPY_BEGIN_ALLOW_THREADS Equivalent to
\family typewriter
Py_BEGIN_ALLOW_THREADS
\family default
except it uses
\family typewriter
NPY_ALLOW_THREADS
\family default
to determine if the macro if replaced with white-space or not.
\end_layout
\begin_layout Description
NPY_END_ALLOW_THREADS Equivalent to
\family typewriter
Py_END_ALLOW_THREADS
\family default
except it uses
\family typewriter
NPY_ALLOW_THREADS
\family default
to determine if the macro if replaced with white-space or not.
\end_layout
\begin_layout Description
NPY_BEGIN_THREADS_DEF Place in the variable declaration area.
This macro sets up the variable needed for storing the Python state.
\end_layout
\begin_layout Description
NPY_BEGIN_THREADS Place right before code that does not need the Python
interpreter (no Python C-API calls).
This macro saves the Python state and releases the GIL.
\end_layout
\begin_layout Description
NPY_END_THREADS Place right after code that does not need the Python interpreter.
This macro acquires the GIL and restores the Python state from the saved
variable.
\end_layout
\begin_layout Description
NPY_BEGIN_THREADS_DESCR (
\family typewriter
PyArray_Descr*
\family default
dtype) Useful to release the GIL only if
\emph on
dtype
\emph default
does not contain arbitrary Python objects which may need the Python interpreter
during execution of the loop.
Equivalent to
\end_layout
\begin_layout Description
NPY_END_THREADS_DESCR (
\family typewriter
PyArray_Descr*
\family default
dtype) Useful to regain the GIL in situations where it was released using
the BEGIN form of this macro.
\end_layout
\end_deeper
\begin_layout Description
Group\InsetSpace ~
2 This group is used to re-acquire the Python GIL after it has been
released.
For example, suppose the GIL has been released (using the previous calls),
and then some path in the code (perhaps in a different subroutine) requires
use of the Python C-API, then these macros are useful to acquire the GIL.
These macros accomplish essentially a reverse of the previous three (acquire
the LOCK saving what state it had) and then re-release it with the saved
state.
\end_layout
\begin_deeper
\begin_layout Description
NPY_ALLOW_C_API_DEF Place in the variable declaration area to set up the
necessary variable.
\end_layout
\begin_layout Description
NPY_ALLOW_C_API Place before code that needs to call the Python C-API (when
it is known that the GIL has already been released).
\end_layout
\begin_layout Description
NPY_DISABLE_C_API Place after code that needs to call the Python C-API (to
re-release the GIL).
\end_layout
\end_deeper
\begin_layout Tip
Never use semicolons after the threading support macros.
\end_layout
\begin_layout Subsubsection
Priority
\end_layout
\begin_layout Description
NPY_PRIOIRTY Default priority for arrays.
\end_layout
\begin_layout Description
NPY_SUBTYPE_PRIORITY Default subtype priority.
\end_layout
\begin_layout Description
NPY_SCALAR_PRIORITY Default scalar priority (very small)
\end_layout
\begin_layout Description
PyArray_GetPriority (
\family typewriter
double
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
double
\family default
def)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the
\series bold
__array_priority__
\series default
attribute (converted to a double) of
\emph on
obj
\emph default
or
\emph on
def
\emph default
if no attribute of that name exists.
Fast returns that avoid the attribute lookup are provided for objects of
type
\family typewriter
PyArray_Type
\family default
.
\end_layout
\begin_layout Subsubsection
Default buffers
\end_layout
\begin_layout Description
NPY_BUFSIZE Default size of the user-settable internal buffers.
\end_layout
\begin_layout Description
NPY_MIN_BUFSIZE Smallest size of user-settable internal buffers.
\end_layout
\begin_layout Description
NPY_MAX_BUFSIZE Largest size allowed for the user-settable buffers.
\end_layout
\begin_layout Subsubsection
Other constants
\end_layout
\begin_layout Description
NPY_NUM_FLOATTYPE The number of floating-point types
\end_layout
\begin_layout Description
NPY_MAXDIMS The maximum number of dimensions allowed in arrays.
\end_layout
\begin_layout Description
NPY_VERSION The current version of the ndarray object (check to see if this
variable is defined to guarantee the numpy/arrayobject.h header is being
used).
\end_layout
\begin_layout Description
NPY_FALSE Defined as 0 for use with Bool.
\end_layout
\begin_layout Description
NPY_TRUE Defined as 1 for use with Bool.
\end_layout
\begin_layout Description
NPY_FAIL The return value of failed converter functions which are called
using the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
syntax in PyArg_ParseTuple-like functions.
\end_layout
\begin_layout Description
NPY_SUCCEED The return value of successful converter functions which are
called using the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
syntax in PyArg_ParseTuple-like functions.
\end_layout
\begin_layout Subsubsection
Miscellaneous Macros
\end_layout
\begin_layout Description
PyArray_SAMESHAPE (a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluates as True if arrays
\emph on
a1
\emph default
and
\emph on
a2
\emph default
have the same shape.
\end_layout
\begin_layout Description
PyArray_MAX (a,b)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the maximum of
\emph on
a
\emph default
and
\emph on
b
\emph default
.
If (
\emph on
a
\emph default
) or (
\emph on
b
\emph default
) are expressions they are evaluated twice.
\end_layout
\begin_layout Description
PyArray_MIN (a,b)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the minimum of
\emph on
a
\emph default
and
\emph on
b
\emph default
.
If (
\emph on
a
\emph default
) or (
\emph on
b
\emph default
) are expressions they are evaluated twice.
\end_layout
\begin_layout Description
PyArray_CLT (a,b)
\end_layout
\begin_layout Description
PyArray_CGT (a,b)
\end_layout
\begin_layout Description
PyArray_CLE (a,b)
\end_layout
\begin_layout Description
PyArray_CGE (a,b)
\end_layout
\begin_layout Description
PyArray_CEQ (a,b)
\end_layout
\begin_layout Description
PyArray_CNE (a,b)
\end_layout
\begin_layout Description
\InsetSpace ~
Implements the complex comparisons between two complex numbers (structures
with a real and imag member) using NumPy's definition of the ordering which
is lexicographic: comparing the real parts first and then the complex parts
if the real parts are equal.
\end_layout
\begin_layout Description
PyArray_REFCOUNT (
\family typewriter
PyObject*
\family default
op)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the reference count of any Python object.
\end_layout
\begin_layout Description
PyArray_XDECREF_ERR (PyObject *obj)
\end_layout
\begin_layout Description
\InsetSpace ~
DECREF's an array object which may have the
\family typewriter
NPY_UPDATEIFCOPY
\family default
flag set without causing the contents to be copied back into the original
array.
Resets the
\family typewriter
NPY_WRITEABLE
\family default
flag on the base object.
This is useful for recovering from an error condition when
\family typewriter
NPY_UPDATEIFCOPY
\family default
is used.
\end_layout
\begin_layout Subsubsection
Enumerated Types
\end_layout
\begin_layout Description
NPY_SORTKIND A special variable-type which can take on the values
\series bold
NPY_
\series default
<KIND> where <KIND> is
\end_layout
\begin_layout Quote
\series bold
QUICKSORT
\series default
,
\series bold
HEAPSORT
\series default
,
\series bold
MERGESORT
\end_layout
\begin_layout Description
\InsetSpace ~
\series bold
NPY_NSORTS
\series default
is defined to be the number of sorts.
\end_layout
\begin_layout Description
NPY_SCALARKIND A special variable type indicating the number of
\begin_inset Quotes eld
\end_inset
kinds
\begin_inset Quotes erd
\end_inset
of scalars distinguished in determining scalar-coercion rules.
This variable can take on the values NPY_<KIND> where <KIND> can be
\end_layout
\begin_layout Quote
\series bold
NOSCALAR
\series default
,
\series bold
BOOL_SCALAR
\series default
,
\series bold
INTPOS_SCALAR
\series default
,
\series bold
INTNEG_SCALAR
\series default
,
\series bold
FLOAT_SCALAR
\series default
,
\series bold
COMPLEX_SCALAR
\series default
,
\series bold
OBJECT_SCALAR
\end_layout
\begin_layout Description
\InsetSpace ~
\series bold
NPY_NSCALARKINDS
\series default
is defined to be the number of scalar kinds (not including
\family typewriter
NPY_NOSCALAR
\family default
).
\end_layout
\begin_layout Description
NPY_ORDER A variable type indicating the order that an array should be interpret
ed in.
The value of a variable of this type can be
\series bold
NPY_
\series default
<ORDER> where <ORDER> is
\end_layout
\begin_layout Quote
\series bold
ANYORDER
\series default
,
\series bold
CORDER
\series default
,
\series bold
FORTRANORDER
\end_layout
\begin_layout Description
NPY_CLIPMODE A variable type indicating the kind of clipping that should
be applied in certain functions.
The value of a variable of this type can be
\series bold
NPY_
\series default
<MODE> where <MODE> is
\end_layout
\begin_layout Quote
\series bold
CLIP
\series default
,
\series bold
WRAP
\series default
,
\series bold
RAISE
\begin_inset LatexCommand index
name "ndarray!C-API|)"
\end_inset
\begin_inset LatexCommand index
name "C-API!array|)"
\end_inset
\end_layout
\begin_layout Section
UFunc API
\begin_inset LatexCommand index
name "ufunc!C-API|("
\end_inset
\begin_inset LatexCommand index
name "C-API!ufunc|("
\end_inset
\end_layout
\begin_layout Subsection
Constants
\end_layout
\begin_layout Description
UFUNC_ERR_<HANDLER>
\end_layout
\begin_layout Description
\InsetSpace ~
<HANDLER> can be
\series bold
IGNORE
\series default
,
\series bold
WARN
\series default
,
\series bold
RAISE
\series default
, or
\series bold
CALL
\end_layout
\begin_layout Description
UFUNC_<THING>_<ERR>
\end_layout
\begin_layout Description
\InsetSpace ~
<THING> can be
\series bold
MASK
\series default
,
\series bold
SHIFT
\series default
, or
\series bold
FPE
\series default
, and <ERR> can be
\series bold
DIVIDEBYZERO
\series default
,
\series bold
OVERFLOW
\series default
,
\series bold
UNDERFLOW
\series default
, and
\series bold
INVALID
\series default
.
\end_layout
\begin_layout Description
PyUFunc_<VALUE> <VALUE> can be
\series bold
One
\series default
(1),
\series bold
Zero
\series default
(0), or
\series bold
None
\series default
(-1)
\end_layout
\begin_layout Subsection
Macros
\end_layout
\begin_layout Description
NPY_LOOP_BEGIN_THREADS
\end_layout
\begin_layout Description
\InsetSpace ~
Used in universal function code to only release the Python GIL if loop->obj
is not true (
\emph on
i.e.
\emph default
this is not an OBJECT array loop).
Requires use of
\family typewriter
NPY_BEGIN_THREADS_DEF
\family default
in variable declaration area.
\end_layout
\begin_layout Description
NPY_LOOP_END_THREADS
\end_layout
\begin_layout Description
\InsetSpace ~
Used in universal function code to re-acquire the Python GIL if it was
released (because loop->obj was not true).
\end_layout
\begin_layout Description
UFUNC_CHECK_ERROR (loop)
\end_layout
\begin_layout Description
\InsetSpace ~
A macro used internally to check for errors and goto fail if found.
This macro requires a fail label in the current code block.
The
\emph on
loop
\emph default
variable must have at least members (obj, errormask, and errorobj).
If
\emph on
loop
\emph default
->obj is nonzero, then
\family typewriter
PyErr_Occurred
\family default
() is called (meaning the GIL must be held).
If
\emph on
loop
\emph default
->obj is zero, then if
\emph on
loop
\emph default
->errormask is nonzero,
\family typewriter
PyUFunc_checkfperr
\family default
is called with arguments
\emph on
loop
\emph default
->errormask and
\emph on
loop
\emph default
->errobj.
If the result of this check of the IEEE floating point registers is true
then the code redirects to the fail label which must be defined.
\end_layout
\begin_layout Description
UFUNC_CHECK_STATUS (
\emph on
ret
\emph default
)
\end_layout
\begin_layout Description
\InsetSpace ~
A macro that expands to platform-dependent code.
The
\emph on
ret
\emph default
variable can can be any integer.
The
\family typewriter
UFUNC_FPE_
\family default
<ERR> bits are set in
\emph on
ret
\emph default
according to the status of the corresponding error flags of the floating
point processor.
\end_layout
\begin_layout Subsection
Functions
\end_layout
\begin_layout Description
PyUFunc_FromFuncAndData (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyUFuncGenericFunction*
\family default
func,
\family typewriter
void**
\family default
data,
\family typewriter
char*
\family default
types,
\family typewriter
int
\family default
ntypes,
\family typewriter
int
\family default
nin,
\family typewriter
int
\family default
nout,
\family typewriter
int
\family default
identity,
\family typewriter
char*
\family default
name,
\family typewriter
char*
\family default
doc,
\family typewriter
int
\family default
check_return)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new broadcasting universal function from required variables.
Each ufunc builds around the notion of an element-by-element operation.
Each ufunc object contains pointers to 1-d loops implementing the basic
functionality for each supported type.
\end_layout
\begin_layout Description
nin The number of inputs to this operation.
\end_layout
\begin_layout Description
nout The number of outputs
\end_layout
\begin_layout Description
ntypes How many different data-type
\begin_inset Quotes eld
\end_inset
signatures
\begin_inset Quotes erd
\end_inset
the ufunc has implemented.
\end_layout
\begin_layout Description
func Must to an array of length
\emph on
ntypes
\emph default
containing
\family typewriter
PyUFuncGenericFunction
\family default
items.
These items are pointers to functions that acutally implement the underlying
(element-by-element) function
\begin_inset Formula $N$
\end_inset
times.
T
\end_layout
\begin_layout Description
types Must be of length (
\emph on
nin
\emph default
+
\emph on
nout
\emph default
)
\emph on
*ntypes
\emph default
, and it contains the data-types (built-in only) that the corresponding
function in the
\emph on
func
\emph default
array can deal with.
\end_layout
\begin_layout Description
data Should be
\family typewriter
NULL
\family default
or a pointer to an array of size
\emph on
ntypes
\emph default
.
This array may contain arbitrary extra-data to be passed to the corresponding
1-d loop function in the func array.
\end_layout
\begin_layout Description
name The name for the ufunc.
\end_layout
\begin_layout Description
doc Allows passing in a documentation string to be stored with the ufunc.
The documentation string should not contain the name of the function or
the calling signature as that will be dynamically determined from the object
and available when accessing the
\series bold
__doc__
\series default
attribute of the ufunc.
\end_layout
\begin_layout Description
check_return Unused and present for backwards compatibility of the C-API.
A corresponding
\emph on
check_return
\emph default
integer does exist in the ufunc structure and it does get set with this
value when the ufunc object is created.
\end_layout
\begin_layout Description
PyUFunc_RegisterLoopForType (
\family typewriter
int
\family default
) (
\family typewriter
PyUFuncObject*
\family default
ufunc,
\family typewriter
int
\family default
usertype,
\family typewriter
PyUFuncGenericFunction
\family default
function,
\family typewriter
int*
\family default
arg_types,
\family typewriter
void*
\family default
data)
\end_layout
\begin_layout Description
\InsetSpace ~
This function allows the user to register a 1-d loop with an already-created
ufunc to be used whenever the ufunc is called with any of its input arguments
as the user-defined data-type.
This is needed in order to make ufuncs work with built-in data-types.
The data-type must have been previously registered with the numpy system.
The loop is passed in as
\emph on
function
\emph default
.
This loop can take arbitrary data which should be passed in as
\emph on
data
\emph default
.
The data-types the loop requires are passed in as
\emph on
arg_types
\emph default
which must be a pointer to memory at least as large as ufunc->nargs.
\end_layout
\begin_layout Description
PyUFunc_ReplaceLoopBySignature (
\family typewriter
int
\family default
) (
\family typewriter
PyUFuncObject*
\family default
ufunc,
\family typewriter
PyUFuncGenericFunction
\family default
newfunc,
\family typewriter
int*
\family default
signature,
\family typewriter
PyUFuncGenericFunction*
\family default
oldfunc)
\end_layout
\begin_layout Description
\InsetSpace ~
Replace a 1-d loop matching the given
\emph on
signature
\emph default
in the already-created
\emph on
ufunc
\emph default
with the new 1-d loop newfunc.
Return the old 1-d loop function in
\emph on
oldfunc
\emph default
.
Return 0 on success and -1 on failure.
This function works only with built-in types (use
\family typewriter
PyUFunc_RegisterLoopForType
\family default
for user-defined types).
A signature is an array of data-type numbers indicating the inputs followed
by the outputs assumed by the 1-d loop.
\end_layout
\begin_layout Description
PyUFunc_GenericFunction (
\family typewriter
int
\family default
) (
\family typewriter
PyUFuncObject*
\family default
self,
\family typewriter
PyObject*
\family default
args,
\family typewriter
PyArrayObject**
\family default
mps)
\end_layout
\begin_layout Description
\InsetSpace ~
A generic ufunc call.
The ufunc is passed in as
\emph on
self
\emph default
, the arguments to the ufunc as
\emph on
args
\emph default
.
The
\emph on
mps
\emph default
argument is an array of
\family typewriter
PyArrayObject
\family default
pointers containing the converted input arguments as well as the ufunc
outputs on return.
The user is responsible for managing this array and receives a new reference
for each array in
\emph on
mps
\emph default
.
The total number of arrays in
\emph on
mps
\emph default
is given by
\emph on
self
\emph default
->nin +
\emph on
self
\emph default
->nout.
\end_layout
\begin_layout Description
PyUFunc_checkfperr (
\family typewriter
int
\family default
) (
\family typewriter
int
\family default
errmask,
\family typewriter
PyObject*
\family default
errobj)
\end_layout
\begin_layout Description
\InsetSpace ~
A simple interface to the IEEE error-flag checking support.
The
\emph on
errmask
\emph default
argument is a mask of
\family typewriter
UFUNC_MASK_<ERR>
\family default
bitmasks indicating which errors to check for (and how to check for them).
The
\emph on
errobj
\emph default
must be a Python tuple with two elements: a string containing the name
which will be used in any communication of error and either a callable
Python object (call-back function) or
\family typewriter
Py_None
\family default
.
The callable object will only be used if
\family typewriter
UFUNC_ERR_CALL
\family default
is set as the desired error checking method.
This routine manages the GIL and is safe to call even after releasing the
GIL.
If an error in the IEEE-compatibile hardware is determined a -1 is returned,
otherwise a 0 is returned.
\end_layout
\begin_layout Description
PyUFunc_clearfperr (
\family typewriter
void
\family default
) ()
\end_layout
\begin_layout Description
\InsetSpace ~
Clear the IEEE error flags.
\end_layout
\begin_layout Description
PyUFunc_GetPyValues (
\family typewriter
void
\family default
) (
\family typewriter
char*
\family default
name,
\family typewriter
int*
\family default
bufsize,
\family typewriter
int*
\family default
errmask,
\family typewriter
PyObject**
\family default
errobj)
\end_layout
\begin_layout Description
\InsetSpace ~
Get the Python values used for ufunc processing from the thread-local storage
area unless the defaults have been set in which case the name lookup is
bypassed.
The name is placed as a string in the first element of
\emph on
*errobj
\emph default
.
The second element is the looked-up function to call on error callback.
The value of the looked-up buffer-size to use is passed into
\emph on
bufsize
\emph default
, and the value of the error mask is placed into
\emph on
errmask
\emph default
.
\end_layout
\begin_layout Subsection
Generic functions
\end_layout
\begin_layout Standard
At the core of every ufunc is a collection of type-specific functions that
defines the basic functionality for each of the supported types.
These functions must evaluate the underlying function
\begin_inset Formula $N\geq1$
\end_inset
times.
Extra-data may be passed in that may be used during the calculation.
This feature allows some general functions to be used as these basic looping
functions.
The general function has all the code needed to point variables to the
right place and set up a function call.
The general function assumes that the actual function to call is passed
in as the extra data and calls it with the correct values.
All of these functions are suitable for placing directly in the array of
functions stored in the functions member of the PyUFuncObject structure.
\end_layout
\begin_layout Description
PyUFunc_f_f_As_d_d (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_d_d (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_f_f (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_g_g (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_F_F_As_D_D (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_F_F (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_D_D (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_G_G (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
Type specific, core 1-d functions for ufuncs where each calculation is
obtained by calling a function taking one input argument and returning
one output.
This function is passed in
\family typewriter
func
\family default
.
The letters correspond to dtypechar's of the supported data types (
\family typewriter
f
\family default
- float,
\family typewriter
d
\family default
- double,
\family typewriter
g
\family default
- long double,
\family typewriter
F
\family default
- cfloat,
\family typewriter
D
\family default
- cdouble,
\family typewriter
G
\family default
- clongdouble).
The argument
\emph on
func
\emph default
must support the same signature.
The _As_X_X variants assume ndarray's of one data type but cast the values
to use an underlying function that takes a different data type.
Thus,
\family typewriter
PyUFunc_f_f_As_d_d
\family default
uses ndarrays of data type
\family typewriter
NPY_FLOAT
\family default
but calls out to a C-function that takes double and returns double.
\end_layout
\begin_layout Description
PyUFunc_ff_f_As_dd_d (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_ff_f (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_dd_d (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_gg_g (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_FF_F_As_DD_D (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_DD_D (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_FF_F (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_GG_G (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
Type specific, core 1-d functions for ufuncs where each calculation is
obtained by calling a function taking two input arguments and returning
one output.
The underlying function to call is passed in as
\emph on
func
\emph default
.
The letters correspond to dtypechar's of the specific data type supported
by the general-purpose function.
The argument
\family typewriter
func
\family default
must support the corresponding signature.
The
\family typewriter
_As_XX_X
\family default
variants assume ndarrays of one data type but cast the values at each iteration
of the loop to use the underlying function that takes a different data
type.
\end_layout
\begin_layout Description
PyUFunc_O_O (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
PyUFunc_OO_O (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
One-input, one-output, and two-input, one-output core 1-d functions for
the
\family typewriter
NPY_OBJECT
\family default
data type.
These functions handle reference count issues and return early on error.
The actual function to call is
\emph on
func
\emph default
and it must accept calls with the signature (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
) for
\family typewriter
PyUFunc_O_O
\family default
or (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject
\family default
*,
\family typewriter
PyObject
\family default
*) for
\family typewriter
PyUFunc_OO_O
\family default
.
\end_layout
\begin_layout Description
PyUFunc_O_O_method (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
This general purpose 1-d core function assumes that
\emph on
func
\emph default
is a string representing a method of the input object.
For each iteration of the loop, the Python obejct is extracted from the
array and its
\emph on
func
\emph default
method is called returning the result to the output array.
\end_layout
\begin_layout Description
PyUFunc_OO_O_method (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
This general purpose 1-d core function assumes that
\emph on
func
\emph default
is a string representing a method of the input object that takes one argument.
The first argument in
\emph on
args
\emph default
is the method whose function is called, the second argument in
\emph on
args
\emph default
is the argument passed to the function.
The output of the function is stored in the third entry of
\emph on
args
\emph default
.
\end_layout
\begin_layout Description
PyUFunc_On_Om (
\family typewriter
void
\family default
) (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
func)
\end_layout
\begin_layout Description
\InsetSpace ~
This is the 1-d core function used by the dynamic ufuncs created by umath.frompy
func(function, nin, nout).
In this case
\emph on
func
\emph default
is a pointer to a
\family typewriter
PyUFunc_PyFuncData
\family default
structure which has definition {
\family typewriter
int
\family default
nin;
\family typewriter
int
\family default
nout;
\family typewriter
PyObject*
\family default
callable}.
At each iteration of the loop, the
\emph on
nin
\emph default
input objects are exctracted from their object arrays and placed into an
argument tuple, the Python
\emph on
callable
\emph default
is called with the input arguments, and the nout outputs are placed into
their object arrays.
\end_layout
\begin_layout Section
Importing the API
\end_layout
\begin_layout Description
PY_UFUNC_UNIQUE_SYMBOL
\end_layout
\begin_layout Description
NO_IMPORT_UFUNC
\end_layout
\begin_layout Description
import_ufunc (
\family typewriter
void
\family default
) (
\family typewriter
void
\family default
)
\end_layout
\begin_layout Description
\InsetSpace ~
These are the constants and functions for accessing the ufunc C-API from
extension modules in precisely the same way as the array C-API can be accessed.
The
\family typewriter
import_ufunc
\family default
() function must always be called (in the initialization subroutine of the
extension module).
If your extension module is in one file then that is all that is required.
The other two constants are useful if your extension module makes use of
multiple files.
In that case, define
\family typewriter
PY_UFUNC_UNIQUE_SYMBOL
\family default
to something unique to your code and then in source files that do not contain
the module initialization function but still need access to the UFUNC API,
define
\family typewriter
PY_UFUNC_UNIQUE_SYMBOL
\family default
to the same name used previously and also define
\family typewriter
NO_IMPORT_UFUNC
\family default
.
\end_layout
\begin_layout Description
\InsetSpace ~
The C-API is actually an array of function pointers.
This array is created (and pointed to by a global variable) by import_ufunc.
The global variable is either statically defined or allowed to be seen
by other files depending on the state of
\family typewriter
Py_UFUNC_UNIQUE_SYMBOL
\family default
and
\family typewriter
NO_IMPORT_UFUNC
\family default
.
\begin_inset LatexCommand index
name "ufunc!C-API|)"
\end_inset
\begin_inset LatexCommand index
name "C-API!ufunc|)"
\end_inset
\end_layout
\begin_layout Chapter
How to extend NumPy
\end_layout
\begin_layout Quotation
That which is static and repetitive is boring.
That which is dynamic and random is confusing.
In between lies art.
\end_layout
\begin_layout Right Address
---
\emph on
John A.
Locke
\end_layout
\begin_layout Quotation
Science is a differential equation.
Religion is a boundary condition.
\end_layout
\begin_layout Right Address
---
\emph on
Alan Turing
\end_layout
\begin_layout Section
Writing an extension module
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "sec:Writing-an-extension"
\end_inset
\begin_inset LatexCommand index
name "extension module|("
\end_inset
While the ndarray object is designed to allow rapid computation in Python,
it is also designed to be general-purpose and satisfy a wide-variety of
computational needs.
As a result, if absolute speed is essential, there is no replacement for
a well-crafted, compiled loop specific to your application and hardware.
This is one of the reasons that numpy includes f2py so that an easy-to-use
mechanisms for linking (simple) C/C++ and (arbitrary) Fortran code directly
into Python are available.
You are encouraged to use and improve this mechanism.
The purpose of this section is not to document this tool but to document
the more basic steps to writing an extension module that this tool depends
on.
\end_layout
\begin_layout Standard
When an extension module is written, compiled, and installed to somewhere
in the Python path (sys.path), the code can then be imported into Python
as if it were a standard python file.
It will contain objects and methods that have been defined and compiled
in C code.
The basic steps for doing this in Python are well-documented and you can
find more information in the documentation for Python itself available
online at
\begin_inset LatexCommand url
name "www.python.org"
target "http://www.python.org"
\end_inset
.
\end_layout
\begin_layout Standard
In addition to the Python C-API, there is a full and rich C-API for NumPy
allowing sophisticated manipulations on a C-level.
However, for most applications, only a few API calls will typically be
used.
If all you need to do is extract a pointer to memory along with some shape
information to pass to another calculation routine, then you will use very
different calls, then if you are trying to create a new array-like type
or add a new data type for ndarrays.
This chapter documents the API calls and macros that are most commonly
used.
\end_layout
\begin_layout Section
Required subroutine
\end_layout
\begin_layout Standard
There is exactly one function that must be defined in your C-code in order
for Python to use it as an extension module.
The function must be called init<name> where <name> is the name of the
module from Python.
This function must be declared so that it is visible to code outside of
the routine.
Besides adding the methods and constants you desire, this subroutine must
also contain calls to import_array() and/or import_ufunc() depending on
which C-API is needed.
Forgetting to place these commands will show itself as an ugly segmentation
fault (crash) as soon as any C-API subroutine is actually called.
It is actually possible to have multiple init<name> functions in a single
file in which case multiple modules will be defined by that file.
However, there are some tricks to get that to work correctly and it is
not covered here.
\end_layout
\begin_layout Standard
A minimal init<name> method looks like
\end_layout
\begin_layout LyX-Code
PyMODINIT_FUNC
\newline
init<name>(void)
\newline
{
\newline
(void)Py_InitModule(
\begin_inset Quotes erd
\end_inset
<name>
\begin_inset Quotes erd
\end_inset
, mymethods);
\newline
import_array();
\newline
}
\end_layout
\begin_layout Standard
The mymethods must be an array (usually statically declared) of PyMethodDef
structures which contain method names, actual C-functions, a variable indicatin
g whether the method uses keyword arguments or not, and docstrings.
These are explained in the next section.
If you want to add constants to the module, then you store the returned
value from Py_InitModule which is a module object.
The most general way to add itmes to the module is to get the module dictionary
using PyModule_GetDict(module).
With the module dictionary, you can add whatever you like to the module
manually.
An easier way to add objects to the module is to use one of three additional
Python C-API calls that do not require a separate extraction of the module
dictionary.
These are documented in the Python documentation, but repeated here for
convenience:
\end_layout
\begin_layout Description
PyModule_AddObject (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
module,
\family typewriter
char*
\family default
name,
\family typewriter
PyObject*
\family default
value)
\end_layout
\begin_layout Description
PyModule_AddIntConstant (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
module,
\family typewriter
char*
\family default
name,
\family typewriter
long
\family default
value)
\end_layout
\begin_layout Description
PyModule_AddStringConstant (
\family typewriter
int
\family default
) (
\family typewriter
PyObject*
\family default
module,
\family typewriter
char*
\family default
name,
\family typewriter
char*
\family default
value)
\end_layout
\begin_layout Description
\InsetSpace ~
All three of these functions require the
\family typewriter
module
\family default
object (the return value of Py_InitModule).
The
\family typewriter
name
\family default
is a string that labels the value in the module.
Depending on which function is called, the
\family typewriter
value
\family default
argument is either a general object (PyModule_AddObject steals a reference
to it), an integer constant, or a string constant.
\end_layout
\begin_layout Section
Defining functions
\end_layout
\begin_layout Standard
The second argument passed in to the Py_InitModule function is a structure
that makes it easy to to define functions in the module.
In the example given above, the mymethods structure would have been defined
earlier in the file (usually right before the init<name> subroutine) to
\end_layout
\begin_layout LyX-Code
static PyMethodDef mymethods[] = {
\newline
{
\begin_inset Quotes erd
\end_inset
nokeywordfunc
\begin_inset Quotes erd
\end_inset
,nokeyword_cfunc,
\newline
METH_VARARGS,
\newline
\begin_inset Quotes erd
\end_inset
Doc string
\begin_inset Quotes erd
\end_inset
},
\newline
{
\begin_inset Quotes erd
\end_inset
keywordfunc
\begin_inset Quotes erd
\end_inset
, keyword_cfunc,
\end_layout
\begin_layout LyX-Code
METH_VARARGS|METH_KEYWORDS,
\newline
\begin_inset Quotes erd
\end_inset
Doc string
\begin_inset Quotes erd
\end_inset
},
\newline
{NULL, NULL, 0, NULL} /* Sentinel */
\newline
}
\end_layout
\begin_layout Standard
Each entry in the mymethods array is a PyMethodDef structure containing
1) the Python name, 2) the C-function that implements the function, 3)
flags indicating whether or not keywords are accepted for this function,
and 4) The docstring for the function.
Any number of functions may be defined for a single module by adding more
entries to this table.
The last entry must be all NULL as shown to act as a sentinel.
Python looks for this entry to know that all of the functions for the module
have been defined.
\end_layout
\begin_layout Standard
The last thing that must be done to finish the extension module is to actually
write the code that performs the desired functions.
There are two kinds of functions: those that don't accept keyword arguments,
and those that do.
\end_layout
\begin_layout Subsection
Functions without keyword arguments
\end_layout
\begin_layout Standard
Functions that don't accept keyword arguments should be written as
\end_layout
\begin_layout LyX-Code
static PyObject*
\newline
nokeyword_cfunc (PyObject *dummy, PyObject *args)
\newline
{
\newline
/*
convert Python arguments */
\newline
/* do function */
\end_layout
\begin_layout LyX-Code
/* return something */
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Standard
The dummy argument is not used in this context and can be safely ignored.
The
\emph on
args
\emph default
argument contains all of the arguments passed in to the function as a tuple.
You can do anything you want at this point, but usually the easiest way
to manage the input arguments is to call
\family typewriter
PyArg_ParseTuple
\family default
(args, format_string, addresses_to_C_variables...) or
\family typewriter
PyArg_UnpackTuple
\family default
(tuple,
\begin_inset Quotes eld
\end_inset
name
\begin_inset Quotes erd
\end_inset
, min, max, ...).
A good description of how to use the first function is contained in the
Python C-API reference manual under section 5.5 (Parsing arguments and building
values).
You should pay particular attention to the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
format which uses converter functions to go between the Python object and
the C object.
All of the other format functions can be (mostly) thought of as special
cases of this general rule.
There are several converter functions defined in the NumPy C-API that may
be of use.
In particular, the
\family typewriter
PyArray_DescrConverter
\family default
function is very useful to support arbitrary data-type specification.
This function transforms any valid data-type Python object into a
\family typewriter
PyArray_Descr*
\family default
object.
Remember to pass in the address of the C-variables that should be filled
in.
\end_layout
\begin_layout Standard
There are lots of examples of how to use
\family typewriter
PyArg_ParseTuple
\family default
throughout the NumPy source code.
The standard usage is like this:
\end_layout
\begin_layout LyX-Code
PyObject *input;
\end_layout
\begin_layout LyX-Code
PyArray_Descr *dtype;
\end_layout
\begin_layout LyX-Code
if (!PyArg_ParseTuple(args, "OO&", &input,
\newline
PyArray_DescrCon
verter,
\newline
&dtype)) return NULL;
\end_layout
\begin_layout Standard
It is important to keep in mind that you get a
\emph on
borrowed
\emph default
reference to the object when using the
\begin_inset Quotes eld
\end_inset
O
\begin_inset Quotes erd
\end_inset
format string.
However, the converter functions usually require some form of memory handling.
In this example, if the conversion is successful,
\emph on
dtype
\emph default
will hold a new reference to a
\family typewriter
PyArray_Descr*
\family default
object, while
\emph on
input
\emph default
will hold a borrowed reference.
Therefore, if this conversion were mixed with another conversion (say to
an integer) and the data-type conversion was successful but the integer
conversion failed, then you would need to release the reference count to
the data-type object before returning.
A typical way to do this is to set
\emph on
dtype
\emph default
to
\family typewriter
NULL
\family default
before calling PyArg_ParseTuple and then use
\family typewriter
Py_XDECREF
\family default
on
\emph on
dtype
\emph default
before returning.
\end_layout
\begin_layout Standard
After the input arguments are processed, the code that actually does the
work is written (likely calling other functions as needed).
The final step of the C-function is to return something.
If an error is encountered then
\family typewriter
NULL
\family default
should be returned (making sure an error has actually been set).
If nothing should be returned then increment
\family typewriter
Py_None
\family default
and return it.
If a single object should be returned then it is returned (ensuring that
you own a reference to it first).
If multiple objects should be returned then you need to return a tuple.
The
\family typewriter
Py_BuildValue
\family default
(format_string, c_variables...) function makes it easy to build tuples of
Python objects from C variables.
Pay special attention to the difference between 'N' and 'O' in the format
string or you can easily create memory leaks.
The 'O' format string increments the reference count of the
\family typewriter
PyObject*
\family default
C-variable it corresponds to, while the 'N' format string steals a reference
to the corresponding
\family typewriter
PyObject*
\family default
C-variable.
You should use 'N' if you ave already created a reference for the object
and just want to give that reference to the tuple.
You should use 'O' if you only have a borrowed reference to an object and
need to create one to provide for the tuple.
\end_layout
\begin_layout Subsection
Functions with keyword arguments
\end_layout
\begin_layout Standard
These functions are very similar to functions without keyword arguments.
The only difference is that the function signature is
\end_layout
\begin_layout LyX-Code
static PyObject*
\newline
keyword_cfunc (PyObject *dummy, PyObject *args, PyObject
*kwds)
\newline
{
\newline
...
\newline
}
\end_layout
\begin_layout Standard
The kwds argument holds a Python dictionary whose keys are the names of
the keyword arguments and whose values are the corresponding keyword-argument
values.
This dictionary can be processed however you see fit.
The easiest way to handle it, however, is to replace the
\family typewriter
PyArg_ParseTuple
\family default
(args, format_string, addresses...) function with a call to
\family typewriter
PyArg_ParseTupleAndKeywords
\family default
(args, kwds, format_string, char *kwlist[], addresses...).
The kwlist parameter to this function is a
\family typewriter
NULL
\family default
-terminated array of strings providing the expected keyword arguments.
There should be one string for each entry in the format_string.
Using this function will raise a TypeError if invalid keyword arguments
are passed in.
\end_layout
\begin_layout Standard
For more help on this function please see section 1.8 (Keyword Paramters
for Extension Functions) of the Extending and Embedding tutorial in the
Python documentation.
\end_layout
\begin_layout Subsection
Reference counting
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "reference counting|("
\end_inset
The biggest difficulty when writing extension modules is reference counting.
It is an important reason for the popularity of f2py, weave, pyrex, ctypes,
etc....
If you mis-handle reference counts you can get problems from memory-leaks
to segmentation faults.
The only strategy I know of to handle reference counts correctly is blood,
sweat, and tears.
First, you force it into your head that every Python variable has a reference
count.
Then, you understand exactly what each function does to the reference count
of your objects, so that you can properly use DECREF and INCREF when you
need them.
Reference counting can really test the amount of patience and diligence
you have towards your programming craft.
Despite the grim depiction, most cases of reference counting are quite
straightforward with the most common difficulty being not using DECREF
on objects before exiting early from a routine due to some error.
In second place, is the common error of not owning the reference on an
object that is passed to a function or macro that is going to steal the
reference (
\emph on
e.g.
\emph default
\family typewriter
PyTuple_SET_ITEM
\family default
, and most functions that take
\family typewriter
PyArray_Descr
\family default
objects).
\end_layout
\begin_layout Standard
Typically you get a new reference to a variable when it is created or is
the return value of some function (there are some prominent exceptions,
however --- such as getting an item out of a tuple or a dictionary).
When you own the reference, you are responsible to make sure that
\family typewriter
Py_DECREF
\family default
(var) is called when the variable is no longer necessary (and no other function
has
\begin_inset Quotes eld
\end_inset
stolen
\begin_inset Quotes erd
\end_inset
its reference).
Also, if you are passing a Python object to a function that will
\begin_inset Quotes eld
\end_inset
steal
\begin_inset Quotes erd
\end_inset
the reference, then you need to make sure you own it (or use
\family typewriter
Py_INCREF
\family default
to get your own reference).
You will also encounter the notion of borrowing a reference.
A function that borrows a reference does not alter the reference count
of the object and does not expect to
\begin_inset Quotes eld
\end_inset
hold on
\begin_inset Quotes erd
\end_inset
to the reference.
It's just going to use the object temporarily.
When you use
\family typewriter
PyArg_ParseTuple
\family default
or
\family typewriter
PyArg_UnpackTuple
\family default
you receive a borrowed reference to the objects in the tuple and should
not alter their reference count inside your function.
With practice, you can learn to get reference counting right, but it can
be frustrating at first.
\end_layout
\begin_layout Standard
One common source of reference-count errors is the
\family typewriter
Py_BuildValue
\family default
function.
Pay careful attention to the difference between the 'N' format character
and the 'O' format character.
If you create a new object in your subroutine (such as an output array),
and you are passing it back in a tuple of return values, then you should
most-likely use the 'N' format character in
\family typewriter
Py_BuildValue
\family default
.
The 'O' character will increase the reference count by one.
This will leave the caller with two reference counts for a brand-new array.
When the variable is deleted and the reference count decremented by one,
there will still be that extra reference count, and the array will never
be deallocated.
You will have a reference-counting induced memory leak.
Using the 'N' character will avoid this situation as it will return to
the caller an object (inside the tuple) with a single reference count.
\begin_inset LatexCommand index
name "reference counting|)"
\end_inset
\end_layout
\begin_layout Section
Dealing with array objects
\end_layout
\begin_layout Standard
Most extension modules for NumPy will need to access the memory for an ndarray
object (or one of it's sub-classes).
The easiest way to do this doesn't require you to know much about the internals
of NumPy.
The method is to
\end_layout
\begin_layout Enumerate
Ensure you are dealing with a well-behaved array (aligned, in machine byte-order
and single-segment) of the correct type and number of dimensions.
\end_layout
\begin_deeper
\begin_layout Enumerate
By converting it from some Python object using
\family typewriter
PyArray_FromAny
\family default
or a macro built on it.
\end_layout
\begin_layout Enumerate
By constructing a new ndarray of your desired shape and type using
\family typewriter
PyArray_NewFromDescr
\family default
or a simpler macro or function based on it.
\end_layout
\end_deeper
\begin_layout Enumerate
Get the shape of the array and a pointer to its actual data.
\end_layout
\begin_layout Enumerate
Pass the data and shape information on to a subroutine or other section
of code that actually performs the computation.
\end_layout
\begin_layout Enumerate
If you are writing the algorithm, then I recommend that you use the stride
information contained in the array to access the elements of the array
(the
\family typewriter
PyArray_GETPTR
\family default
macros make this painless).
Then, you can relax your requirements so as not to force a single-segment
array and the data-copying that might result.
\end_layout
\begin_layout Standard
Each of these sub-topics is covered in the following sub-sections.
\end_layout
\begin_layout Subsection
Converting an arbitrary sequence object
\end_layout
\begin_layout Standard
The main routine for obtaining an array from any Python object that can
be converted to an array is
\family typewriter
PyArray_FromAny
\family default
.
This function is very flexible with many input arguments.
Several macros make it easier to use the basic function.
\family typewriter
PyArray_FROM_OTF
\family default
is arguably the most useful of these macros for the most common uses.
It allows you to convert an arbitrary Python object to an array of a specific
builtin data-type (
\emph on
e.g.
\emph default
float), while specifying a particular set of requirements (
\emph on
e.g.
\emph default
contiguous, aligned, and writeable).
The syntax is
\end_layout
\begin_layout Description
PyArray_FROM_OTF (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyObject*
\family default
obj,
\family typewriter
int
\family default
typenum,
\family typewriter
int
\family default
requirements)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an ndarray from any Python object,
\emph on
obj
\emph default
, that can be converted to an array.
The number of dimensions in the returned array is determined by the object.
The desired data-type of the returned array is provided in
\emph on
typenum
\emph default
which should be one of the enumerated types.
The
\emph on
requirements
\emph default
for the returned array can be any combination of standard array flags.
Each of these arguments is explained in more detail below.
You receive a new reference to the array on success.
On failure,
\family typewriter
NULL
\family default
is returned and an exception is set.
\end_layout
\begin_deeper
\begin_layout Description
obj The object can be any Python object convertable to an ndarray.
If the object is already (a subclass of) the ndarray that satisfies the
requirements then a new reference is returned.
Otherwise, a new array is constructed.
The contents of
\emph on
obj
\emph default
are copied to the new array unless the array interface is used so that
data does not have to be copied.
Objects that can be converted to an array include: 1) any nested sequence
object, 2) any object exposing the array interface, 3) any object with
an
\series bold
__array__
\series default
method (which should return an ndarray), and 4) any scalar object (becomes
a zero-dimensional array).
Sub-classes of the ndarray that otherwise fit the requirements will be
passed through.
If you want to ensure a base-class ndarray, then use
\family typewriter
NPY_ENSUREARRAY
\family default
in the requirements flag.
A copy is made only if necessary.
If you want to guarantee a copy, then pass in
\family typewriter
NPY_ENSURECOPY
\family default
to the requirements flag.
\end_layout
\begin_layout Description
typenum One of the enumerated types or
\family typewriter
NPY_NOTYPE
\family default
if the data-type should be determined from the object itself.
The C-based names can be used:
\end_layout
\begin_deeper
\begin_layout Quote
\family typewriter
NPY_BOOL
\family default
,
\family typewriter
NPY_BYTE
\family default
,
\family typewriter
NPY_UBYTE
\family default
,
\family typewriter
NPY_SHORT
\family default
,
\family typewriter
NPY_USHORT
\family default
,
\family typewriter
NPY_INT
\family default
,
\family typewriter
NPY_UINT
\family default
,
\family typewriter
NPY_LONG
\family default
,
\family typewriter
NPY_ULONG
\family default
,
\family typewriter
NPY_LONGLONG
\family default
,
\family typewriter
NPY_ULONGLONG
\family default
,
\family typewriter
NPY_DOUBLE
\family default
,
\family typewriter
NPY_LONGDOUBLE
\family default
,
\family typewriter
NPY_CFLOAT
\family default
,
\family typewriter
NPY_CDOUBLE
\family default
,
\family typewriter
NPY_CLONGDOUBLE
\family default
,
\family typewriter
NPY_OBJECT
\family default
.
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
Alternatively, the bit-width names can be used as supported on the platform.
For example:
\end_layout
\begin_deeper
\begin_layout Quote
\family typewriter
NPY_INT8
\family default
,
\family typewriter
NPY_INT16
\family default
,
\family typewriter
NPY_INT32
\family default
,
\family typewriter
NPY_INT64
\family default
,
\family typewriter
NPY_UINT8
\family default
,
\family typewriter
NPY_UINT16
\family default
,
\family typewriter
NPY_UINT32
\family default
,
\family typewriter
NPY_UINT64
\family default
,
\family typewriter
NPY_FLOAT32
\family default
,
\family typewriter
NPY_FLOAT64
\family default
,
\family typewriter
NPY_COMPLEX64
\family default
,
\family typewriter
NPY_COMPLEX128
\family default
.
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
The object will be converted to the desired type only if it can be done
without losing precision.
Otherwise
\family typewriter
NULL
\family default
will be returned and an error raised.
Use
\family typewriter
NPY_FORCECAST
\family default
in the requirements flag to override this behavior.
\end_layout
\begin_layout Description
requirements The memory model for an ndarray admits arbitrary strides in
each dimension to advance to the next element of the array.
Often, however, you need to interface with code that expects a C-contiguous
or a Fortran-contiguous memory layout.
In addition, an ndarray can be misaligned (the address of an element is
not at an integral multiple of the size of the element) which can cause
your program to crash (or at least work more slowly) if you try and dereference
a pointer into the array data.
Both of these problems can be solved by converting the Python object into
an array that is more
\begin_inset Quotes eld
\end_inset
well-behaved
\begin_inset Quotes erd
\end_inset
for your specific usage.
\end_layout
\begin_layout Description
\InsetSpace ~
The requirements flag allows specification of what kind of array is acceptable.
If the object passed in does not satisfy this requirements then a copy
is made so that thre returned object will satisfy the requirements.
these ndarray can use a very generic pointer to memory.
This flag allows specification of the desired properties of the returned
array object.
All of the flags are explained in the detailed API chapter.
The flags most commonly needed are NPY_IN_ARRAY, NPY_OUT_ARRAY, and NPY_INOUT_A
RRAY:
\end_layout
\begin_deeper
\begin_layout Description
NPY_IN_ARRAY Equivalent to NPY_CONTIGUOUS | NPY_ALIGNED.
This combination of flags is useful for arrays that must be in C-contiguous
order and aligned.
These kinds of arrays are usually input arrays for some algorithm.
\end_layout
\begin_layout Description
NPY_OUT_ARRAY Equivalent to NPY_CONTIGUOUS | NPY_ALIGNED | NPY_WRITEABLE.
This combination of flags is useful to specify an array that is in C-contiguous
order, is aligned, and can be written to as well.
Such an array is usually returned as output (although normally such output
arrays are created from scratch).
\end_layout
\begin_layout Description
NPY_INOUT_ARRAY Equivalent to NPY_CONTIGUOUS | NPY_ALIGNED | NPY_WRITEABLE
| NPY_UPDATEIFCOPY.
This combination of flags is useful to specify an array that will be used
for both input and output.
If a copy is needed, then when the temporary is deleted (by your use of
Py_DECREF at the end of the interface routine), the temporary array will
be copied back into the original array passed in.
Use of the UPDATEIFCOPY flag requires that the input object is already
an array (because other objects cannot be automatically updated in this
fashion).
If an error occurs use
\series bold
PyArray_DECREF_ERR
\series default
(obj) on an array with the NPY_UPDATEIFCOPY flag set.
This will delete the array without causing the contents to be copied back
into the original array.
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
Other useful flags that can be OR'd as additional requirements are:
\end_layout
\begin_deeper
\begin_layout Description
NPY_FORCECAST Cast to the desired type, even if it can't be done without
losing information.
\end_layout
\begin_layout Description
NPY_ENSURECOPY Make sure the resulting array is a copy of the original.
\end_layout
\begin_layout Description
NPY_ENSUREARRAY Make sure the resulting object is an actual ndarray and
not a sub-class.
\end_layout
\end_deeper
\end_deeper
\begin_layout Note
Whether or not an array is byte-swapped is determined by the data-type of
the array.
Native byte-order arrays are always requested by PyArray_FROM_OTF and so
there is no need for a NPY_NOTSWAPPED flag in the requirements argument.
There is also no way to get a byte-swapped array from this routine.
\end_layout
\begin_layout Subsection
Creating a brand-new ndarray
\end_layout
\begin_layout Standard
Quite often new arrays must be created from within extension-module code.
Perhaps an output array is needed and you don't want the caller to have
to supply it.
Perhaps only a temporary array is needed to hold an intermediate calculation.
Whatever the need there are simple ways to get an ndarray object of whatever
data-type is needed.
The most general function for doing this is PyArray_NewFromDescr.
All array creation functions go through this heavily re-used code.
Because of its flexibility, it can be somewhat confusing to use.
As a result, simpler forms exist that are easier to use.
\end_layout
\begin_layout Description
PyArray_SimpleNew (
\family typewriter
PyObject*
\family default
)(
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
typenum)
\end_layout
\begin_layout Description
\InsetSpace ~
This function allocates new memory and places it in an ndarray with
\family typewriter
nd
\family default
dimensions whose shape is determined by the array of at least
\family typewriter
nd
\family default
items pointed to by
\family typewriter
dims
\family default
.
The memory for the array is uninitialized (unless typenum is
\series bold
PyArray_OBJECT
\series default
in which case each element in the array is set to NULL).
The
\family typewriter
typenum
\family default
argument allows specification of any of the builtin data-types such as
\series bold
PyArray_FLOAT
\series default
or
\series bold
PyArray_LONG
\series default
.
The memory for the array can be set to zero if desired using
\series bold
PyArray_FILLWBYTE
\series default
(return_object, 0).
\end_layout
\begin_layout Description
PyArray_SimpleNewFromData (
\family typewriter
PyObject*
\family default
) (
\family typewriter
int
\family default
nd,
\family typewriter
npy_intp*
\family default
dims,
\family typewriter
int
\family default
typenum,
\family typewriter
void*
\family default
data)
\end_layout
\begin_layout Description
\InsetSpace ~
Sometimes, you want to wrap memory allocated elsewhere into an ndarray
object for downstream use.
This routine makes it straightforward to do that.
The first three arguments are the same as in
\series bold
PyArray_SimpleNew
\series default
, the final argument is a pointer to a block of contiguous memory that the
ndarray should use as it's data-buffer which will be interpreted in C-style
contiguous fashion.
A new reference to an ndarray is returned, but the ndarray will not own
its data.
When this ndarray is deallocated, the pointer will not be freed.
\end_layout
\begin_layout Description
\InsetSpace ~
You should ensure that the provided memory is not freed while the returned
array is in existence.
The easiest way to handle this is if data comes from another reference-counted
Python object.
The reference count on this object should be increased after the pointer
is passed in, and the base member of the returned ndarray should point
to the Python object that owns the data.
Then, when the ndarray is deallocated, the base-member will be DECREF'd
appropriately.
If you want the memory to be freed as soon as the ndarray is deallocated
then simply set the OWNDATA flag on the returned ndarray.
\end_layout
\begin_layout Subsection
Getting at ndarray memory and accessing elements of the ndarray
\end_layout
\begin_layout Standard
If obj is an ndarray (PyArrayObject *), then the data-area of the ndarray
is pointed to by the void* pointer
\series bold
PyArray_DATA
\series default
(obj) or the char* pointer
\series bold
PyArray_BYTES
\series default
(obj).
Remember that (in general) this data-area may not be aligned according
to the data-type, it may represent byte-swapped data, and/or it may not
be writeable.
If the data area is aligned and in native byte-order, then how to get at
a specific element of the array is determined only by the array of npy_intp
variables,
\series bold
PyArray_STRIDES
\series default
(obj).
In particular, this c-array of integers shows how many
\series bold
bytes
\series default
must be added to the current element pointer to get to the next element
in each dimension.
For arrays less than 4-dimensions there are
\series bold
PyArray_GETPTR<k>
\series default
(obj, ...) macros where <k> is the integer 1, 2, 3, or 4 that make using the
array strides easier.
The arguments ....
represent <k> non-negative integer indices into the array.
For example, suppose
\family typewriter
E
\family default
is a 3-dimensional ndarray.
A (void*) pointer to the element
\family typewriter
E[i,j,k]
\family default
is obtained as PyArray_GETPTR3(E, i, j, k).
\end_layout
\begin_layout Standard
As explained previously, C-style contiguous arrays and Fortran-style contiguous
arrays have particular striding patterns.
Two array flags (NPY_C_CONTIGUOUS and NPY_F_CONTIGUOUS) indicate whether
or not the striding pattern of a particular array matches the C-style contiguou
s or Fortran-style contiguous or neither.
Whether or not the striding pattern matches a standard C or Fortran one
can be tested Using
\family typewriter
PyArray_ISCONTIGUOUS
\family default
(obj) and
\family typewriter
PyArray_ISFORTRAN
\family default
(obj) respectively.
Most third-party libraries expect contiguous arrays.
But, often it is not difficult to support general-purpose striding.
I encourage you to use the striding information in your own code whenever
possible, and reserve single-segment requirements for wrapping third-party
code.
Using the striding information provided with the ndarray rather than requiring
a contiguous striding reduces copying that otherwise must be made.
\end_layout
\begin_layout Section
Example
\end_layout
\begin_layout Standard
The following example shows how you might write a wrapper that accepts two
input arguments (that will be converted to an array) and an output argument
(that must be an array).
The function returns None and updates the output array.
\begin_inset LatexCommand index
name "extension module|)"
\end_inset
\end_layout
\begin_layout LyX-Code
static PyObject *
\end_layout
\begin_layout LyX-Code
example_wrapper(PyObject *dummy, PyObject *args)
\end_layout
\begin_layout LyX-Code
{
\end_layout
\begin_layout LyX-Code
PyObject *arg1=NULL, *arg2=NULL, *out=NULL;
\end_layout
\begin_layout LyX-Code
PyObject *arr1=NULL, *arr2=NULL, *oarr=NULL;
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
if (!PyArg_ParseTuple(args,
\begin_inset Quotes eld
\end_inset
OOO&
\begin_inset Quotes erd
\end_inset
, &arg1, *arg2,
\end_layout
\begin_layout LyX-Code
&PyArrayType, *out)) return NULL;
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
arr1 = PyArray_FROM_OTF(arg1, NPY_DOUBLE, NPY_IN_ARRAY);
\end_layout
\begin_layout LyX-Code
if (arr1 == NULL) return NULL;
\end_layout
\begin_layout LyX-Code
arr2 = PyArray_FROM_OTF(arg2, NPY_DOUBLE, NPY_IN_ARRAY);
\end_layout
\begin_layout LyX-Code
if (arr2 == NULL) goto fail;
\end_layout
\begin_layout LyX-Code
oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_INOUT_ARRAY);
\end_layout
\begin_layout LyX-Code
if (oarr == NULL) goto fail;
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
/* code that makes use of arguments */
\end_layout
\begin_layout LyX-Code
/* You will probably need at least
\end_layout
\begin_layout LyX-Code
nd = PyArray_NDIM(<..>) -- number of dimensions
\end_layout
\begin_layout LyX-Code
dims = PyArray_DIMS(<..>) -- npy_intp array of length nd
\end_layout
\begin_layout LyX-Code
showing length in each dim.
\end_layout
\begin_layout LyX-Code
dptr = (double *)PyArray_DATA(<..>) -- pointer to data.
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
If an error occurs goto fail.
\end_layout
\begin_layout LyX-Code
*/
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
Py_DECREF(arr1);
\end_layout
\begin_layout LyX-Code
Py_DECREF(arr2);
\end_layout
\begin_layout LyX-Code
Py_DECREF(oarr);
\end_layout
\begin_layout LyX-Code
Py_INCREF(Py_None);
\end_layout
\begin_layout LyX-Code
return Py_None;
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
fail:
\end_layout
\begin_layout LyX-Code
Py_XDECREF(arr1);
\end_layout
\begin_layout LyX-Code
Py_XDECREF(arr2);
\end_layout
\begin_layout LyX-Code
PyArray_XDECREF_ERR(oarr);
\end_layout
\begin_layout LyX-Code
return NULL;
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Chapter
Beyond the Basics
\end_layout
\begin_layout Quotation
The voyage of discovery is not in seeking new landscapes but in having new
eyes.
\end_layout
\begin_layout Right Address
---
\emph on
Marcel Proust
\end_layout
\begin_layout Quotation
Discovery is seeing what everyone else has seen and thinking what no one
else has thought.
\end_layout
\begin_layout Right Address
---
\emph on
Albert Szent-Gyorgi
\end_layout
\begin_layout Section
Iterating over elements in the array
\end_layout
\begin_layout Subsection
Basic Iteration
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "sec:array_iterator"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "array iterator|("
\end_inset
One common algorithmic requirement is to be able to walk over all elements
in a multidimensional array.
The array iterator object makes this easy to do in a generic way that works
for arrays of any dimension.
Naturally, if you know the number of dimensions you will be using, then
you can always write nested for loops to accomplish the iteration.
If, however, you want to write code that works with any number of dimensions,
then you can make use of the array iterator.
An array iterator object is returned when accessing the .flat attribute
of an array.
\end_layout
\begin_layout Standard
Basic usage is to call
\series bold
PyArray_IterNew
\series default
(
\family typewriter
array
\family default
) where array is an ndarray object (or one of its sub-classes).
The returned object is an array-iterator object (the same object returned
by the .flat attribute of the ndarray).
This object is usually cast to PyArrayIterObject* so that its members can
be accessed.
The only members that are needed are
\family typewriter
iter->size
\family default
which contains the total size of the array,
\family typewriter
iter->index
\family default
, which contains the current 1-d index into the array, and
\family typewriter
iter->dataptr
\family default
which is a pointer to the data for the current element of the array.
Sometimes it is also useful to access
\family typewriter
iter->ao
\family default
which is a pointer to the underlying ndarray object.
\end_layout
\begin_layout Standard
After processing data at the current element of the array, the next element
of the array can be obtained using the macro
\series bold
PyArray_ITER_NEXT
\series default
(
\family typewriter
iter
\family default
).
The iteration always proceeds in a C-style contiguous fashion (last index
varying the fastest).
The
\series bold
PyArray_ITER_GOTO
\series default
(
\family typewriter
iter
\family default
,
\family typewriter
destination
\family default
) can be used to jump to a particular point in the array, where
\family typewriter
destination
\family default
is an array of npy_intp data-type with space to handle at least the number
of dimensions in the underlying array.
Occasionally it is useful to use
\series bold
PyArray_ITER_GOTO1D
\series default
(
\family typewriter
iter
\family default
,
\family typewriter
index
\family default
) which will jump to the 1-d index given by the value of
\family typewriter
index
\family default
.
The most common usage, however, is given in the following example.
\end_layout
\begin_layout LyX-Code
PyObject *obj; /* assumed to be some ndarray object */
\end_layout
\begin_layout LyX-Code
PyArrayIterObject *iter;
\end_layout
\begin_layout LyX-Code
...
\end_layout
\begin_layout LyX-Code
iter = (PyArrayIterObject *)PyArray_IterNew(obj);
\end_layout
\begin_layout LyX-Code
if (iter == NULL) goto fail; /* Assume fail has clean-up code */
\end_layout
\begin_layout LyX-Code
while (iter->index < iter->size) {
\end_layout
\begin_layout LyX-Code
/* do something with the data at it->dataptr */
\end_layout
\begin_layout LyX-Code
PyArray_ITER_NEXT(it);
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout LyX-Code
...
\end_layout
\begin_layout Standard
You can also use
\series bold
PyArrayIter_Check
\series default
(
\family typewriter
obj
\family default
) to ensure you have an iterator object and
\series bold
PyArray_ITER_RESET
\series default
(
\family typewriter
iter
\family default
) to reset an iterator object back to the beginning of the array.
\end_layout
\begin_layout Standard
It should be emphasized at this point that you may not need the array iterator
if your array is already contiguous (using an array iterator will work
but will be slower than the fastest code you could write).
The major purpose of array iterators is to encapsulate iteration over N-dimensi
onal arrays with arbitrary strides.
They are used in many, many places in the NumPy source code itself.
If you already know your array is contiguous (Fortran or C), then simply
adding the element-size to a running pointer variable will step you through
the array very efficiently.
In other words, code like this will probably be faster for you in the contiguou
s case (assuming doubles).
\end_layout
\begin_layout LyX-Code
npy_intp size;
\end_layout
\begin_layout LyX-Code
double *dptr; /* could make this any variable type */
\end_layout
\begin_layout LyX-Code
size = PyArray_SIZE(obj);
\end_layout
\begin_layout LyX-Code
dptr = PyArray_DATA(obj);
\end_layout
\begin_layout LyX-Code
while(size--) {
\end_layout
\begin_layout LyX-Code
/* do something with the data at dptr */
\end_layout
\begin_layout LyX-Code
dptr++;
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Subsection
Iterating over all but one axis
\end_layout
\begin_layout Standard
A common algorithm is to loop over all elements of an array and perform
some function with each element by issuing a function call.
As function calls can be time consuming, one way to speed up this kind
of algorithm is to write the function so it takes a vector of data and
then write the iteration so the function call is performed for an entire
dimension of data at a time.
This increases the amount of work done per function call, thereby reducing
the function-call over-head to a small(er) fraction of the total time.
Even if the interior of the loop is performed without a function call it
can be advantageous to perform the inner loop over the dimension with the
highest number of elements to take advantage of speed enhancements available
on micro-processors that use pipelining to enhance fundmental operations.
\end_layout
\begin_layout Standard
The
\series bold
PyArray_IterAllButAxis
\series default
(
\family typewriter
array
\family default
,
\family typewriter
&dim
\family default
) constructs an iterator object that is modified so that it will not iterate
over the dimension indicated by dim.
The only restriction on this iterator object, is that the
\series bold
PyArray_Iter_GOTO1D
\series default
(
\family typewriter
it
\family default
,
\family typewriter
ind
\family default
) macro cannot be used (thus flat indexing won't work either if you pass
this object back to Python --- so you shouldn't do this).
Note that the returned object from this routine is still usually cast to
PyArrayIterObject *.
All that's been done is to modify the strides and dimensions of the returned
iterator to simulate iterating over array[...,0,...] where 0 is placed on the
\begin_inset Formula $\textrm{dim}^{\textrm{th}}$
\end_inset
dimension.
If dim is negative, then the dimension with the largest axis is found and
used.
\end_layout
\begin_layout Subsection
Iterating over multiple arrays
\end_layout
\begin_layout Standard
Very often, it is desireable to iterate over several arrays at the same
time.
The universal functions are an example of this kind of behavior.
If all you want to do is iterate over arrays with the same shape, then
simply creating several iterator objects is the standard procedure.
For example, the following code iterates over two arrays assumed to be
the same shape and size (actually obj1 just has to have at least as many
total elements as does obj2):
\end_layout
\begin_layout LyX-Code
/* It is already assumed that obj1 and obj2
\end_layout
\begin_layout LyX-Code
are ndarrays of the same shape and size.
\end_layout
\begin_layout LyX-Code
*/
\end_layout
\begin_layout LyX-Code
iter1 = (PyArrayIterObject *)PyArray_IterNew(obj1);
\end_layout
\begin_layout LyX-Code
if (iter1 == NULL) goto fail;
\end_layout
\begin_layout LyX-Code
iter2 = (PyArrayIterObject *)PyArray_IterNew(obj2);
\end_layout
\begin_layout LyX-Code
if (iter2 == NULL) goto fail; /* assume iter1 is DECREF'd at fail */
\end_layout
\begin_layout LyX-Code
while (iter2->index < iter2->size) {
\end_layout
\begin_layout LyX-Code
/* process with iter1->dataptr and iter2->dataptr */
\end_layout
\begin_layout LyX-Code
PyArray_ITER_NEXT(iter1);
\end_layout
\begin_layout LyX-Code
PyArray_ITER_NEXT(iter2);
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Subsection
Broadcasting over multiple arrays
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "broadcasting"
\end_inset
When multiple arrays are involved in an operation, you may want to use the
same broadcasting rules that the math operations (
\emph on
i.e.
\emph default
the ufuncs) use.
This can be done easily using the PyArrayMultiIterObject.
This is the object returned from the Python command numpy.broadcast and
it is almost as easy to use from C.
The function
\series bold
PyArray_MultiIterNew
\series default
(
\family typewriter
n
\family default
,
\family typewriter
...
\family default
) is used (with
\family typewriter
n
\family default
input objects in place of
\family typewriter
...
\family default
).
The input objects can be arrays or anything that can be converted into
an array.
A pointer to a PyArrayMultiIterObject is returned.
Broadcasting has already been accomplished which adjusts the iterators
so that all that needs to be done to advance to the next element in each
array is for PyArray_ITER_NEXT to be called for each of the inputs.
This incrementing is automatically performed by
\series bold
PyArray_MultiIter_NEXT
\series default
(
\family typewriter
obj
\family default
) macro (which can handle a multiterator
\family typewriter
obj
\family default
as either a PyArrayMultiObject* or a PyObject*).
The data from input number
\family typewriter
i
\family default
is available using
\series bold
PyArray_MultiIter_DATA
\series default
(
\family typewriter
obj
\family default
,
\family typewriter
i
\family default
) and the total (broadcasted) size as
\series bold
PyArray_MultiIter_SIZE
\series default
(
\family typewriter
obj
\family default
).
An example of using this feature follows.
\end_layout
\begin_layout LyX-Code
mobj = PyArray_MultiIterNew(2, obj1, obj2);
\end_layout
\begin_layout LyX-Code
size = PyArray_MultiIter_SIZE(obj);
\end_layout
\begin_layout LyX-Code
while(size--) {
\end_layout
\begin_layout LyX-Code
ptr1 = PyArray_MultiIter_DATA(mobj, 0);
\end_layout
\begin_layout LyX-Code
ptr2 = PyArray_MultiIter_DATA(mobj, 1);
\end_layout
\begin_layout LyX-Code
/* code using contents of ptr1 and ptr2 */
\end_layout
\begin_layout LyX-Code
PyArray_MultiIter_NEXT(mobj);
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Standard
The function
\series bold
PyArray_RemoveLargest
\series default
(
\family typewriter
multi
\family default
) can be used to take a multi-iterator object and adjust all the iterators
so that iteration does not take place over the largest dimension (it makes
that dimension of size 1).
The code being looped over that makes use of the pointers will very-likely
also need the strides data for each of the iterators.
This information is stored in multi->iters[i]->strides.
\end_layout
\begin_layout Standard
There are several examples of using the multi-iterator in the NumPy source
code as it makes N-dimensional broadcasting-code very simple to write.
Browse the source for more examples.
\begin_inset LatexCommand index
name "array iterator|)"
\end_inset
\end_layout
\begin_layout Section
Creating a new universal function
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "sec:Creating-a-new"
\end_inset
\begin_inset LatexCommand index
name "ufunc!adding new|("
\end_inset
The umath module is a computer-generated C-module that creates many ufuncs.
It provides a great many examples of how to create a universal function.
Creating your own ufunc that will make use of the ufunc machinery is not
difficult either.
Suppose you have a function that you want to operate element-by-element
over its inputs.
By creating a new ufunc you will obtain a function that handles
\end_layout
\begin_layout Itemize
broadcasting
\end_layout
\begin_layout Itemize
N-dimensional looping
\end_layout
\begin_layout Itemize
automatic type-conversions with minimal memory usage
\end_layout
\begin_layout Itemize
optional output arrays
\end_layout
\begin_layout Standard
It is not difficult to create your own ufunc.
All that is required is a 1-d loop for each data-type you want to support.
Each 1-d loop must have a specific signature, and only ufuncs for fixed-size
data-types can be used.
The function call used to create a new ufunc to work on built-in data-types
is given below.
A different mechanism is used to register ufuncs for user-defined data-types.
\end_layout
\begin_layout Description
PyUFunc_FromFuncAndData (
\family typewriter
PyObject*
\family default
) (
\family typewriter
PyUFuncGenericFunction*
\family default
func,
\family typewriter
void**
\family default
data,
\family typewriter
char*
\family default
types,
\family typewriter
int
\family default
ntypes,
\family typewriter
int
\family default
nin,
\family typewriter
int
\family default
nout,
\family typewriter
int
\family default
identity,
\family typewriter
char*
\family default
name,
\family typewriter
char*
\family default
doc,
\family typewriter
int
\family default
check_return)
\end_layout
\begin_deeper
\begin_layout Description
func A pointer to an array of 1-d functions to use.
This array must be at least ntypes long.
Each entry in the array must be a
\family typewriter
PyUFuncGenericFunction
\family default
function.
This function has the following signature.
An example of a valid 1d loop function is also given.
\end_layout
\begin_layout Description
\InsetSpace ~
\family typewriter
void
\family default
loop1d (
\family typewriter
char**
\family default
args,
\family typewriter
npy_intp*
\family default
dimensions,
\family typewriter
npy_intp*
\family default
steps,
\family typewriter
void*
\family default
data)
\end_layout
\begin_deeper
\begin_layout Description
args An array of pointers to the actual data for the input and output arrays.
The input arguments are given first followed by the output arguments.
\end_layout
\begin_layout Description
dimensions A pointer to the size of the dimension over which this function
is looping.
\end_layout
\begin_layout Description
steps A pointer to the number of bytes to jump to get to the next element
in this dimension for each of the input and output arguments.
\end_layout
\begin_layout Description
data Arbitrary data (extra arguments, function names,
\emph on
etc.
\emph default
) that can be stored with the ufunc and will be passed in when it is called.
\end_layout
\end_deeper
\begin_layout LyX-Code
static void
\newline
double_add(char *args, npy_intp *dimensions, npy_intp *steps,
void *extra)
\newline
{
\newline
npy_intp i;
\newline
npy_intp is1=steps[0], is2=steps[1];
\newline
npy_intp os=steps[2], n=dimensions[0];
\newline
char *i1=args[0], *i2=args[1],
*op=args[2];
\newline
for (i=0; i<n; i++) {
\newline
*((double *)op) = *((double
*)i1) +
\backslash
\newline
*((double *)i2);
\newline
i1 += is1; i2 += is2;
op += os;
\newline
}
\newline
}
\end_layout
\begin_layout Description
data An array of data.
There should be ntypes entries (or NULL) --- one for every loop function
defined for this ufunc.
This data will be passed in to the 1-d loop.
One common use of this data variable is to pass in an actual function to
call to compute the result when a generic 1-d loop (e.g.
PyUFunc_d_d) is being used.
\end_layout
\begin_layout Description
types An array of type-number signatures (type
\family typewriter
char
\family default
).
This array should be of size (nin+nout)*ntypes and contain the data-types
for the corresponding 1-d loop.
The inputs should be first followed by the outputs.
For example, suppose I have a ufunc that supports 1 integer and 1 double
1-d loop (length-2 func and data arrays) that takes 2 inputs and returns
1 output that is always a complex double, then the types array would be
\end_layout
\begin_layout LyX-Code
char my_sigs[] =
\backslash
\newline
{NPY_INT, NPY_INT, NPY_CDOUBLE,
\newline
NPY_DOUBLE, NPY_DOUBLE, NPY_CDOUBLE};
\end_layout
\begin_layout Description
\InsetSpace ~
The bit-width names can also be used (e.g.
\family typewriter
NPY_INT32
\family default
,
\family typewriter
NPY_COMPLEX128
\family default
) if desired.
\end_layout
\begin_layout Description
ntypes The number of data-types supported.
This is equal to the number of 1-d loops provided.
\end_layout
\begin_layout Description
nin The number of input arguments.
\end_layout
\begin_layout Description
nout The number of output arguments.
\end_layout
\begin_layout Description
identity Either
\series bold
PyUFunc_One
\series default
,
\series bold
PyUFunc_Zero
\series default
,
\series bold
PyUFunc_None
\series default
.
This specifies what should be returned when an empty array is passed to
the reduce method of the ufunc.
\end_layout
\begin_layout Description
name A
\family typewriter
NULL
\family default
-terminated string providing the name of this ufunc (should be the Python
name it will be called).
\end_layout
\begin_layout Description
doc A documentation string for this ufunc (will be used in generating the
response to <ufunc_name>.__doc__).
Do not include the function signature or the name as this is generated
automatically.
\end_layout
\begin_layout Description
check_return Not presently used, but this integer value does get set in
the structure-member of similar name.
\end_layout
\end_deeper
\begin_layout Standard
The returned ufunc object is a callable Python object.
It should be placed in a (module) dictionary under the same name as was
used in the name argument to the ufunc-creation routine.
The following example is adapted from the umath module:
\begin_inset LatexCommand index
name "ufunc!adding new|)"
\end_inset
\end_layout
\begin_layout LyX-Code
static PyUFuncGenericFunction atan2_functions[]=
\backslash
\newline
{PyUFunc_ff_f, PyUFunc_dd_d,
\newline
PyUFunc_gg_g, PyUFunc_OO_O_method};
\newline
static
void* atan2_data[]=
\backslash
\newline
{(void *)atan2f,(void *) atan2,
\newline
(void *)atan2l,(void *)"arctan2"};
\newline
stati
c char atan2_signatures[]=
\backslash
\newline
{NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
\newline
NPY_DOUBLE, NPY_DOUBLE,
\newline
NPY_DOUBLE
, NPY_LONGDOUBLE,
\newline
NPY_LONGDOUBLE, NPY_LONGDOUBLE
\newline
NPY_OBJECT, NPY_OBJECT,
\newline
NPY_OBJECT};
\newline
...
\newline
/* in the module initialization code */
\newline
PyObject *f, *dict,
*module;
\newline
...
\newline
dict = PyModule_GetDict(module);
\newline
...
\newline
f = PyUFunc_FromFuncAndData(atan2_funct
ions,
\newline
atan2_data, atan2_signatures, 4, 2, 1,
\newline
PyUFunc_None, "arctan2",
\newline
"a safe and correct arctan(x1/x2)", 0);
\newline
PyDict_SetItemString(dict, "arctan2"
, f);
\newline
Py_DECREF(f);
\newline
...
\end_layout
\begin_layout Section
User-defined data-types
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "dtype!adding new|("
\end_inset
NumPy comes with 21 builtin data-types.
While this covers a large majority of possible use cases, it is conceivable
that a user may have a need for an additional data-type.
There is some support for adding an additional data-type into the NumPy
system.
This additional data-type will behave much like a regular data-type except
ufuncs must have 1-d loops registered to handle it separately.
Also checking for whether or not other data-types can be cast
\begin_inset Quotes eld
\end_inset
safely
\begin_inset Quotes erd
\end_inset
to and from this new type or not will always return
\begin_inset Quotes eld
\end_inset
can cast
\begin_inset Quotes erd
\end_inset
unless you also register which types your new data-type can be cast to
and from.
Adding data-types is one of the less well-tested areas for NumPy 1.0, so
there may be bugs remaining in the approach.
Only add a new data-type if you can't do what you want to do using the
OBJECT or VOID data-types that are already available.
As an example of what I consider a useful application of the ability to
add data-types is the possibility of adding a data-type of arbitrary precision
floats to NumPy.
\end_layout
\begin_layout Subsection
Adding the new data-type
\end_layout
\begin_layout Standard
To begin to make use of the new data-type, you need to first define a new
Python type to hold the scalars of your new data-type.
It should be acceptable to inherit from one of the array scalars if your
new type has a binary compatible layout.
This will allow your new data type to have the methods and attributes of
array scalars.
New data-types must have a fixed memory size (if you want to define a data-type
that needs a flexible representation, like a variable-precision number,
then use a pointer to the object as the data-type).
The memory layout of the object structure for the new Python type must
be PyObject_HEAD followed by the fixed-size memory needed for the data-type.
For example, a suitable structure for the new Python type is:
\end_layout
\begin_layout LyX-Code
typedef struct {
\end_layout
\begin_layout LyX-Code
PyObject_HEAD;
\end_layout
\begin_layout LyX-Code
some_data_type obval;
\end_layout
\begin_layout LyX-Code
/* the name can be whatever you want */
\end_layout
\begin_layout LyX-Code
} PySomeDataTypeObject;
\end_layout
\begin_layout Standard
After you have defined a new Python type object, you must then define a
new PyArray_Descr structure whose typeobject member will contain a pointer
to the data-type you've just defined.
In addition, the required functions in the
\begin_inset Quotes eld
\end_inset
.f
\begin_inset Quotes erd
\end_inset
member must be defined: nonzero, copyswap, copyswapn, setitem, getitem,
and cast.
The more functions in the
\begin_inset Quotes eld
\end_inset
.f
\begin_inset Quotes erd
\end_inset
member you define, however, the more useful the new data-type will be.
It is very important to intialize unused functions to NULL.
This can be achieved using
\series bold
PyArray_InitArrFuncs
\series default
(f).
\end_layout
\begin_layout Standard
Once a new PyArray_Descr structure is created and filled with the needed
information and useful functions you call
\series bold
PyArray_RegisterDataType
\series default
(new_descr).
The return value from this call is an integer providing you with a unique
type_number that specifies your data-type.
This type number should be stored and made available by your module so
that other modules can use it to recognize your data-type (the other mechanism
for finding a user-defined data-type number is to search based on the name
of the type-object associated with the data-type using
\series bold
PyArray_TypeNumFromName
\series default
).
\end_layout
\begin_layout Subsection
Registering a casting function
\end_layout
\begin_layout Standard
You may want to allow builtin (and other user-defined) data-types to be
cast automatically to your data-type.
In order to make this possible, you must register a casting function with
the data-type you want to be able to cast from.
This requires writing low-level casting functions for each conversion you
want to support and then registering these functions with the data-type
descriptor.
A low-level casting function has the signature.
\end_layout
\begin_layout Description
castfunc (
\family typewriter
void
\family default
) (
\family typewriter
void*
\family default
from,
\family typewriter
void*
\family default
to,
\family typewriter
npy_intp
\family default
n,
\family typewriter
void*
\family default
fromarr,
\family typewriter
void*
\family default
toarr)
\end_layout
\begin_layout Description
\InsetSpace ~
Cast
\family typewriter
n
\family default
elements
\family typewriter
from
\family default
one type
\family typewriter
to
\family default
another.
The data to cast from is in a contiguous, correctly-swapped and aligned
chunk of memory pointed to by from.
The buffer to cast to is also contiguous, correctly-swapped and aligned.
The fromarr and toarr arguments should only be used for flexible-element-sized
arrays (string, unicode, void).
\end_layout
\begin_layout Standard
An example castfunc is
\end_layout
\begin_layout LyX-Code
static void
\end_layout
\begin_layout LyX-Code
double_to_float(double *from, float* to, npy_intp n,
\newline
void* ig1, void*
ig2);
\newline
while (n--) {
\newline
(*to++) = (double) *(from++);
\newline
}
\end_layout
\begin_layout Standard
This could then be registered to convert doubles to floats using the code
\end_layout
\begin_layout LyX-Code
doub = PyArray_DescrFromType(NPY_DOUBLE);
\newline
PyArray_RegisterCastFunc(doub,
NPY_FLOAT,
\newline
(PyArray_VectorUnaryFunc *)double_to_float);
\newline
Py_DECREF(doub);
\end_layout
\begin_layout Subsection
Registering coercion rules
\end_layout
\begin_layout Standard
By default, all user-defined data-types are not presumed to be safely castable
to any builtin data-types.
In addition builtin data-types are not presumed to be safely castable to
user-defined data-types.
This situation limits the ability of user-defined data-types to participate
in the coercion system used by ufuncs and other times when automatic coercion
takes place in NumPy.
This can be changed by registering data-types as safely castable from a
particlar data-type object.
The function
\series bold
PyArray_RegisterCanCast
\series default
(from_descr, totype_number, scalarkind) should be used to specify that
the data-type object from_descr can be cast to the data-type with type
number totype_number.
If you are not trying to alter scalar coercion rules, then use
\series bold
PyArray_NOSCALAR
\series default
for the scalarkind argument.
\end_layout
\begin_layout Standard
If you want to allow your new data-type to also be able to share in the
scalar coercion rules, then you need to specify the scalarkind function
in the data-type object's
\begin_inset Quotes eld
\end_inset
.f
\begin_inset Quotes erd
\end_inset
member to return the kind of scalar the new data-type should be seen as
(the value of the scalar is available to that function).
Then, you can register data-types that can be cast to separately for each
scalar kind that may be returned from your user-defined data-type.
If you don't register scalar coercion handling, then all of your user-defined
data-types will be seen as
\series bold
PyArray_NOSCALAR
\series default
.
\end_layout
\begin_layout Subsection
Registering a ufunc loop
\end_layout
\begin_layout Standard
You may also want to register low-level ufunc loops for your data-type so
that an ndarray of your data-type can have math applied to it seamlessly.
Registering a new loop with exactly the same arg_types signature, silently
replaces any previously registered loops for that data-type.
\end_layout
\begin_layout Standard
Before you can register a 1-d loop for a ufunc, the ufunc must be previously
created.
Then you call
\series bold
PyUFunc_RegisterLoopForType
\series default
(...) with the information needed for the loop.
The return value of this function is
\family typewriter
0
\family default
if the process was successful and
\family typewriter
-1
\family default
with an error condition set if it was not successful.
\end_layout
\begin_layout Description
PyUFunc_RegisterLoopForType (
\family typewriter
int
\family default
) (
\family typewriter
PyUFuncObject*
\family default
ufunc,
\family typewriter
int
\family default
usertype,
\family typewriter
PyUFuncGenericFunction
\family default
function,
\family typewriter
int*
\family default
arg_types,
\family typewriter
void*
\family default
data)
\end_layout
\begin_layout Description
ufunc The ufunc to attach this loop to.
\end_layout
\begin_layout Description
usertype The user-defined type this loop should be indexed under.
This number must be a user-defined type or an error occurs.
\end_layout
\begin_layout Description
function The ufunc inner 1-d loop.
This function must have the signature as explained in Section
\begin_inset LatexCommand ref
reference "sec:Creating-a-new"
\end_inset
.
\end_layout
\begin_layout Description
arg_types (optional) If given, this should contain an array of integers
of at least size ufunc.nargs containing the data-types expected by the loop
function.
The data will be copied into a NumPy-managed structure so the memory for
this argument should be deleted after calling this function.
If this is NULL, then it will be assumed that all data-types are of type
usertype.
\end_layout
\begin_layout Description
data (optional) Specify any optional data needed by the function which will
be passed when the function is called.
\begin_inset LatexCommand index
name "dtype!adding new|)"
\end_inset
\end_layout
\begin_layout Section
Subtyping the ndarray in C
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ndarray!subtyping|("
\end_inset
One of the lesser-used features that has been lurking in Python since 2.2
is the ability to sub-class types in C.
This facility is one of the important reasons for basing NumPy off of the
Numeric code-base which was already in C.
A sub-type in C allows much more flexibility with regards to memory management.
Sub-typing in C is not difficult even if you have only a rudimentary understand
ing of how to create new types for Python.
While it is easiest to sub-type from a single parent type, sub-typing from
multiple parent types is also possible.
Multiple inheritence in C is generally less useful than it is in Python
because a restriction on Python sub-types is that they have a binary compatible
memory layout.
Perhaps for this reason, it is somewhat easier to sub-type from a single
parent type.
\end_layout
\begin_layout Standard
All C-structures corresponding to Python objects must begin with PyObject_HEAD
(or PyObject_VAR_HEAD).
In the same way, any sub-type must have a C-structure that begins with
exactly the same memory layout as the parent type (or all of the parent
types in the case of multiple-inheritance).
The reason for this is that Python may attempt to access a member of the
sub-type structure as if it had the parent structure (
\emph on
i.e.
\emph default
it will cast a given pointer to a pointer to the parent structure and then
dereference one of it's members).
If the memory layouts are not compatible, then this attempt will cause
unpredictable behavior (eventually leading to a memory violation and program
crash).
\end_layout
\begin_layout Standard
One of the elements in PyObject_HEAD is a pointer to a type-object structure.
A new Python type is created by creating a new type-object structure and
populating it with functions and pointers to describe the desired behavior
of the type.
Typically, a new C-structure is also created to contain the instance-specific
information needed for each object of the type as well.
For example, &PyArray_Type is a pointer to the type-object table for the
ndarray while a PyArrayObject* variable is a pointer to a particular instance
of an ndarray (one of the members of the ndarray structure is, in turn,
a pointer to the type-object table &PyArray_Type).
Finally
\series bold
PyType_Ready
\series default
(<pointer_to_type_object>) must be called for every new Python type.
\end_layout
\begin_layout Subsection
Creating sub-types
\end_layout
\begin_layout Standard
To create a sub-type, a similar proceedure must be followed except only
behaviors that are different require new entries in the type-object structure.
All other entires can be NULL and will be filled in by
\series bold
PyType_Ready
\series default
with appropriate functions from the parent type(s).
In particular, to create a sub-type in C follow these steps:
\end_layout
\begin_layout Enumerate
If needed create a new C-structure to handle each instance of your type.
A typical C-structure would be
\end_layout
\begin_deeper
\begin_layout LyX-Code
typedef _new_struct {
\newline
PyArrayObject base;
\newline
/* new things here */
\newline
} NewArrayO
bject;
\end_layout
\begin_layout Standard
Notice that the full PyArrayObject is used as the first entry in order to
ensure that the binary layout of instances of the new type is identical
to the PyArrayObject.
\end_layout
\end_deeper
\begin_layout Enumerate
Fill in a new Python type-object structure with pointers to new functions
that will over-ride the default behavior while leaving any function that
should remain the same unfilled (or NULL).
The tp_name element should be different.
\end_layout
\begin_layout Enumerate
Fill in the tp_base member of the new type-object structure with a pointer
to the (main) parent type object.
For multiple-inheritance, also fill in the tp_bases member with a tuple
containing all of the parent objects in the order they should be used to
define inheritance.
Remember, all parent-types must have the same C-structure for multiple
inheritance to work properly.
\end_layout
\begin_layout Enumerate
Call
\series bold
PyType_Ready
\series default
(<pointer_to_new_type>).
If this function returns a negative number, a failure occurred and the
type is not initialized.
Otherwise, the type is ready to be used.
It is generally important to place a reference to the new type into the
module dictionary so it can be accessed from Python.
\end_layout
\begin_layout Standard
More information on creating sub-types in C can be learned by reading PEP
253 (available at http://www.python.org/dev/peps/pep-0253).
\end_layout
\begin_layout Subsection
Specific features of ndarray sub-typing
\end_layout
\begin_layout Standard
Some special methods and attributes are used by arrays in order to facilitate
the interoperation of sub-types with the base ndarray type.
\end_layout
\begin_layout Subsubsection
The __array_finalize__ method
\end_layout
\begin_layout Standard
Several array-creation functions of the ndarray allow specification of a
particular sub-type to be created.
This allows sub-types to be handled seamlessly in many routines.
When a sub-type is created in such a fashion, however, neither the __new__
method nor the __init__ method gets called.
Instead, the sub-type is allocated and the appropriate instance-structure
members are filled in.
Finally, the
\series bold
__array_finalize__
\series default
attribute is looked-up in the object dictionary.
If it is present and not None, then it can be either a CObject containing
a pointer to a
\series bold
PyArray_FinalizeFunc
\series default
or it can be a method taking a single argument (which could be None).
\end_layout
\begin_layout Standard
If the
\series bold
__array_finalize__
\series default
attribute is a CObject, then the pointer must be a pointer to a function
with the signature:
\end_layout
\begin_layout Description
\InsetSpace ~
(int) (PyArrayObject *, PyObject *)
\end_layout
\begin_layout Standard
The first argument is the newly created sub-type.
The second argument (if not NULL) is the
\begin_inset Quotes eld
\end_inset
parent
\begin_inset Quotes erd
\end_inset
array (if the array was created using slicing or some other operation where
a clearly-distinguishable parent is present).
This routine can do anything it wants to.
It should return a -1 on error and 0 otherwise.
\end_layout
\begin_layout Standard
If the
\series bold
__array_finalize__
\series default
attribute is not None nor a CObject, then it must be a Python method that
takes the parent array as an argument (which could be None if there is
no parent), and returns nothing.
Errors in this method will be caught and handled.
\end_layout
\begin_layout Subsubsection
The __array_priority__ attribute
\end_layout
\begin_layout Standard
This attribute allows simple but flexible determination of which sub-type
should be considered
\begin_inset Quotes eld
\end_inset
primary
\begin_inset Quotes erd
\end_inset
when an operation involving two or more sub-types arises.
In operations where different sub-types are being used, the sub-type with
the largest
\series bold
__array_priority__
\series default
attribute will determine the sub-type of the output(s).
If two sub-types have the same
\series bold
__array_prioirty__
\series default
then the sub-type of the first argument determines the output.
The default
\series bold
__array_priority__
\series default
attribute returns a value of 0.0 for the base ndarray type and 1.0 for a
sub-type.
This attribute can also be defined by objects that are not sub-types of
the ndarray and can be used to determine which
\series bold
__array_wrap__
\series default
method should be called for the return output.
\end_layout
\begin_layout Subsubsection
The __array_wrap__ method
\end_layout
\begin_layout Standard
Any class or type can define this method which should take an ndarray argument
and return an instance of the type.
It can be seen as the opposite of the
\series bold
__array__
\series default
method.
This method is used by the ufuncs (and other NumPy functions) to allow
other objects to pass through.
For Python >2.4, it can also be used to write a decorator that converts
a function that works only with ndarrays to one that works with any type
with
\series bold
__array__
\series default
and
\series bold
__array_wrap__
\series default
methods.
\begin_inset LatexCommand index
name "ndarray!subtyping|)"
\end_inset
\end_layout
\begin_layout Chapter
Using Python as glue
\end_layout
\begin_layout Quotation
There is no conversation more boring than the one where everybody agrees.
\end_layout
\begin_layout Right Address
---
\emph on
Michel de Montaigne
\end_layout
\begin_layout Quotation
Duct tape is like the force.
It has a light side, and a dark side, and it holds the universe together.
\end_layout
\begin_layout Right Address
---
\emph on
Carl Zwanzig
\end_layout
\begin_layout Standard
Many people like to say that Python is a fantastic glue language.
Hopefully, this Chapter will convince you that this is true.
The first adopters of Python for science were typically people who used
it to glue together large applicaton codes running on super-computers.
Not only was it much nicer to code in Python than in a shell script or
Perl, in addition, the ability to easily extend Python made it relatively
easy to create new classes and types specifically adapted to the problems
being solved.
From the interactions of these early contributors, Numeric emerged as an
array-like object that could be used to pass data between these applications.
\end_layout
\begin_layout Standard
As Numeric has matured and developed into NumPy, people have been able to
write more code directly in NumPy.
Often this code is fast-enough for production use, but there are still
times that there is a need to access compiled code.
Either to get that last bit of efficiency out of the algorithm or to make
it easier to access widely-available codes written in C/C++ or Fortran.
\end_layout
\begin_layout Standard
This chapter will review many of the tools that are available for the purpose
of accessing code written in other compiled languages.
There are many resources available for learning to call other compiled
libraries from Python and the purpose of this Chapter is not to make you
an expert.
The main goal is to make you aware of some of the possibilities so that
you will know what to
\begin_inset Quotes eld
\end_inset
Google
\begin_inset Quotes erd
\end_inset
in order to learn more.
\end_layout
\begin_layout Standard
The http://www.scipy.org website also contains a great deal of useful information
about many of these tools.
For example, there is a nice description of using several of the tools
explained in this chapter at http://www.scipy.org/PerformancePython.
This link provides several ways to solve the same problem showing how to
use and connect with compiled code to get the best performance.
In the process you can get a taste for several of the approaches that will
be discussed in this chapter.
\end_layout
\begin_layout Section
Calling other compiled libraries from Python
\end_layout
\begin_layout Standard
While Python is a great language and a pleasure to code in, its dynamic
nature results in overhead that can cause some code (
\emph on
i.e.
\emph default
raw computations inside of for loops) to be up 10-100 times slower than
equivalent code written in a static compiled language.
In addition, it can cause memory usage to be larger than necessary as temporary
arrays are created and destroyed during computation.
For many types of computing needs the extra slow-down and memory consumption
can often not be spared (at least for time- or memory-critical portions
of your code).
Therefore one of the most common needs is to call out from Python code
to a fast, machine-code routine (e.g.
compiled using C/C++ or Fortran).
The fact that this is relatively easy to do is a big reason why Python
is such an excellent high-level language for scientific and engineering
programming.
\end_layout
\begin_layout Standard
Their are two basic approaches to calling compiled code: writing an extension
module that is then imported to Python using the import command, or calling
a shared-library subroutine directly from Python using the ctypes module
(included in the standard distribution with Python 2.5).
The first method is the most common (but with the inclusion of ctypes into
Python 2.5 this status may change).
\end_layout
\begin_layout Warning
Calling C-code from Python can result in Python crashes if you are not careful.
None of the approaches in this chapter are immune.
You have to know something about the way data is handled by both NumPy
and by the third-party library being used.
\end_layout
\begin_layout Section
Hand-generated wrappers
\end_layout
\begin_layout Standard
Extension modules were discussed in Chapter
\begin_inset LatexCommand ref
reference "sec:Writing-an-extension"
\end_inset
.
The most basic way to interface with compiled code is to write an extension
module and construct a module method that calls the compiled code.
For improved readability, your method should take advantage of the PyArg_ParseT
uple call to convert between Python objects and C data-types.
For standard C data-types there is probably already a built-in converter.
For others you may need to write your own converter and use the
\begin_inset Quotes eld
\end_inset
O&
\begin_inset Quotes erd
\end_inset
format string which allows you to specify a function that will be used
to perform the conversion from the Python object to whatever C-structures
are needed.
\end_layout
\begin_layout Standard
Once the conversions to the appropriate C-structures and C data-types have
been performed, the next step in the wrapper is to call the underlying
function.
This is straightforward if the underlying function is in C or C++.
However, in order to call Fortran code you must be familiar with how Fortran
subroutines are called from C/C++ using your compiler and platform.
This can vary somewhat platforms and compilers (which is another reason
f2py makes life much simpler for interfacing Fortran code) but generally
involves underscore mangling of the name and the fact that all variables
are passed by reference (i.e.
all arguments are pointers).
\end_layout
\begin_layout Standard
The advantage of the hand-generated wrapper is that you have complete control
over how the C-library gets used and called which can lead to a lean and
tight interface with minimal over-head.
The disadvantage is that you have to write, debug, and maintain C-code,
although most of it can be adapted using the time-honored technique of
\begin_inset Quotes eld
\end_inset
cutting-pasting-and-modifying
\begin_inset Quotes erd
\end_inset
from other extension modules.
Because, the procedure of calling out to additional C-code is fairly regimented
, code-generation procedures have been developed to make this process easier.
One of these code-generation techniques is distributed with NumPy and allows
easy integration with Fortran and (simple) C code.
This package, f2py, will be covered briefly in the next session.
\end_layout
\begin_layout Section
f2py
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "f2py|("
\end_inset
F2py allows you to automatically construct an extension module that interfaces
to routines in Fortran 77/90/95 code.
It has the ability to parse Fortran 77/90/95 code and automatically generate
Python signatures for the subroutines it encounters, or you can guide how
the subroutine interfaces with Python by constructing an interface-defintion-fi
le (or modifying the f2py-produced one).
\end_layout
\begin_layout Subsection
Creating source for a basic extension module
\end_layout
\begin_layout Standard
Probably the easiest way to introduce f2py is to offer a simple example.
Here is one of the subroutines contained in a file named add.f
\end_layout
\begin_layout LyX-Code
C
\newline
SUBROUTINE ZADD(A,B,C,N)
\newline
C
\newline
DOUBLE COMPLEX A(*)
\newline
DOUBLE COMPLEX
B(*)
\newline
DOUBLE COMPLEX C(*)
\newline
INTEGER N
\newline
DO 20 J = 1, N
\newline
C(J) = A(J)+B(J)
\newline
20 CONTINUE
\newline
END
\end_layout
\begin_layout Standard
This routine simply adds the elements in two contiguous arrays and places
the result in a third.
The memory for all three arrays must be provided by the calling routine.
A very basic interface to this routine can be automatically generated by
f2py:
\end_layout
\begin_layout LyX-Code
f2py -m add add.f
\end_layout
\begin_layout Standard
You should be able to run this command assuming your search-path is set-up
properly.
This command will produce an extension module named addmodule.c in the current
directory.
This extension module can now be compiled and used from Python just like
any other extension module.
\end_layout
\begin_layout Subsection
Creating a compiled extension module
\end_layout
\begin_layout Standard
You can also get f2py to compile add.f and also compile its produced extension
module leaving only a shared-library extension file that can be imported
from Python:
\end_layout
\begin_layout LyX-Code
f2py -c -m add add.f
\end_layout
\begin_layout Standard
This command leaves a file named add.<ext> in the current directory (where
<ext> is the appropriate extension for a python extension module on your
platform --- so, pyd,
\emph on
etc.
\emph default
).
This module may then be imported from Python.
It will contain a method for each subroutin in add (zadd, cadd, dadd, sadd).
The docstring of each method contains information about how the module
method may be called:
\end_layout
\begin_layout LyX-Code
>>> import add
\newline
>>> print add.zadd.__doc__
\newline
zadd - Function signature:
\newline
zadd(a,b,c,n)
\newline
Required arguments:
\newline
a : input rank-1 array('D') with bounds (*)
\newline
b : input
rank-1 array('D') with bounds (*)
\newline
c : input rank-1 array('D') with bounds
(*)
\newline
n : input int
\end_layout
\begin_layout Subsection
Improving the basic interface
\end_layout
\begin_layout Standard
The default interface is a very literal translation of the fortran code
into Python.
The Fortran array arguments must now be NumPy arrays and the integer argument
should be an integer.
The interface will attempt to convert all arguments to their required types
(and shapes) and issue an error if unsuccessful.
However, because it knows nothing about the semantics of the arguments
(such that C is an output and n should really match the array sizes), it
is possible to abuse this function in ways that can cause Python to crash.
For example
\end_layout
\begin_layout LyX-Code
>>> add.zadd([1,2,3],[1,2],[3,4],1000)
\end_layout
\begin_layout Standard
will cause a program crash on most systems.
Under the covers, the lists are being converted to proper arrays but then
the underlying add loop is told to cycle way beyond the borders of the
allocated memory.
\end_layout
\begin_layout Standard
In order to improve the interface, directives should be provided.
This is accomplished by constructing an interface definition file.
It is usually best to start from the interface file that f2py can produce
(where it gets its default behavior from).
To get f2py to generate the interface file use the -h option:
\end_layout
\begin_layout LyX-Code
f2py -h add.pyf -m add add.f
\end_layout
\begin_layout Standard
This command leaves the file add.pyf in the current directory.
The section of this file corresponding to zadd is:
\end_layout
\begin_layout LyX-Code
subroutine zadd(a,b,c,n) ! in :add:add.f
\newline
double complex dimension(*) ::
a
\newline
double complex dimension(*) :: b
\newline
double complex dimension(*) ::
c
\newline
integer :: n
\newline
end subroutine zadd
\end_layout
\begin_layout Standard
By placing intent directives and checking code, the interface can be cleaned
up quite a bit until the Python module method is both easier to use and
more robust.
\end_layout
\begin_layout LyX-Code
subroutine zadd(a,b,c,n) ! in :add:add.f
\newline
double complex dimension(n) ::
a
\newline
double complex dimension(n) :: b
\newline
double complex intent(out),dimension(n
) :: c
\newline
integer intent(hide),depend(a) :: n=len(a)
\newline
end subroutine zadd
\end_layout
\begin_layout Standard
The intent directive, intent(out) is used to tell f2py that
\family typewriter
c
\family default
is an output variable and should be created by the interface before being
passed to the underlying code.
The intent(hide) directive tells f2py to not allow the user to specify
the variable,
\family typewriter
n
\family default
, but instead to get it from the size of
\family typewriter
a
\family default
.
The depend(
\family typewriter
a
\family default
) directive is necessary to tell f2py that the value of n depends on the
input a (so that it won't try to create the variable n until the variable
a is created).
\end_layout
\begin_layout Standard
The new interface has docstring:
\end_layout
\begin_layout LyX-Code
>>> print add.zadd.__doc__
\newline
zadd - Function signature:
\newline
c = zadd(a,b)
\newline
Required
arguments:
\newline
a : input rank-1 array('D') with bounds (n)
\newline
b : input rank-1
array('D') with bounds (n)
\newline
Return objects:
\newline
c : rank-1 array('D') with
bounds (n)
\end_layout
\begin_layout Standard
Now, the function can be called in a much more robust way:
\end_layout
\begin_layout LyX-Code
>>> add.zadd([1,2,3],[4,5,6])
\newline
array([ 5.+0.j, 7.+0.j, 9.+0.j])
\end_layout
\begin_layout Standard
Notice the automatic conversion to the correct format that occurred.
\end_layout
\begin_layout Subsection
Inserting directives in Fortran source
\end_layout
\begin_layout Standard
The nice interface can also be generated automatically by placing the variable
directives as special comments in the original fortran code.
Thus, if I modify the source code to contain:
\end_layout
\begin_layout LyX-Code
C
\newline
SUBROUTINE ZADD(A,B,C,N)
\newline
C
\newline
CF2PY INTENT(OUT) :: C
\newline
CF2PY INTENT(HIDE)
:: N
\newline
CF2PY DOUBLE COMPLEX :: A(N)
\newline
CF2PY DOUBLE COMPLEX :: B(N)
\newline
CF2PY DOUBLE
COMPLEX :: C(N)
\newline
DOUBLE COMPLEX A(*)
\newline
DOUBLE COMPLEX B(*)
\newline
DOUBLE COMPLEX C(*)
\newline
INTEGER N
\newline
DO 20 J = 1, N
\newline
C(J) = A(J)
+ B(J)
\newline
20 CONTINUE
\newline
END
\end_layout
\begin_layout Standard
Then, I can compile the extension module using
\end_layout
\begin_layout LyX-Code
f2py -c -m add add.f
\end_layout
\begin_layout Standard
The resulting signature for the function add.zadd is exactly the same one
that was created previously.
If the original source code had contained A(N) instead of A(*) and so forth
with B and C, then I could obtain (nearly) the same interface simply by
placing the INTENT(OUT) :: C comment line in the source code.
The only difference is that N would be an optional input that would default
to the length of A.
\end_layout
\begin_layout Subsection
A filtering example
\end_layout
\begin_layout Standard
For comparison with the other methods to be discussed.
Here is another example of a function that filters a two-dimensional array
of double precision floating-point numbers using a fixed averaging filter.
The advantage of using Fortran to index into multi-dimensional arrays should
be clear from this example.
\end_layout
\begin_layout LyX-Code
SUBROUTINE DFILTER2D(A,B,M,N)
\newline
C
\newline
DOUBLE PRECISION A(M,N)
\newline
DOUBLE
PRECISION B(M,N)
\newline
INTEGER N, M
\newline
CF2PY INTENT(OUT) :: B
\newline
CF2PY INTENT(HIDE)
:: N
\newline
CF2PY INTENT(HIDE) :: M
\newline
DO 20 I = 2,M-1
\newline
DO 40 J=2,N-1
\newline
B(I,J) = A(I,J) +
\newline
$ (A(I-1,J)+A(I+1,J) +
\newline
$ A(I,J-1)+A(I,J+1) )*0.5D0 +
\newline
$ (A(I-1,J-1) + A(I-1,J+1
) +
\newline
$ A(I+1,J-1) + A(I+1,J+1))*0.25D0
\newline
40 CONTINUE
\newline
20
CONTINUE
\newline
END
\end_layout
\begin_layout Standard
This code can be compiled and linked into an extension module named filter
using
\end_layout
\begin_layout LyX-Code
f2py -c -m filter filter.f
\end_layout
\begin_layout Standard
This will produce an extension module named filter.so in the current directory
with a method named dfilter2d that returns a filtered version of the input.
\end_layout
\begin_layout Subsection
Calling f2py from Python
\end_layout
\begin_layout Standard
The f2py program is written in Python and can be run from inside your module.
This provides a facility that is somewhat similar to the use of weave.ext_tools
described below.
An example of the final interface executed using Python code is
\end_layout
\begin_layout LyX-Code
import numpy.f2py as f2py
\end_layout
\begin_layout LyX-Code
fid = open('add.f')
\end_layout
\begin_layout LyX-Code
source = fid.read()
\end_layout
\begin_layout LyX-Code
fid.close()
\end_layout
\begin_layout LyX-Code
f2py.compile(source, modulename='add')
\end_layout
\begin_layout LyX-Code
import add
\end_layout
\begin_layout Standard
The source string can be any valid Fortran code.
If you want to save the extension-module source code then a suitable file-name
can be provided by the source_fn keyword to the compile function.
\end_layout
\begin_layout Subsection
Automatic extension module generation
\end_layout
\begin_layout Standard
If you want to distribute your f2py extension module, then you only need
to include the .pyf file and the Fortran code.
The distutils extensions in NumPy allow you to define an extension module
entirely in terms of this interface file.
A valid setup.py file allowing distribution of the add.f module (as part
of the package f2py_examples so that it would be loaded as f2py_examples.add)
is
\end_layout
\begin_layout LyX-Code
def configuration(parent_package='', top_path=None)
\newline
from numpy.distutils.misc_u
til import Configuration
\newline
config = Configuration('f2py_examples',parent_packag
e, top_path)
\newline
config.add_extension('add', sources=['add.pyf','add.f'])
\newline
return config
\newline
\newline
if __name__ == '__main__':
\newline
from numpy.distutils.core import
setup
\newline
setup(**configuration(top_path='').todict())
\end_layout
\begin_layout Standard
Installation of the new package is easy using
\end_layout
\begin_layout LyX-Code
python setup.py install
\end_layout
\begin_layout Standard
assuming you have the proper permissions to write to the main site-packages
directory for the version of Python you are using.
For the resulting package to work, you need to create a file named __init__.py
(in the same directory as add.pyf).
Notice the extension module is defined entirely in terms of the
\begin_inset Quotes eld
\end_inset
add.pyf
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
add.f
\begin_inset Quotes erd
\end_inset
files.
The conversion of the .pyf file to a .c file is handled by numpy.disutils.
\end_layout
\begin_layout Subsection
Conclusion
\end_layout
\begin_layout Standard
The interface definition file (.pyf) is how you can fine-tune the interface
between Python and Fortran.
There is decent documentation for f2py found in the numpy/f2py/docs directory
where-ever NumPy is installed on your system (usually under site-packages).
There is also more information on using f2py (including how to use it to
wrap C codes) at http://www.scipy.org/Cookbook under the
\begin_inset Quotes eld
\end_inset
Using NumPy with Other Languages
\begin_inset Quotes erd
\end_inset
heading.
\end_layout
\begin_layout Standard
The f2py method of linking compiled code is currently the most sophisticated
and integrated approach.
It allows clean separation of Python with compiled code while still allowing
for separate distribution of the extension module.
The only draw-back is that it requires the existence of a Fortran compiler
in order for a user to install the code.
However, with the existence of the free-compilers g77, gfortran, and g95,
as well as high-quality commerical compilers, this restriction is not particula
rly onerous.
In my opinion, Fortran is still the easiest way to write fast and clear
code for scientific computing.
It handles complex numbers, and multi-dimensional indexing in the most
straightforward way.
Be aware, however, that some Fortran compilers will not be able to optimize
code as well as good hand-written C-code.
\begin_inset LatexCommand index
name "f2py|)"
\end_inset
\end_layout
\begin_layout Section
weave
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "weave|("
\end_inset
Weave is a scipy package that can be used to automate the process of extending
Python with C/C++ code.
It can be used to speed up evaluation of an array expression that would
otherwise create temporary variables, to directly
\begin_inset Quotes eld
\end_inset
inline
\begin_inset Quotes erd
\end_inset
C/C++ code into Python, or to create a fully-named extension module.
You must either install scipy or get the weave package separately and install
it using the standard python setup.py install.
You must also have a C/C++-compiler installed and useable by Python distutils
in order to use weave.
\end_layout
\begin_layout Standard
Somewhat dated, but still useful documentation for weave can be found at
the link http://www.scipy/Weave.
There are also many examples found in the examples directory which is installed
under the weave directory in the place where weave is installed on your
system.
\end_layout
\begin_layout Subsection
Speed up code involving arrays (also see scipy.numexpr)
\end_layout
\begin_layout Standard
This is the easiest way to use weave and requires minimal changes to your
Python code.
It involves placing quotes around the expression of interest and calling
weave.blitz.
Weave will parse the code and generate C++ code using Blitz C++ arrays.
It will then compile the code and catalog the shared library so that the
next time this exact string is asked for (and the array types are the same),
the already-compiled shared library will be loaded and used.
Because Blitz makes extensive use of C++ templating, it can take a long
time to compile the first time.
After that, however, the code should evaluate more quickly than the equivalent
NumPy expression.
This is especially true if your array sizes are large and the expression
would require NumPy to create several temporaries.
Only expressions involving basic arithmetic operations and basic array
slicing can be converted to Blitz C++ code.
\end_layout
\begin_layout Standard
For example, consider the expression
\end_layout
\begin_layout LyX-Code
d = 4*a + 5*a*b + 6*b*c
\end_layout
\begin_layout Standard
where a, b, and c are all arrays of the same type and shape.
When the data-type is double-precision and the size is 1000x1000, this
expression takes about 0.5 seconds to compute on an 1.1Ghz AMD Athlon machine.
When this expression is executed instead using blitz:
\end_layout
\begin_layout LyX-Code
d = empty(a.shape, 'd'); weave.blitz(expr)
\end_layout
\begin_layout Standard
execution time is only about 0.20 seconds (about 0.14 seconds spent in weave
and the rest in allocating space for d).
Thus, we've sped up the code by a factor of 2 using only a simnple command
(weave.blitz).
Your mileage may vary, but factors of 2-8 speed-ups are possible with this
very simple technique.
\end_layout
\begin_layout Standard
If you are interested in using weave in this way, then you should also look
at scipy.numexpr which is another similar way to speed up expressions by
eliminating the need for temporary variables.
Using numexpr does not require a C/C++ compiler.
\end_layout
\begin_layout Subsection
Inline C-code
\end_layout
\begin_layout Standard
Probably the most widely-used method of employing weave is to
\begin_inset Quotes eld
\end_inset
in-line
\begin_inset Quotes erd
\end_inset
C/C++ code into Python in order to speed up a time-critical section of
Python code.
In this method of using weave, you define a string containing useful C-code
and then pass it to the function
\series bold
weave.inline
\series default
(
\family typewriter
code_string
\family default
,
\family typewriter
variables
\family default
), where code_string is a string of valid C/C++ code and variables is a
list of variables that should be passed in from Python.
The C/C++ code should refer to the variables with the same names as they
are defined with in Python.
If weave.line should return anything the the special value return_val should
be set to whatever object should be returned.
The following example shows how to use weave on basic Python objects
\end_layout
\begin_layout LyX-Code
code = r"""
\newline
int i;
\newline
py::tuple results(2);
\newline
for (i=0; i<a.length(); i++) {
\newline
a[i] = i;
\newline
}
\newline
results[0] = 3.0;
\newline
results[1] = 4.0;
\newline
return_val = results;
\newline
"""
\newline
a = [None]*10
\newline
res = weave.inline(code,['a'])
\end_layout
\begin_layout Standard
The C++ code shown in the code string uses the name 'a' to refer to the
Python list that is passed in.
Because the Python List is a mutable type, the elements of the list itself
are modified by the C++ code.
A set of C++ classes are used to access Python objects using simple syntax.
\end_layout
\begin_layout Standard
The main advantage of using C-code, however, is to speed up processing on
an array of data.
Accessing a NumPy array in C++ code using weave, depends on what kind of
type converter is chosen in going from NumPy arrays to C++ code.
The default converter creates 5 variables for the C-code for every NumPy
array passed in to weave.inline.
The following table shows these variables which can all be used in the
C++ code.
The table assumes that
\family typewriter
myvar
\family default
is the name of the array in Python with data-type <dtype> (i.e.
float64, float32, int8, etc.)
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="6" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Variable
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Type
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Contents
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
myvar
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
<dtype>*
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Pointer to the first element of the array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Nmyvar
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
npy_intp*
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
A pointer to the dimensions array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Smyvar
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
npy_intp*
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
A pointer to the strides array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Dmyvar
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
int
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
The number of dimensions
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
myvar_array
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
PyArrayObject*
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
The entire structure for the array
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
The in-lined code can contain references to any of these variables as well
as to the standard macros MYVAR1(i), MYVAR2(i,j), MYVAR3(i,j,k), and MYVAR4(i,j
,k,l).
These name-based macros (they are the Python name capitalized followed
by the number of dimensions needed) will de-reference the memory for the
array at the given location with no error checking (be-sure to use the
correct macro and ensure the array is aligned and in correct byte-swap
order in order to get useful results).
The following code shows how you might use these variables and macros to
code a loop in C that computes a simple 2-d weighted averaging filter.
\end_layout
\begin_layout LyX-Code
int i,j;
\newline
for(i=1;i<Na[0]-1;i++) {
\newline
for(j=1;j<Na[1]-1;j++) {
\newline
B2(i,j)
= A2(i,j) + (A2(i-1,j) +
\newline
A2(i+1,j)+A2(i,j-1)
\newline
+ A2(i,j+1))*0.5
\newline
+ (A2(i-1,j-1)
\newline
+
A2(i-1,j+1)
\newline
+ A2(i+1,j-1)
\newline
+ A2(i+1,j+1))*0.25
\newline
}
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout Standard
The above code doesn't have any error checking and so could fail with a
Python crash if,
\family typewriter
a
\family default
had the wrong number of dimensions, or
\family typewriter
b
\family default
did not have the same shape as
\family typewriter
a
\family default
.
However, it could be placed inside a standard Python function with the
necessary error checking to produce a robust but fast subroutine.
\end_layout
\begin_layout Standard
One final note about weave.inline: if you have additional code you want to
include in the final extension module such as supporting function calls,
include statments, etc.
you can pass this code in as a string using the keyword support_code:
\family typewriter
weave.inline(code, variables, support_code=support)
\family default
.
If you need the extension module to link against an additional library
then you can also pass in distutils-style keyword arguments such as library_dir
s, libraries, and/or runtime_library_dirs which point to the appropriate
libraries and directories.
\end_layout
\begin_layout Subsection
Simplify creation of an extension module
\end_layout
\begin_layout Standard
The inline function creates one extension module for each function to-be
inlined.
It also generates a lot of intermediate code that is duplicated for each
extension module.
If you have several related codes to execute in C, it would be better to
make them all separate functions in a single extension module with multiple
functions.
You can also use the tools weave provides to produce this larger extension
module.
In fact, the weave.inline function just uses these more general tools to
do its work.
\end_layout
\begin_layout Standard
The approach is to:
\end_layout
\begin_layout Enumerate
construct a extension module object using ext_tools.ext_module(
\family typewriter
module_name
\family default
);
\end_layout
\begin_layout Enumerate
create function objects using ext_tools.ext_function(
\family typewriter
func_name
\family default
,
\family typewriter
code
\family default
,
\family typewriter
variables
\family default
);
\end_layout
\begin_layout Enumerate
(optional) add support code to the function using the .customize.add_support_code(
\family typewriter
support_code
\family default
) method of the function object;
\end_layout
\begin_layout Enumerate
add the functions to the extension module object using the .add_function(
\family typewriter
func
\family default
) method;
\end_layout
\begin_layout Enumerate
when all the functions are added, compile the extension with its .compile()
method.
\end_layout
\begin_layout Standard
Several examples are available in the examples directory where weave is
installed on your system.
Look particularly at ramp2.py, increment_example.py and fibonacii.py
\end_layout
\begin_layout Subsection
Conclusion
\end_layout
\begin_layout Standard
Weave is a useful tool for quickly routines in C/C++ and linking them into
Python.
It's caching-mechanism allows for on-the-fly compilation which makes it
particularly attractive for in-house code.
Because of the requirement that the user have a C++-compiler, it can be
difficult (but not impossible) to distribute a package that uses weave
to other users who don't have a compiler installed.
Of course, weave could be used to construct an extension module which is
then distributed in the normal way
\emph on
(
\emph default
using a setup.py file).
While you can use weave to build larger extension modules with many methods,
creating methods with a variable-number of arguments is not possible.
Thus, for a more sophisticated module, you will still probably want a Python-la
yer that calls the weave-produced extension.
\begin_inset LatexCommand index
name "weave|)"
\end_inset
\end_layout
\begin_layout Section
Pyrex
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "pyrex|("
\end_inset
Pyrex is a way to write C-extension modules using Python-like syntax.
It is an interesting way to generate extension modules that is growing
in popularity, particularly among people who have rusty or non-existent
C-skills.
It does require the user to write the
\begin_inset Quotes eld
\end_inset
interface
\begin_inset Quotes erd
\end_inset
code and so is more time-consuming than SWIG or f2py if you are trying
to interface to a large library of code.
However, if you are writing an extension module that will include quite
a bit of your own algorithmic code, as well, then Pyrex is a good match.
A big weakness perhaps is the inability to easily and quickly access the
elements of a multidimensional array.
\end_layout
\begin_layout Standard
Notice that Pyrex is an extension-module generator only.
Unlike weave or f2py, it includes no automatic facility for compiling and
linking the extension module (which must be done in the usual fashion).
It does provide a modified distutils class called build_ext which lets
you build an extension module from a .pyx source.
Thus, you could write in a setup.py file
\end_layout
\begin_layout LyX-Code
from Pyrex.Distutils import build_ext
\newline
from distutils.extension import Extension
\newline
from
distutils.core import setup
\newline
\newline
import numpy
\newline
py_ext = Extension('mine', ['mine.pyx'],
\newline
include_dirs=[numpy.get_include()])
\newline
\newline
setup(name='mine', description='Nothi
ng',
\newline
ext_modules=[pyx_ext],
\newline
cmdclass = {'build_ext':build_ext})
\end_layout
\begin_layout Standard
Adding the NumPy include directory is, of course, only necessary if you
are using NumPy arrays in the extension module (which is what I assume
you are using Pyrex for).
The distutils extensions in NumPy also include support for automatically
producing the extension-module and linking it from a
\family typewriter
.pyx
\family default
file.
It works so that if the user does not have Pyrex installed, then it looks
for a file with the same file-name but a
\family typewriter
.c
\family default
extension which it then uses instead of trying to produce the
\family typewriter
.c
\family default
file again.
\end_layout
\begin_layout Standard
Pyrex does not natively understand NumPy arrays.
However, it is not difficult to include information that lets Pyrex deal
with them usefully.
In fact, the numpy.random.mtrand module was written using Pyrex so an example
of Pyrex usage is already included in the NumPy source distribution.
That experience led to the creation of a standard c_numpy.pxd file that
you can use to simplify interacting with NumPy array objects in a Pyrex-written
extension.
The file may not be complete (it wasn't at the time of this writing).
If you have additions you'd like to contribute, please send them.
The file is located in the .../site-packages/numpy/doc/pyrex directory where
you have Python installed.
There is also an example in that directory of using Pyrex to construct
a simple extension module.
It shows that Pyrex looks a lot like Python but also contains some new
syntax that is necessary in order to get C-like speed.
\end_layout
\begin_layout Standard
If you just use Pyrex to compile a standard Python module, then you will
get a C-extension module that runs either as fast or, possibly, more slowly
than the equivalent Python module.
Speed increases are possible only when you use cdef to statically define
C variables and use a special construct to create for loops:
\end_layout
\begin_layout LyX-Code
cdef int i
\newline
for i from start <= i < stop
\end_layout
\begin_layout Standard
Let's look at two examples we've seen before to see how they might be implemente
d using Pyrex.
These examples were compiled into extension modules using Pyrex-0.9.3.1.
\end_layout
\begin_layout Subsection
Pyrex-add
\end_layout
\begin_layout Standard
Here is part of a Pyrex-file I named add.pyx which implements the add functions
we previously implemented using f2py:
\end_layout
\begin_layout LyX-Code
cimport c_numpy
\newline
from c_numpy cimport import_array, ndarray, npy_intp, npy_cdouble
,
\backslash
\newline
npy_cfloat, NPY_DOUBLE, NPY_CDOUBLE, NPY_FLOAT,
\backslash
\newline
NPY_CFLOAT
\newline
\newline
#We need to initialize NumPy
\newline
import_array()
\newline
\newline
def zadd(object
ao, object bo):
\newline
cdef ndarray c, a, b
\newline
cdef npy_intp i
\newline
a = c_numpy.PyArra
y_ContiguousFromAny(ao,
\newline
NPY_CDOUBLE, 1, 1)
\newline
b = c_numpy.PyArr
ay_ContiguousFromAny(bo,
\newline
NPY_CDOUBLE, 1, 1)
\newline
c = c_numpy.PyAr
ray_SimpleNew(a.nd, a.dimensions,
\newline
a.descr.type_num)
\newline
for i
from 0 <= i < a.dimensions[0]:
\newline
(<npy_cdouble *>c.data)[i].real =
\backslash
\newline
(<npy_cdouble *>a.data)[i].real +
\backslash
\newline
(<npy_cdouble *>b.data)[i].real
\newline
(<npy_cdouble *>c.data)[i].imag
=
\backslash
\newline
(<npy_cdouble *>a.data)[i].imag +
\backslash
\newline
(<npy_cdouble *>b.data)[i].imag
\newline
return c
\end_layout
\begin_layout Standard
This module shows use of the
\family typewriter
cimport
\family default
statement to load the definitions from the c_numpy.pxd file.
As shown, both versions of the import statement are supported.
It also shows use of the NumPy C-API to construct NumPy arrays from arbitrary
input objects.
The array c is created using PyArray_SimpleNew.
Then the c-array is filled by addition.
Casting to a particiular data-type is accomplished using <cast *>.
Pointers are de-referenced with bracket notation and members of structures
are accessed using '.' notation even if the object is techinically a pointer
to a structure.
The use of the special for loop construct ensures that the underlying code
will have a similar C-loop so the addition calculation will proceed quickly.
Notice that we have not checked for NULL after calling to the C-API ---
a cardinal sin when writing C-code.
For routines that return Python objects, Pyrex inserts the checks for NULL
into the C-code for you and returns with failure if need be.
There is also a way to get Pyrex to automatically check for exceptions
when you call functions that don't return Python objects.
See the documentation of Pyrex for details.
\end_layout
\begin_layout Subsection
Pyrex-filter
\end_layout
\begin_layout Standard
The two-dimensional example we created using weave is a bit uglierto implement
in Pyrex because two-dimensional indexing using Pyrex is not as simple.
But, it is straightforward (and possibly faster because of pre-computed
indices).
Here is the Pyrex-file I named image.pyx.
\end_layout
\begin_layout LyX-Code
cimport c_numpy
\newline
from c_numpy cimport import_array, ndarray, npy_intp,
\backslash
\newline
NPY_DOUBLE, NPY_CDOUBLE,
\backslash
\newline
NPY_FLOAT, NPY_CFLOAT, NPY_ALIGNED
\backslash
\newline
\newline
#We need to initialize NumPy
\newline
import_array()
\newline
def filter(object ao):
\newline
cdef
ndarray a, b
\newline
cdef npy_intp i, j, M, N, oS
\newline
cdef npy_intp r,rm1,rp1,c,cm1,c
p1
\newline
cdef double value
\newline
# Require an ALIGNED array
\newline
# (but not necessarily
contiguous)
\newline
# We will use strides to access the elements.
\newline
a = c_numpy.PyAr
ray_FROMANY(ao, NPY_DOUBLE,
\backslash
\newline
2, 2, NPY_ALIGNED)
\newline
b = c_numpy.PyArray_SimpleNew(a.nd,a.dimensio
ns,
\backslash
\newline
a.descr.type_num)
\newline
M = a.dimensions[0]
\newline
N = a.dimensions[1]
\newline
S0 = a.strides[0]
\newline
S1 = a.strides[1]
\newline
for i
from 1 <= i < M-1:
\newline
r = i*S0
\newline
rm1 = r-S0
\newline
rp1 = r+S0
\newline
oS = i*N
\newline
for j from 1 <= j < N-1:
\newline
c = j*S1
\newline
cm1 = c-S1
\newline
cp1 = c+S1
\newline
(<double *>b.data)[oS+j]
=
\backslash
\newline
(<double *>(a.data+r+c))[0] +
\backslash
\newline
((<double *>(a.data+rm1+c))[0] +
\backslash
\newline
(<double *>(a.data+rp1+c))[0] +
\backslash
\newline
(<double *>(a.data+r+cm1))[0] +
\backslash
\newline
(<double *>(a.data+r+cp1))[0])*0.5 +
\backslash
\newline
((<double *>(a.data+rm1+cm1))[0] +
\backslash
\newline
(<double *>(a.data+rp1+cm1))[0] +
\backslash
\newline
(<double *>(a.data+rp1+cp1))[0] +
\backslash
\newline
(<double *>(a.data+rm1+cp1))[0])*0.25
\newline
return b
\end_layout
\begin_layout Standard
This 2-d averaging filter runs quickly because the loop is in C and the
pointer computations are done only as needed.
However, it is not particularly easy to understand what is happening.
A 2-d image,
\family typewriter
in
\family default
, can be filtered using this code very quickly using
\end_layout
\begin_layout LyX-Code
import image
\end_layout
\begin_layout LyX-Code
out = image.filter(in)
\end_layout
\begin_layout Subsection
Conclusion
\end_layout
\begin_layout Standard
There are several disadvantages of using Pyrex:
\end_layout
\begin_layout Enumerate
The syntax for Pyrex can get a bit bulky, and it can be confusing at first
to understand what kind of objects you are getting and how to interface
them with C-like constructs.
\end_layout
\begin_layout Enumerate
Inappropriate Pyrex syntax or incorrect calls to C-code or type-mismatches
can result in failures such as
\end_layout
\begin_deeper
\begin_layout Enumerate
Pyrex failing to generate the extension module source code,
\end_layout
\begin_layout Enumerate
Compiler failure while generating the extension module binary due to incorrect
C syntax,
\end_layout
\begin_layout Enumerate
Python failure when trying to use the module.
\end_layout
\end_deeper
\begin_layout Enumerate
It is easy to lose a clean separation between Python and C which makes re-using
your C-code for other non-Python-related projects more difficult.
\end_layout
\begin_layout Enumerate
Multi-dimensional arrays are
\begin_inset Quotes eld
\end_inset
bulky
\begin_inset Quotes erd
\end_inset
to index (appropriate macros may be able to fix this).
\end_layout
\begin_layout Enumerate
The C-code generated by Prex is hard to read and modify (and typically compiles
with annoying but harmless warnings).
\end_layout
\begin_layout Standard
Writing a good Pyrex extension module still takes a bit of effort because
not only does it require (a little) familiarity with C, but also with Pyrex's
brand of Python-mixed-with C.
One big advantage of Pyrex-generated extension modules is that they are
easy to distribute using distutils.
In summary, Pyrex is a very capable tool for either gluing C-code or generating
an extension module quickly and should not be over-looked.
It is especially useful for people that can't or won't write C-code or
Fortran code.
But, if you are already able to write simple subroutines in C or Fortran,
then I would use one of the other approaches such as f2py (for Fortran),
ctypes (for C shared-libraries), or weave (for inline C-code).
\begin_inset LatexCommand index
name "pyrex|)"
\end_inset
\end_layout
\begin_layout Section
ctypes
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ctypes|("
\end_inset
Ctypes is a python extension module (downloaded separately for Python <2.5
and included with Python 2.5) that allows you to call an arbitrary function
in a shared library directly from Python.
This approach allows you to interface with C-code directly from Python.
This opens up an enormous number of libraries for use from Python.
The drawback, however, is that coding mistakes can lead to ugly program
crashes very easily (just as can happen in C) because there is little type
or bounds checking done on the parameters.
This is especially true when array data is passed in as a pointer to a
raw memory location.
The responsibility is then on you that the subroutine will not access memory
outside the actual array area.
But, if you don't mind living a little dangerously ctypes can be an effective
tool for quickly taking advantage of a large shared library (or writing
extended functionality in your own shared library).
\end_layout
\begin_layout Standard
Because the ctypes approach exposes a raw interface to the compiled code
it is not always tolerant of user mistakes.
Robust use of the ctypes module typically involves an additional layer
of Python code in order to check the data types and array bounds of objects
passed to the underlying subroutine.
This additional layer of checking (not to mention the conversion from ctypes
objects to C-data-types that ctypes itself performs), will make the interface
slower than a hand-written extension-module interface.
However, this overhead should be neglible if the C-routine being called
is doing any significant amount of work.
If you are a great Python programmer with weak C-skills, ctypes is an easy
way to write a useful interface to a (shared) library of compiled code.
\end_layout
\begin_layout Standard
To use c-types you must
\end_layout
\begin_layout Enumerate
Have a shared library.
\end_layout
\begin_layout Enumerate
Load the shared library.
\end_layout
\begin_layout Enumerate
Convert the python objects to ctypes-understood arguments.
\end_layout
\begin_layout Enumerate
Call the function from the library with the ctypes arguments.
\end_layout
\begin_layout Subsection
Having a shared library
\end_layout
\begin_layout Standard
There are several requirements for a shared library that can be used with
c-types that are platform specific.
This guide assumes you have some familiarity with making a shared library
on your system (or simply have a shared library available to you).
Items to remember are:
\end_layout
\begin_layout Itemize
A shared library must be compiled in a special way (
\emph on
e.g.
\emph default
using the -shared flag with gcc).
\end_layout
\begin_layout Itemize
On some platforms (
\emph on
e.g.
\emph default
Windows) , a shared library requires a .def file that specifies the functions
to be exported.
For example a mylib.def file might contain.
\end_layout
\begin_deeper
\begin_layout LyX-Code
LIBRARY mylib.dll
\newline
EXPORTS
\newline
cool_function1
\newline
cool_function2
\end_layout
\begin_layout Standard
Alternatively, you may be able to use the storage-class specifier __declspec(dll
export) in the C-definition of the function to avoid the need for this .def
file.
\end_layout
\end_deeper
\begin_layout Standard
There is no standard way in Python distutils to create a standard shared
library (an extension module is a
\begin_inset Quotes eld
\end_inset
special
\begin_inset Quotes erd
\end_inset
shared library Python understands) in a cross-platform manner.
Thus, a big disadvantage of ctypes at the time of writing this book is
that it is difficult to distribute in a cross-platform manner a Python
extension that uses c-types and includes your own code which should be
compiled as a shared library on the users system.
\end_layout
\begin_layout Subsection
Loading the shared library
\end_layout
\begin_layout Standard
A simple, but robust way to load the shared library is to get the absolute
path name and load it using the cdll object of ctypes.
\end_layout
\begin_layout LyX-Code
lib = ctypes.cdll[<full_path_name>]
\end_layout
\begin_layout Standard
However, on Windows accessing an attribute of the cdll method will load
the first DLL by that name found in the current directory or on the PATH.
Loading the absolute path name requires a little finesse for cross-platform
work since the extension of shared libraries varies.
There is a
\family typewriter
ctypes.util.find_library
\family default
utility available that can simplify the process of finding the library
to load but it is not foolproof.
Complicating matters, different platforms have different default extensions
used by shared libraries (e.g.
.dll -- Windows, .so -- Linux, .dylib -- Mac OS X).
This must also be taken into account if you are using c-types to wrap code
that needs to work on several platforms.
\end_layout
\begin_layout Standard
NumPy provides a convenience function called
\series bold
ctypeslib.load_library
\series default
(name, path).
This function takes the name of the shared library (including any prefix
like 'lib' but excluding the extension) and a path where the shared library
can be located.
It returns a ctypes library object or raises an OSError if the library
cannot be found or raises an ImportError if the ctypes module is not available.
(Windows users: the ctypes library object loaded using
\series bold
load_library
\series default
is always loaded assuming cdecl calling convention.
See the ctypes documentation under ctypes.windll and/or ctypes.oledll for
ways to load libraries under other calling conventions).
\end_layout
\begin_layout Standard
The functions in the shared library are available as attributes of the ctypes
library object (returned from
\series bold
ctypeslib.load_library
\series default
) or as items using lib['func_name'] syntax.
The latter method for retrieving a function name is particularly useful
if the function name contains characters that are not allowable in Python
variable names.
\end_layout
\begin_layout Subsection
Converting arguments
\end_layout
\begin_layout Standard
Python ints/longs, strings, and unicode objects are automatically converted
as needed to equivalent c-types arguments The None object is also converted
automatically to a NULL pointer.
All other Python objects must be converted to ctypes-specific types.
There are two ways around this restriction that allow c-types to integrate
with other objects.
\end_layout
\begin_layout Enumerate
Don't set the argtypes attribute of the function object and define an _as_parame
ter_ method for the object you want to pass in.
The _as_parameter_ method must return a Python int which will be passed
directly to the function.
\end_layout
\begin_layout Enumerate
Set the argtypes attribute to a list whose entries contain objects with
a classmethod named from_param that knows how to convert your object to
an object that ctypes can understand (an int/long, string, unicode, or
object with the _as_parameter_ attribute).
\end_layout
\begin_layout Standard
NumPy uses both methods with a preference for the second method because
it can be safer.
The ctypes attribute of the ndarray returns an object that has an _as_parameter
_ attribute which returns an integer representing the address of the ndarray
to which it is associated.
As a result, one can pass this ctypes attribute object directly to a function
expecting a pointer to the data in your ndarray.
The caller must be sure that the ndarray object is of the correct type,
shape, and has the correct flags set or risk nasty crashes if the data-pointer
to inappropriate arrays are passsed in.
\end_layout
\begin_layout Standard
To implement the second method, NumPy provides the class-factory function
\series bold
ndpointer
\series default
in the
\series bold
ctypeslib
\series default
module.
This class-factory function produces an appropriate class that can be placed
in an argtypes attribute entry of a ctypes function.
The class will contain a from_param method which ctypes will use to convert
any ndarray passed in to the function to a ctypes-recognized object.
In the process, the conversion will perform checking on any properties
of the ndarray that were specified by the user in the call to ndpointer.
Aspects of the ndarray that can be checked include the data-type, the number-of
-dimensions, the shape, and/or the state of the flags on any array passed.
The return value of the from_param method is the ctypes attribute of the
array which (because it contains the _as_parameter_ attribute pointing
to the array data area) can be used by ctypes directly.
\end_layout
\begin_layout Standard
The ctypes attribute of an ndarray is also endowed with additional attributes
that may be convenient when passing additional information about the array
into a ctypes function.
The attributes
\series bold
data
\series default
,
\series bold
shape
\series default
, and
\series bold
strides
\series default
can provide c-types compatible types corresponding to the data-area, the
shape, and the strides of the array.
The data attribute reutrns a
\family typewriter
c_void_p
\family default
representing a pointer to the data area.
The shape and strides attributes each return an array of ctypes integers
(or None representing a NULL pointer, if a 0-d array).
The base ctype of the array is a ctype integer of the same size as a pointer
on the platform.
There are also methods data_as(<ctype>), shape_as(<base ctype>), and strides_as
(<base ctype>).
These return the data as a ctype object of your choice and the shape/strides
arrays using an underlying base type of your choice.
For convenience, the
\series bold
ctypeslib
\series default
module also contains
\series bold
c_intp
\series default
as a ctypes integer data-type whose size is the same as the size of
\family typewriter
c_void_p
\family default
on the platform (it's value is None if ctypes is not installed).
\end_layout
\begin_layout Subsection
Calling the function
\end_layout
\begin_layout Standard
The function is accessed as an attribute of or an item from the loaded shared-li
brary.
Thus, if
\begin_inset Quotes eld
\end_inset
./mylib.so
\begin_inset Quotes erd
\end_inset
has a function named
\begin_inset Quotes eld
\end_inset
cool_function1
\begin_inset Quotes erd
\end_inset
, I could access this function either as
\end_layout
\begin_layout LyX-Code
lib = numpy.ctypeslib.load_library('mylib','.')
\newline
func1 = lib.cool_function1 #
or equivalently
\newline
func1 = lib['cool_function1']
\end_layout
\begin_layout Standard
In ctypes, the return-value of a function is set to be 'int' by default.
This behavior can be changed by setting the restype attribute of the function.
Use None for the restype if the function has no return value ('void'):
\end_layout
\begin_layout LyX-Code
func1.restype = None
\end_layout
\begin_layout Standard
As previously discussed, you can also set the argtypes attribute of the
function in order to have ctypes check the types of the input arguments
when the function is called.
Use the ndpointer factory function to generate a ready-made class for data-type
, shape, and flags checking on your new function.
The ndpointer function has the signature
\end_layout
\begin_layout Description
ndpointer (dtype=None, ndim=None, shape=None, flags=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Keyword arguments with the value
\family typewriter
None
\family default
are not checked.
Specifying a keyword enforces checking of that aspect of the ndarray on
conversion to a ctypes-compatible object.
The dtype keyword can be any object understood as a data-type object.
The ndim keyword should be an integer, and the shape keyword should be
an integer or a sequence of integers.
The flags keyword specifies the minimal flags that are required on any
array passed in.
This can be specified as a string of comma separated requirements, an integer
indicating the requirement bits OR'd together, or a flags object returned
from the flags attribute of an array with the necessary requirements.
\end_layout
\begin_layout Standard
Using an ndpointer class in the argtypes method can make it significantly
safer to call a C-function using ctypes and the data-area of an ndarray.
You may still want to wrap the function in an additional Python wrapper
to make it user-friendly (hiding some obvious arguments and making some
arguments output arguments).
In this process, the
\series bold
requires
\series default
function in NumPy may be useful to return the right kind of array from
a given input.
\end_layout
\begin_layout Subsection
Complete example
\end_layout
\begin_layout Standard
In this example, I will show how the addition function and the filter function
implemented previously using the other approaches can be implemented using
ctypes.
First, the C-code which implements the algorithms contains the functions
zadd, dadd, sadd, cadd, and dfilter2d.
The zadd function is
\end_layout
\begin_layout LyX-Code
/* Add arrays of contiguous data */
\newline
typedef struct {double real; double imag;}
cdouble;
\newline
typedef struct {float real; float imag;} cfloat;
\newline
void zadd(cdouble
*a, cdouble *b, cdouble *c, long n)
\newline
{
\newline
while (n--) {
\newline
c->real =
a->real + b->real;
\newline
c->imag = a->imag + b->imag;
\newline
a++; b++;
c++;
\newline
}
\newline
}
\end_layout
\begin_layout Standard
with similar code for cadd, dadd, and sadd that handles complex float, double,
and float data-types, respectively:
\end_layout
\begin_layout LyX-Code
void cadd(cfloat *a, cfloat *b, cfloat *c, long n)
\newline
{
\newline
while (n--) {
\newline
c->real = a->real + b->real;
\newline
c->imag = a->imag
+ b->imag;
\newline
a++; b++; c++;
\newline
}
\newline
}
\newline
void dadd(double
*a, double *b, double *c, long n)
\newline
{
\newline
while (n--) {
\newline
*c++ = *a++ + *b++;
\newline
}
\newline
}
\newline
void sadd(float *a, float *b, float
*c, long n)
\newline
{
\newline
while (n--) {
\newline
*c++ = *a++ + *b++;
\newline
}
\newline
}
\end_layout
\begin_layout Standard
The code.c file also contains the function dfilter2d:
\end_layout
\begin_layout LyX-Code
/* Assumes b is contiguous and
\newline
a has strides that are multiples of sizeof(dou
ble)
\newline
*/
\newline
void
\newline
dfilter2d(double *a, double *b, int *astrides, int *dims)
\newline
{
\newline
int i, j, M, N, S0, S1;
\newline
int r, c, rm1, rp1, cp1, cm1;
\newline
\newline
M = dims[0];
N = dims[1];
\newline
S0 = astrides[0]/sizeof(double);
\newline
S1=astrides[1]/sizeof(doub
le);
\newline
for (i=1; i<M-1; i++) {
\newline
r = i*S0; rp1 = r+S0; rm1 = r-S0;
\newline
for (j=1; j<N-1; j++) {
\newline
c = j*S1; cp1 = j+S1; cm1 = j-S1;
\newline
b[i*N+j] = a[r+c] +
\backslash
\newline
(a[rp1+c] + a[rm1+c] +
\backslash
\newline
a[r+cp1] + a[r+cm1])*0.5 +
\backslash
\newline
(a[rp1+cp1] + a[rp1+cm1] +
\backslash
\newline
a[rm1+cp1] + a[rm1+cp1])*0.25;
\newline
}
\newline
}
\newline
}
\end_layout
\begin_layout Standard
A possible advantage this code has over the Fortran-equivalent code is that
it takes arbitrarily strided (i.e.
non-contiguous arrays) and may also run faster depending on the optimization
capability of your compiler.
But, it is a obviously more complicated than the simple code in filter.f.
This code must be compiled into a shared library.
On my Linux system this is accomplished using
\end_layout
\begin_layout LyX-Code
gcc -o code.so -shared code.c
\end_layout
\begin_layout Standard
Which creates a shared_library named code.so in the current directory.
On Windows don't forget to either add __declspec(dllexport) in front of
void on the line preceeding each function definition, or write a code.def
file that lists the names of the functions to be exported.
\end_layout
\begin_layout Standard
A suitable Python interface to this shared library should be constructed.
To do this create a file named interface.py with the following lines at
the top:
\end_layout
\begin_layout LyX-Code
__all__ = ['add', 'filter2d']
\newline
\newline
import numpy as N
\newline
import os
\newline
\newline
_path = os.path.dirname('__
file__')
\newline
lib = N.ctypeslib.load_library('code', _path)
\newline
_typedict = {'zadd' :
complex, 'sadd' : N.single,
\newline
'cadd' : N.csingle, 'dadd' : float}
\newline
for
name in _typedict.keys():
\newline
val = getattr(lib, name)
\newline
val.restype = None
\newline
_type = _typedict[name]
\newline
val.argtypes = [N.ctypeslib.ndpointer(_type,
\newline
flags='aligned, contiguous'),
\newline
N.ctypeslib.ndpointer(_type,
\newline
flags='aligned, contiguous'),
\newline
N.ctypeslib.ndpointer(_type,
\newline
flags='alig
ned, contiguous,'
\backslash
\newline
'writeable'),
\newline
N.ctypeslib.c_intp]
\end_layout
\begin_layout Standard
This code loads the shared library named code.<ext> located in the same path
as this file.
It then adds a return type of void to the functions contained in the library.
It also adds argument checking to the functions in the library so that
ndarrays can be passed as the first three arguments along with an integer
(large enough to hold a pointer on the platform) as the fourth argument.
\end_layout
\begin_layout Standard
Setting up the filtering function is similar and allows the filtering function
to be called with ndarray arguments as the first two arguments and with
pointers to integers (large enough to handle the strides and shape of an
ndarray) as the last two arguments.
\end_layout
\begin_layout LyX-Code
lib.dfilter2d.restype=None
\newline
lib.dfilter2d.argtypes = [N.ctypeslib.ndpointer(float,
ndim=2,
\newline
flags='aligned'),
\newline
N.ctypeslib.ndpointer(float, ndim=2,
\newline
flags='aligned, contiguous,'
\backslash
\newline
'writeable'),
\newline
ctypes.POINTER(N.ctypeslib.c_intp),
\newline
ctypes.POINTER
(N.ctypeslib.c_intp)]
\end_layout
\begin_layout Standard
Next, define a simple selection function that chooses which addition function
to call in the shared library based on the data-type:
\end_layout
\begin_layout LyX-Code
def select(dtype):
\newline
if dtype.char in ['?bBhHf']:
\newline
return lib.sadd,
single
\newline
elif dtype.char in ['F']:
\newline
return lib.cadd, csingle
\newline
elif
dtype.char in ['DG']:
\newline
return lib.zadd, complex
\newline
else:
\newline
return
lib.dadd, float
\newline
return func, ntype
\end_layout
\begin_layout Standard
Finally, the two functions to be exported by the interface can be written
simply as
\end_layout
\begin_layout LyX-Code
def add(a, b):
\newline
requires = ['CONTIGUOUS', 'ALIGNED']
\newline
a = N.asanyarray(a)
\newline
func, dtype = select(a.dtype)
\newline
a = N.require(a, dtype, requires)
\newline
b = N.require(b, dtype, requires)
\newline
c = N.empty_like(a)
\newline
func(a,b,c,a.size)
\newline
return c
\end_layout
\begin_layout Standard
and
\end_layout
\begin_layout LyX-Code
def filter2d(a):
\newline
a = N.require(a, float, ['ALIGNED'])
\newline
b = N.zeros_like(a)
\newline
lib.dfilter2d(a, b, a.ctypes.strides, a.ctypes.shape)
\newline
return b
\end_layout
\begin_layout Subsection
Conclusion
\end_layout
\begin_layout Standard
Using ctypes is a powerful way to connect Python with arbitrary C-code.
It's advantages for extending Python include
\end_layout
\begin_layout Itemize
clean separation of C-code from Python code
\end_layout
\begin_deeper
\begin_layout Itemize
no need to learn a new syntax except Python and C
\end_layout
\begin_layout Itemize
allows re-use of C-code
\end_layout
\begin_layout Itemize
functionality in shared libraries written for other purposes can be obtained
with a simple Python wrapper and search for the library.
\end_layout
\end_deeper
\begin_layout Itemize
easy integration with NumPy through the ctypes attribute
\end_layout
\begin_layout Itemize
full argument checking with the ndpointer class factory
\end_layout
\begin_layout Standard
It's disadvantages include
\end_layout
\begin_layout Itemize
It is difficult to distribute an extension module made using ctypes because
of a lack of support for building shared libraries in distutils (but I
suspect this will change in time).
\end_layout
\begin_layout Itemize
You must have shared-libraries of your code (no static libraries).
\end_layout
\begin_layout Itemize
Very little support for C++ code and it's different library-calling conventions.
You will probably need a C-wrapper around C++ code to use with ctypes (or
just use Boost.Python instead).
\end_layout
\begin_layout Standard
Because of the difficulty in distributing an extension module made using
ctypes, f2py is still the easiest way to extend Python for package creation.
However, ctypes is a close second and will probably be growing in popularity
now that it is part of the Python distribution.
This should bring more features to ctypes that should eliminate the difficulty
in extending Python and distributing the extension using ctypes.
\begin_inset LatexCommand index
name "ctypes|)"
\end_inset
\end_layout
\begin_layout Section
Additional tools you may find useful
\end_layout
\begin_layout Standard
These tools have been found useful by others using Python and so are included
here.
They are discussed separately because I see them as either older ways to
do things more modernly handled by f2py, weave, Pyrex, or ctypes (SWIG,
PyFort, PyInline) or because I don't know much about them (SIP, Boost,
Instant).
I have not added links to these methods because my experience is that you
can find the most relevant link faster using Google or some other search
engine, and any links provided here would be quickly dated.
Do not assume that just because it is included in this list, I don't think
the package deserves your attention.
I'm including information about these packages because many people have
found them useful and I'd like to give you as many options as possible
for tackling the problem of easily integrating your code.
\end_layout
\begin_layout Subsection
SWIG
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "swig"
\end_inset
Simplified Wrapper and Interface Generator (SWIG) is an old and fairly stable
method for wrapping C/C++-libraries to a large variety of other languages.
It does not specifically understand NumPy arrays but can be made useable
with NumPy through the use of typemaps.
There are some sample typemaps in the numpy/doc/swig directory under numpy.i
along with an example module that makes use of them.
SWIG excels at wrapping large C/C++ libraries because it can (almost) parse
their headers and auto-produce an interface.
Technically, you need to generate a
\family typewriter
.i
\family default
file that defines the interface.
Often, however, this
\family typewriter
.i
\family default
file can be parts of the header itself.
The interface usually needs a bit of tweaking to be very useful.
This ability to parse C/C++ headers and auto-generate the interface still
makes SWIG a useful approach to adding functionalilty from C/C++ into Python,
despite the other methods that have emerged that are more targeted to Python.
SWIG can actually target extensions for several languages, but the typemaps
usually have to be language-specific.
Nonetheless, with modifications to the Python-specific typemaps, SWIG can
be used to interface a library with other languages such as Perl, Tcl,
and Ruby.
\end_layout
\begin_layout Standard
My experience with SWIG has been generally positive in that it is relatively
easy to use and quite powerful.
I used to use it quite often before becoming more proficient at writing
C-extensions.
However, I struggled writing custom interfaces with SWIG because it must
be done using the concept of typemaps which are not Python specific and
are written in a C-like syntax.
Therefore, I tend to prefer other gluing strategies and would only attempt
to use SWIG to wrap a very-large C/C++ library.
Nonetheless, there are others who use SWIG quite happily.
\end_layout
\begin_layout Subsection
SIP
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "SIP"
\end_inset
SIP is another tool for wrapping C/C++ libraries that is Python specific
and appears to have very good support for C++.
Riverbank Computing developed SIP in order to create Python bindings to
the QT library.
An interface file must be written to generate the binding, but the interface
file looks a lot like a C/C++ header file.
While SIP is not a full C++ parser, it understands quite a bit of C++ syntax
as well as its own special directives that allow modification of how the
Python binding is accomplished.
It also allows the user to define mappings between Python types and C/C++
structrues and classes.
\end_layout
\begin_layout Subsection
Boost Python
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "Boost.Python"
\end_inset
Boost is a repository of C++ libraries and Boost.Python is one of those libraries
which provides a concise interface for binding C++ classes and functions
to Python.
The amazing part of the Boost.Python approach is that it works entirely
in pure C++ without introducing a new syntax.
Many users of C++ report that Boost.Python makes it possible to combine
the best of both worlds in a seamless fashion.
I have not used Boost.Python because I am not a big user of C++ and using
Boost to wrap simple C-subroutines is usually over-kill.
It's primary purpose is to make C++ classes available in Python.
So, if you have a set of C++ classes that need to be integrated cleanly
into Python, consider learning about and using Boost.Python.
\end_layout
\begin_layout Subsection
Instant
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "Instant"
\end_inset
This is a relatively new package (called pyinstant at sourceforge) that
builds on top of SWIG to make it easy to inline C and C++ code in Python
very much like weave.
However, Instant builds extension modules on the fly with specific module
names and specific method names.
In this repsect it is more more like f2py in its behavior.
The extension modules are built on-the fly (as long as the SWIG is installed).
They can then be imported.
Here is an example of using Instant with NumPy arrays (adapted from the
test2 included in the Instant distribution):
\end_layout
\begin_layout LyX-Code
code="""
\end_layout
\begin_layout LyX-Code
PyObject* add(PyObject* a_, PyObject* b_){
\end_layout
\begin_layout LyX-Code
/*
\end_layout
\begin_layout LyX-Code
various checks
\end_layout
\begin_layout LyX-Code
*/
\end_layout
\begin_layout LyX-Code
PyArrayObject* a=(PyArrayObject*) a_;
\end_layout
\begin_layout LyX-Code
PyArrayObject* b=(PyArrayObject*) b_;
\end_layout
\begin_layout LyX-Code
int n = a->dimensions[0];
\end_layout
\begin_layout LyX-Code
int dims[1];
\end_layout
\begin_layout LyX-Code
dims[0] = n;
\end_layout
\begin_layout LyX-Code
PyArrayObject* ret;
\end_layout
\begin_layout LyX-Code
ret = (PyArrayObject*) PyArray_FromDims(1, dims, NPY_DOUBLE);
\end_layout
\begin_layout LyX-Code
int i;
\end_layout
\begin_layout LyX-Code
char *aj=a->data;
\end_layout
\begin_layout LyX-Code
char *bj=b->data;
\end_layout
\begin_layout LyX-Code
double *retj = (double *)ret->data;
\end_layout
\begin_layout LyX-Code
for (i=0; i < n; i++) {
\end_layout
\begin_layout LyX-Code
*retj++ = *((double *)aj) + *((double *)bj);
\end_layout
\begin_layout LyX-Code
aj += a->strides[0];
\end_layout
\begin_layout LyX-Code
bj += b->strides[0];
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout LyX-Code
return (PyObject *)ret;
\end_layout
\begin_layout LyX-Code
}
\end_layout
\begin_layout LyX-Code
"""
\end_layout
\begin_layout LyX-Code
import Instant, numpy
\end_layout
\begin_layout LyX-Code
ext = Instant.Instant()
\end_layout
\begin_layout LyX-Code
ext.create_extension(code=s, headers=["numpy/arrayobject.h"],
include_dirs=[numpy.get_include()],
init_code='import_array();', module="test2b_ext
")
\end_layout
\begin_layout LyX-Code
import test2b_ext
\end_layout
\begin_layout LyX-Code
a = numpy.arange(1000)
\end_layout
\begin_layout LyX-Code
b = numpy.arange(1000)
\end_layout
\begin_layout LyX-Code
d = test2b_ext.add(a,b)
\end_layout
\begin_layout Standard
Except perhaps for the dependence on SWIG, Instant is a straightforward
utility for writing extension modules.
\end_layout
\begin_layout Subsection
PyInline
\end_layout
\begin_layout Standard
This is a much older module that allows automatic building of extension
modules so that C-code can be included with Python code.
It's latest release (version 0.03) was in 2001, and it appears that it is
not being updated.
\end_layout
\begin_layout Subsection
PyFort
\end_layout
\begin_layout Standard
PyFort is a nice tool for wrapping Fortran and Fortran-like C-code into
Python with support for Numeric arrays.
It was written by Paul Dubois, a distinguished computer scientist and the
very first maintainer of Numeric (now retired).
It is worth mentioning in the hopes that somebody will update PyFort to
work with NumPy arrays as well which now support either Fortran or C-style
contiguous arrays.
\end_layout
\begin_layout Chapter
Code Explanations
\end_layout
\begin_layout Quotation
Fanaticism consists of redoubling your efforts when you have forgotten your
aim.
\end_layout
\begin_layout Right Address
---
\emph on
George Santayana
\end_layout
\begin_layout Quotation
An authority is a person who can tell you more about something than you
really care to know.
\end_layout
\begin_layout Right Address
---
\emph on
Unknown
\end_layout
\begin_layout Standard
This Chapter attempts to explain the logic behind some of the new pieces
of code.
The purpose behind these explanations is to enable somebody to be able
to understand the ideas behind the implementation somewhat more easily
than just staring at the code.
Perhaps in this way, the algorithms can be improved on, borrowed from,
and/or optimized.
\end_layout
\begin_layout Section
Memory model
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ndarray!memory model"
\end_inset
One fundamental aspect of the ndarray is that an array is seen as a
\begin_inset Quotes eld
\end_inset
chunk
\begin_inset Quotes erd
\end_inset
of memory starting at some location.
The interpretation of this memory depends on the stride information.
For each dimension in an
\begin_inset Formula $N$
\end_inset
-dimensional array, an integer (stride) dictates how many bytes must be
skipped to get to the next element in that dimension.
Unless you have a single-segment array, this stride information must be
consulted when traversing through an array.
It is not difficult to write code that accepts strides, you just have to
use (char *) pointers because strides are in units of bytes.
Keep in mind also that strides do not have to be unit-multiples of the
element size.
Also, remember that if the number of dimensions of the array is 0 (sometimes
called a rank-0 array), then the strides and dimensions variables are NULL.
\end_layout
\begin_layout Standard
Besides the structural information contained in the strides and dimensions
members of the PyArrayObject, the flags contain important information about
how the data may be accessed.
In particular, the NPY_ALIGNED flag is set when the memory is on a suitable
boundary according to the data-type array.
Even if you have a contiguous chunk of memory, you cannot just assume it
is safe to dereference a data-type-specific pointer to an element.
Only if the NPY_ALIGNED flag is set is this a safe operation (on some platforms
it will work but on others, like Solaris, it will cause a bus error).
The NPY_WRITEABLE should also be ensured if you plan on writing to the
memory area of the array.
It is also possible to obtain a pointer to an unwriteable memory area.
Sometimes, writing to the memory area when the NPY_WRITEABLE flag is not
set will just be rude.
Other times it can cause program crashes (
\emph on
e.g.
\emph default
a data-area that is a read-only memory-mapped file).
\end_layout
\begin_layout Section
Data-type encapsulation
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "dtype"
\end_inset
The data-type is an important abstraction of the ndarray.
Operations will look to the data-type to provide the key functionality
that is needed to operate on the array.
This functionality is provided in the list of function pointers pointed
to by the 'f' member of the PyArray_Descr structure.
In this way, the number of data-types can be extended simply by providing
a PyArray_Descr structure with suitable function pointers in the 'f' member.
For built-in types there are some optimizations that by-pass this mechanism,
but the point of the data-type abstraction is to allow new data-types to
be added.
\end_layout
\begin_layout Standard
One of the built-in data-types, the void data-type allows for arbitrary
records containing 1 or more fields as elements of the array.
A field is simply another data-type object along with an offset into the
current record.
In order to support arbitrarily nested fields, several recursive implementation
s of data-type access are implemented for the void type.
A common idiom is to cycle through the elements of the dictionary and perform
a specific operation based on the data-type object stored at the given
offset.
These offsets can be arbitrary numbers.
Therefore, the possibility of encountering mis-aligned data must be recognized
and taken into account if necessary.
\end_layout
\begin_layout Section
N-D Iterators
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "array iterator"
\end_inset
A very common operation in much of NumPy code is the need to iterate over
all the elements of a general, strided, N-dimensional array.
This operation of a general-purpose N-dimensional loop is abstracted in
the notion of an iterator object.
To write an N-dimensional loop, you only have to create an iterator object
from an ndarray, work with the dataptr member of the iterator object structure
and call the macro PyArray_ITER_NEXT(it) on the iterator object to move
to the next element.
The
\begin_inset Quotes eld
\end_inset
next
\begin_inset Quotes erd
\end_inset
element is always in C-contiguous order.
The macro works by first special casing the C-contiguous, 1-d, and 2-d
cases which work very simply.
\end_layout
\begin_layout Standard
For the general case, the iteration works by keeping track of a list of
coordinate counters in the iterator object.
At each iteration, the last coordinate counter is increased (starting from
0).
If this counter is smaller then one less than the size of the array in
that dimension (a pre-computed and stored value), then the counter is increased
and the dataptr member is increased by the strides in that dimension and
the macro ends.
If the end of a dimension is reached, the counter for the last dimension
is reset to zero and the dataptr is moved back to the beginning of that
dimension by subtracting the strides value times one less than the number
of elements in that dimension (this is also pre-computed and stored in
the backstrides member of the iterator object).
In this case, the macro does not end, but a local dimension counter is
decremented so that the next-to-last dimension replaces the role that the
last dimension played and the previously-described tests are executed again
on the next-to-last dimension.
In this way, the dataptr is adjusted appropriately for arbitrary striding.
\end_layout
\begin_layout Standard
The coordinates member of the PyArrayIterObject structure maintains the
current N-d counter unless the underlying array is C-contiguous in which
case the coordinate counting is by-passed.
The index member of the PyArrayIterObject keeps track of the current flat
index of the iterator.
It is updated by the PyArray_ITER_NEXT macro.
\end_layout
\begin_layout Section
Broadcasting
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "broadcasting"
\end_inset
In Numeric, broadcasting was implemented in several lines of code buried
deep in ufuncobject.c.
In NumPy, the notion of broadcasting has been abstracted so that it can
be performed in multiple places.
Broadcasting is handled by the function PyArray_Broadcast.
This function requires a PyArrayMultiIterObject (or something that is a
binary equivalent) to be passed in.
The PyArrayMultiIterObject keeps track of the broadcasted number of dimensions
and size in each dimension along with the total size of the broadcasted
result.
It also keeps track of the number of arrays being broadcast and a pointer
to an iterator for each of the arrays being broadcasted.
\end_layout
\begin_layout Standard
The PyArray_Broadcast function takes the iterators that have already been
defined and uses them to determine the broadcast shape in each dimension
(to create the iterators at the same time that broadcasting occurs then
use the PyMuliIter_New function).
Then, the iterators are adjusted so that each iterator thinks it is iterating
over an array with the broadcasted size.
This is done by adjusting the iterators number of dimensions, and the shape
in each dimension.
This works because the iterator strides are also adjusted.
Broadcasting only adjusts (or adds) length-1 dimensions.
For these dimensions, the strides variable is simply set to 0 so that the
data-pointer for the iterator over that array doesn't move as the broadcasting
operation operates over the extended dimension.
\end_layout
\begin_layout Standard
Broadcasting was always implemented in Numeric using 0-valued strides for
the extended dimensions.
It is done in exactly the same way in NumPy.
The big difference is that now the array of strides is kept track of in
a PyArrayIterObject, the iterators involved in a broadcasted result are
kept track of in a PyArrayMultiIterObject, and the PyArray_BroadCast call
implements the broad-casting rules.
\end_layout
\begin_layout Section
Array Scalars
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "array scalars"
\end_inset
The array scalars offer a hierarchy of Python types that allow a one-to-one
correspondence between the data-type stored in an array and the Python-type
that is returned when an element is extracted from the array.
An exception to this rule was made with object arrays.
Object arrays are heterogeneous collections of arbitrary Python objects.
When you select an item from an object array, you get back the original
Python object (and not an object array scalar which does exist but is rarely
used for practical purposes).
\end_layout
\begin_layout Standard
The array scalars also offer the same methods and attributes as arrays with
the intent that the same code can be used to support arbitrary dimensions
(including 0-dimensions).
The array scalars are read-only (immutable) with the exception of the void
scalar which can also be written to so that record-array field setting
works more naturally (a[0]['f1'] =
\family typewriter
value
\family default
).
\end_layout
\begin_layout Section
Advanced (
\begin_inset Quotes eld
\end_inset
Fancy
\begin_inset Quotes erd
\end_inset
) Indexing
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "indexing"
\end_inset
The implementation of advanced indexing represents some of the most difficult
code to write and explain.
In fact, there are two implementations of advanced indexing.
The first works only with 1-d arrays and is implemented to handle expressions
involving a.flat[obj].
The second is general-purpose that works for arrays of
\begin_inset Quotes eld
\end_inset
arbitrary dimension
\begin_inset Quotes erd
\end_inset
(up to a fixed maximum).
The one-dimensional indexing approaches were implemented in a rather straightfo
rward fashion, and so it is the general-purpose indexing code that will
be the focus of this section.
\end_layout
\begin_layout Standard
There is a multi-layer approach to indexing because the indexing code can
at times return an array scalar and at other times return an array.
The functions with
\begin_inset Quotes eld
\end_inset
_nice
\begin_inset Quotes erd
\end_inset
appended to their name do this special handling while the function without
the _nice appendage always return an array (perhaps a 0-dimensional array).
Some special-case optimizations (the index being an integer scalar, and
the index being a tuple with as many dimensions as the array) are handled
in array_subscript_nice function which is what Python calls when presented
with the code
\begin_inset Quotes eld
\end_inset
a[obj].
\begin_inset Quotes erd
\end_inset
These optimizations allow fast single-integer indexing, and also ensure
that a 0-dimensional array is not created only to be discarded as the array
scalar is returned instead.
This provides significant speed-up for code that is selecting many scalars
out of an array (such as in a loop).
However, it is still not faster than simply using a list to store standard
Python scalars, because that is optimized by the Python interpreter itself.
\end_layout
\begin_layout Standard
After these optimizations, the array_subscript function itself is called.
This function first checks for field selection which occurs when a string
is passed as the indexing object.
Then, 0-d arrays are given special-case consideration.
Finally, the code determines whether or not advanced, or fancy, indexing
needs to be performed.
If fancy indexing is not needed, then standard view-based indexing is performed
using code borrowed from Numeric which parses the indexing object and returns
the offset into the data-buffer and the dimensions necessary to create
a new view of the array.
The strides are also changed by multiplying each stride by the step-size
requested along the corresponding dimension.
\end_layout
\begin_layout Subsection
Fancy-indexing check
\end_layout
\begin_layout Standard
The fancy_indexing_check routine determines whether or not to use standard
view-based indexing or new copy-based indexing.
If the indexing object is a tuple, then view-based indexing is assumed
by default.
Only if the tuple contains an array object or a sequence object is fancy-indexi
ng assumed.
If the indexing object is an array, then fancy indexing is automatically
assumed.
If the indexing object is any other kind of sequence, then fancy-indexing
is assumed by default.
This is over-ridden to simple indexing if the sequence contains any slice,
newaxis, or Ellipsis objects, and no arrays or additional sequences are
also contained in the sequence.
The purpose of this is to allow the construction of
\begin_inset Quotes eld
\end_inset
slicing
\begin_inset Quotes erd
\end_inset
sequences which is a common technique for building up code that works in
arbitrary numbers of dimensions.
\end_layout
\begin_layout Subsection
Fancy-indexing implementation
\end_layout
\begin_layout Standard
The concept of indexing was also abstracted using the idea of an iterator.
If fancy indexing is performed, then a PyArrayMapIterObject is created.
This internal object is not exposed to Python.
It is created in order to handle the fancy-indexing at a high-level.
Both get and set fancy-indexing operations are implemented using this object.
Fancy indexing is abstracted into three separate operations: (1) creating
the PyArrayMapIterObject from the indexing object, (2) binding the PyArrayMapIt
erObject to the array being indexed, and (3) getting (or setting) the items
determined by the indexing object.
There is an optimization implemented so that the PyArrayIterObject (which
has it's own less complicated fancy-indexing) is used for indexing when
possible.
\end_layout
\begin_layout Subsubsection
Creating the mapping object
\end_layout
\begin_layout Standard
The first step is to convert the indexing objects into a standard form where
iterators are created for all of the index array inputs and all Boolean
arrays are converted to equivalent integer index arrays (as if nonzero(arr)
had been called).
Finally, all integer arrays are replaced with the integer 0 in the indexing
object and all of the index-array iterators are
\begin_inset Quotes eld
\end_inset
broadcast
\begin_inset Quotes erd
\end_inset
to the same shape.
\end_layout
\begin_layout Subsubsection
Binding the mapping object
\end_layout
\begin_layout Standard
When the mapping object is created it does not know which array it will
be used with so once the index iterators are constructed during mapping-object
creation, the next step is to associate these iterators with a particular
ndarray.
This process interprets any ellipsis and slice objects so that the index
arrays are associated with the appropriate axis (the axis indicated by
the iteraxis entry corresponding to the iterator for the integer index
array).
This information is then used to check the indices to be sure they are
within range of the shape of the array being indexed.
The presence of ellipsis and/or slice objects implies a sub-space iteration
that is accomplished by extracting a sub-space view of the array (using
the index object resulting from replacing all the integer index arrays
with 0) and storing the information about where this sub-space starts in
the mapping object.
This is used later during mapping-object iteration to select the correct
elements from the underlying array.
\end_layout
\begin_layout Subsubsection
Getting (or Setting)
\end_layout
\begin_layout Standard
After the mapping object is successfully bound to a particular array, the
mapping object contains the shape of the resulting item as well as iterator
objects that will walk through the currently-bound array and either get
or set its elements as needed.
The walk is implemented using the PyArray_MapIterNext function.
This function sets the coordinates of an iterator object into the current
array to be the next coordinate location indicated by all of the indexing-objec
t iterators while adjusting, if necessary, for the presence of a sub-space.
The result of this function is that the dataptr member of the mapping object
structure is pointed to the next position in the array that needs to be
copied out or set to some value.
\end_layout
\begin_layout Standard
When advanced indexing is used to extract an array, an iterator for the
new array is constructed and advanced in phase with the mapping object
iterator.
When advanced indexing is used to place values in an array, a special
\begin_inset Quotes eld
\end_inset
broadcasted
\begin_inset Quotes erd
\end_inset
iterator is constructed from the object being placed into the array so
that it will only work if the values used for setting have a shape that
is
\begin_inset Quotes eld
\end_inset
broadcastable
\begin_inset Quotes erd
\end_inset
to the shape implied by the indexing object.
\end_layout
\begin_layout Section
Universal Functions
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc|("
\end_inset
Universal functions are callable objects that take
\begin_inset Formula $N$
\end_inset
inputs and produce
\begin_inset Formula $M$
\end_inset
outputs by wrapping basic 1-d loops that work element-by-element into full
easy-to use functions that seamlessly implement broadcasting, type-checking
and buffered coercion, and output-argument handling.
New universal functions are normally created in C, although there is a
mechanism for creating ufuncs from Python functions (
\series bold
frompyfunc
\series default
).
The user must supply a 1-d loop that implements the basic function taking
the input scalar values and placing the resulting scalars into the appropriate
output slots as explaine n implementation.
\end_layout
\begin_layout Subsection
Setup
\end_layout
\begin_layout Standard
Every ufunc calculation involves some overhead related to setting up the
calculation.
The practical significance of this overhead is that even though the actual
calculation of the ufunc is very fast, you will be able to write array
and type-specific code that will work faster for small arrays than the
ufunc.
In particular, using ufuncs to perform many calculations on 0-d arrays
will be slower than other Python-based solutions (the silently-imported
scalarmath module exists precisely to give array scalars the look-and-feel
of ufunc-based calculations with significantly reduced overhead).
\end_layout
\begin_layout Standard
When a ufunc is called, many things must be done.
The information collected from these setup operations is stored in a loop-objec
t.
This loop object is a C-structure (that could become a Python object but
is not initialized as such because it is only used internally).
This loop object has the layout needed to be used with PyArray_Broadcast
so that the broadcasting can be handled in the same way as it is handled
in other sections of code.
\end_layout
\begin_layout Standard
The first thing done is to look-up in the thread-specific global dictionary
the current values for the buffer-size, the error mask, and the associated
error object.
The state of the error mask controls what happens when an error-condiction
is found.
It should be noted that checking of the hardware error flags is only performed
after each 1-d loop is executed.
This means that if the input and output arrays are contiguous and of the
correct type so that a single 1-d loop is performed, then the flags may
not be checked until all elements of the array have been calcluated.
Looking up these values in a thread-specific dictionary takes time which
is easily ignored for all but very small arrays.
\end_layout
\begin_layout Standard
After checking, the thread-specific global variables, the inputs are evaluated
to determine how the ufunc should proceed and the input and output arrays
are constructed if necessary.
Any inputs which are not arrays are converted to arrays (using context
if necessary).
Which of the inputs are scalars (and therefore converted to 0-d arrays)
is noted.
\end_layout
\begin_layout Standard
Next, an appropriate 1-d loop is selected from the 1-d loops available to
the ufunc based on the input array types.
This 1-d loop is selected by trying to match the signature of the data-types
of the inputs against the available signatures.
The signatures corresponding to built-in types are stored in the types
member of the ufunc structure.
The signatures corresponding to user-defined types are stored in a linked-list
of function-information with the head element stored as a
\family typewriter
CObject
\family default
in the userloops dictionary keyed by the data-type number (the first user-defin
ed type in the argument list is used as the key).
The signatures are searched until a signature is found to which the input
arrays can all be cast safely (ignoring any scalar arguments which are
not allowed to determine the type of the result).
The implication of this search procedure is that
\begin_inset Quotes eld
\end_inset
lesser types
\begin_inset Quotes erd
\end_inset
should be placed below
\begin_inset Quotes eld
\end_inset
larger types
\begin_inset Quotes erd
\end_inset
when the signatures are stored.
If no 1-d loop is found, then an error is reported.
Otherwise, the argument_list is updated with the stored signature --- in
case casting is necessary and to fix the output types assumed by the 1-d
loop.
\end_layout
\begin_layout Standard
If the ufunc has 2 inputs and 1 output and the second input is an Object
array then a special-case check is performed so that NotImplemented is
returned if the second input is not an ndarray, has the __array_priority__
attribute, and has an __r<op>__ special method.
In this way, Python is signaled to give the other object a chance to complete
the operation instead of using generic object-array calculations.
This allows (for example) sparse matrices to override the multiplication
operator 1-d loop.
\end_layout
\begin_layout Standard
For input arrays that are smaller than the specified buffer size, copies
are made of all non-contiguous, mis-aligned, or out-of-byteorder arrays
to ensure that for small arrays, a single-loop is used.
Then, array iterators are created for all the input arrays and the resulting
collection of iterators is broadcast to a single shape.
\end_layout
\begin_layout Standard
The output arguments (if any) are then processed and any missing return
arrays are constructed.
If any provided output array doesn't have the correct type (or is mis-aligned)
and is smaller than the buffer size, then a new output array is constructed
with the special UPDATEIFCOPY flag set so that when it is DECREF'd on completio
n of the function, it's contents will be copied back into the output array.
Iterators for the output arguments are then processed.
\end_layout
\begin_layout Standard
Finally, the decision is made about how to execute the looping mechanism
to ensure that all elements of the input arrays are combined to produce
the output arrays of the correct type.
The options for loop execution are one-loop (for contiguous, aligned, and
correct data-type), strided-loop (for non-contiguous but still aligned
and correct data-type), and a buffered loop (for mis-aligned or incorrect
data-type situations).
Depending on which execution method is called for, the loop is then setup
and computed.
\end_layout
\begin_layout Subsection
Function call
\end_layout
\begin_layout Standard
This section describes how the basic universal function computation loop
is setup and executed for each of the three different kinds of execution
possibilities.
If NPY_ALLOW_THREADS is defined during compilation, then the Python Global
Interpreter Lock (GIL) is released prior to calling all of these loops
(as long as they don't involve object arrays).
It is re-acquired if necessary to handle error conditions.
The hardware error flags are checked only after the 1-d loop is calcluated.
\end_layout
\begin_layout Subsubsection
One Loop
\end_layout
\begin_layout Standard
This is the simplest case of all.
The ufunc is executed by calling the underlying 1-d loop exactly once.
This is possible only when we have aligned data of the correct type (including
byte-order) for both input and output and all arrays have uniform strides
(either contiguous, 0-d, or 1-d).
In this case, the 1-d computational loop is called once to compute the
calculation for the entire array.
Note that the hardware error flags are only checked after the entire calculatio
n is complete.
\end_layout
\begin_layout Subsubsection
Strided Loop
\end_layout
\begin_layout Standard
When the input and output arrays are aligned and of the correct type, but
the striding is not uniform (non-contiguous and 2-d or larger), then a
second looping structure is employed for the calculation.
This approach converts all of the iterators for the input and output arguments
to iterate over all but the largest dimension.
The inner loop is then handled by the underlying 1-d computational loop.
The outer loop is a standard iterator loop on the converted iterators.
The hardware error flags are checked after each 1-d loop is completed.
\end_layout
\begin_layout Subsubsection
Buffered Loop
\end_layout
\begin_layout Standard
This is the code that handles the situation whenever the input and/or output
arrays are either misaligned or of the wrong data-type (including being
byte-swapped) from what the underlying 1-d loop expects.
The arrays are also assumed to be non-contiguous.
The code works very much like the strided loop except for the inner 1-d
loop is modified so that pre-processing is performed on the inputs and
post-processing is performed on the outputs in bufsize chunks (where bufsize
is a user-settable parameter).
The underlying 1-d computational loop is called on data that is copied
over (if it needs to be).
The setup code and the loop code is considerably more complicated in this
case because it has to handle:
\end_layout
\begin_layout Itemize
memory allocation of the temporary buffers
\end_layout
\begin_layout Itemize
deciding whether or not to use buffers on the input and output data (mis-aligned
and/or wrong data-type)
\end_layout
\begin_layout Itemize
copying and possibly casting data for any inputs or outputs for which buffers
are necessary.
\end_layout
\begin_layout Itemize
special-casing Object arrays so that reference counts are properly handled
when copies and/or casts are necessary.
\end_layout
\begin_layout Itemize
breaking up the inner 1-d loop into bufsize chunks (with a possible remainder).
\end_layout
\begin_layout Standard
Again, the hardware error flags are checked at the end of each 1-d loop.
\end_layout
\begin_layout Subsection
Final output manipulation
\end_layout
\begin_layout Standard
Ufuncs allow other array-like classes to be passed seamlessly through the
interface in that inputs of a particular class will induce the outputs
to be of that same class.
The mechanism by which this works is the following.
If any of the inputs are not ndarrays and define the
\series bold
__array_wrap__
\series default
method, then the class with the largest
\series bold
__array_priority__
\series default
attribute determines the type of all the outputs (with the exception of
any output arrays passed in).
The
\series bold
__array_wrap__
\series default
method of the input array will be called with the ndarray being returned
from the ufunc as it's input.
There are two calling styles of the
\series bold
__array_wrap__
\series default
function supported.
The first takes the ndarray as the first argument and a tuple of
\begin_inset Quotes eld
\end_inset
context
\begin_inset Quotes erd
\end_inset
as the second argument.
The context is (ufunc, arguments, output argument number).
This is the first call tried.
If a TypeError occurs, then the function is called with just the ndarray
as the first argument.
\end_layout
\begin_layout Subsection
Methods
\end_layout
\begin_layout Standard
Their are three methods of ufuncs that require calculation similar to the
general-purpose ufuncs.
These are reduce, accumulate, and reduceat.
Each of these methods requires a setup command followed by a loop.
There are four loop styles possible for the methods corresponding to no-element
s, one-element, strided-loop, and buffered-loop.
These are the same basic loop styles as implemented for the general purpose
function call except for the no-element and one-element cases which are
special-cases occurring when the input array objects have 0 and 1 elements
respectively.
\end_layout
\begin_layout Subsubsection
Setup
\end_layout
\begin_layout Standard
The setup function for all three methods is
\family typewriter
construct_reduce
\family default
.
This function creates a reducing loop object and fills it with parameters
needed to complete the loop.
All of the methods only work on ufuncs that take 2-inputs and return 1
output.
Therefore, the underlying 1-d loop is selected assuming a signature of
[
\family typewriter
otype
\family default
,
\family typewriter
otype
\family default
,
\family typewriter
otype
\family default
] where
\family typewriter
otype
\family default
is the requested reduction data-type.
The buffer size and error handling is then retrieved from (per-thread)
global storage.
For small arrays that are mis-aligned or have incorrect data-type, a copy
is made so that the un-buffered section of code is used.
Then, the looping strategy is selected.
If there is 1 element or 0 elements in the array, then a simple looping
method is selected.
If the array is not mis-aligned and has the correct data-type, then strided
looping is selected.
Otherwise, buffered looping must be performed.
Looping parameters are then established, and the return array is constructed.
The output array is of a different shape depending on whether the method
is reduce, accumulate, or reduceat.
If an output array is already provided, then it's shape is checked.
If the output array is not C-contiguous, aligned, and of the correct data
type, then a temporary copy is made with the UPDATEIFCOPY flag set.
In this way, the methods will be able to work with a well-behaved output
array but the result will be copied back into the true output array when
the method computation is complete.
Finally, iterators are set up to loop over the correct axis (depending
on the value of axis provided to the method) and the setup routine returns
to the actual computation routine.
\end_layout
\begin_layout Subsubsection
Reduce
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!methods!reduce"
\end_inset
All of the ufunc methods use the same underlying 1-d computational loops
with input and output arguments adjusted so that the appropriate reduction
takes place.
For example, the key to the functioning of reduce is that the 1-d loop
is called with the output and the second input pointing to the same position
in memory and both having a step-size of 0.
The first input is pointing to the input array with a step-size given by
the appropriate stride for the selected axis.
In this way, the operation performed is
\begin_inset Formula \begin{eqnarray*}
o & = & i[0]\\
o & = & i[k]\textrm{ <op> }o\quad k=1\ldots N\end{eqnarray*}
\end_inset
where
\begin_inset Formula $N+1$
\end_inset
is the number of elements in the input,
\begin_inset Formula $i$
\end_inset
,
\begin_inset Formula $o$
\end_inset
is the output, and
\begin_inset Formula $i[k]$
\end_inset
is the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
element of
\begin_inset Formula $i$
\end_inset
along the selected axis.
This basic operations is repeated for arrays with greater than 1 dimension
so that the reduction takes place for every 1-d sub-array along the selected
axis.
An iterator with the selected dimension removed handles this looping.
\end_layout
\begin_layout Standard
For buffered loops, care must be taken to copy and cast data before the
loop function is called because the underlying loop expects aligned data
of the correct data-type (including byte-order).
The buffered loop must handle this copying and casting prior to calling
the loop function on chunks no greater than the user-specified bufsize.
\end_layout
\begin_layout Subsubsection
Accumulate
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!methods!accumulate"
\end_inset
The accumulate function is very similar to the reduce function in that the
output and the second input both point to the output.
The difference is that the second input points to memory one stride behind
the current output pointer.
Thus, the operation performed is
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray*}
o[0] & = & i[0]\\
o[k] & = & i[k]\textrm{ <op> }o[k-1]\quad k=1\ldots N.\end{eqnarray*}
\end_inset
The output has the same shape as the input and each 1-d loop operates over
\begin_inset Formula $N$
\end_inset
elements when the shape in the selected axis is
\begin_inset Formula $N+1$
\end_inset
.
Again, buffered loops take care to copy and cast the data before calling
the underlying 1-d computational loop.
\end_layout
\begin_layout Subsubsection
Reduceat
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!methods!reduceat"
\end_inset
The reduceat function is a generalization of both the reduce and accumulate
functions.
It implements a reduce over ranges of the input array specified by indices.
The extra indices argument is checked to be sure that every input is not
too large for the input array along the selected dimension before the loop
calculations take place.
The loop implementation is handled using code that is very similar to the
reduce code repeated as many times as there are elements in the indices
input.
In particular: the first input pointer passed to the underlying 1-d computation
al loop points to the input array at the correct location indicated by the
index array.
In addition, the output pointer and the second input pointer passed to
the underlying 1-d loop point to the same position in memory.
The size of the 1-d computational loop is fixed to be the difference between
the current index and the next index (when the current index is the last
index, then the next index is assumed to be the length of the array along
the selected dimension).
In this way, the 1-d loop will implement a reduce over the specified indices.
\end_layout
\begin_layout Standard
Mis-aligned or a loop data-type that does not match the input and/or output
data-type is handled using buffered code where-in data is copied to a temporary
buffer and cast to the correct data-type if necessary prior to calling
the underlying 1-d function.
The temporary buffers are created in (element) sizes no bigger than the
user settable buffer-size value.
Thus, the loop must be flexible enough to call the underlying 1-d computational
loop enough times to complete the total calculation in chunks no bigger
than the buffer-size.
\begin_inset LatexCommand index
name "ufunc|)"
\end_inset
\end_layout
\end_body
\end_document
|