1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
"""A collection of functions designed to help I/O with ascii files."""
__docformat__ = "restructuredtext en"
import numpy as np
import numpy.core.numeric as nx
from __builtin__ import bool, int, long, float, complex, object, unicode, str
def _is_string_like(obj):
"""
Check whether obj behaves like a string.
"""
try:
obj + ''
except (TypeError, ValueError):
return False
return True
def _to_filehandle(fname, flag='r', return_opened=False):
"""
Returns the filehandle corresponding to a string or a file.
If the string ends in '.gz', the file is automatically unzipped.
Parameters
----------
fname : string, filehandle
Name of the file whose filehandle must be returned.
flag : string, optional
Flag indicating the status of the file ('r' for read, 'w' for write).
return_opened : boolean, optional
Whether to return the opening status of the file.
"""
if _is_string_like(fname):
if fname.endswith('.gz'):
import gzip
fhd = gzip.open(fname, flag)
elif fname.endswith('.bz2'):
import bz2
fhd = bz2.BZ2File(fname)
else:
fhd = file(fname, flag)
opened = True
elif hasattr(fname, 'seek'):
fhd = fname
opened = False
else:
raise ValueError('fname must be a string or file handle')
if return_opened:
return fhd, opened
return fhd
def has_nested_fields(ndtype):
"""
Returns whether one or several fields of a dtype are nested.
Parameters
----------
ndtype : dtype
Data-type of a structured array.
Raises
------
AttributeError : If `ndtype` does not have a `names` attribute.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)])
>>> np.lib._iotools.has_nested_fields(dt)
False
"""
for name in ndtype.names or ():
if ndtype[name].names:
return True
return False
def flatten_dtype(ndtype, flatten_base=False):
"""
Unpack a structured data-type by collapsing nested fields and/or fields
with a shape.
Note that the field names are lost.
Parameters
----------
ndtype : dtype
The datatype to collapse
flatten_base : {False, True}, optional
Whether to transform a field with a shape into several fields or not.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
... ('block', int, (2, 3))])
>>> np.lib._iotools.flatten_dtype(dt)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
dtype('int32')]
"""
names = ndtype.names
if names is None:
if flatten_base:
return [ndtype.base] * int(np.prod(ndtype.shape))
return [ndtype.base]
else:
types = []
for field in names:
(typ, _) = ndtype.fields[field]
flat_dt = flatten_dtype(typ, flatten_base)
types.extend(flat_dt)
return types
class LineSplitter:
"""
Object to split a string at a given delimiter or at given places.
Parameters
----------
delimiter : str, int, or sequence of ints, optional
If a string, character used to delimit consecutive fields.
If an integer or a sequence of integers, width(s) of each field.
comment : str, optional
Character used to mark the beginning of a comment. Default is '#'.
autostrip : bool, optional
Whether to strip each individual field. Default is True.
"""
def autostrip(self, method):
"""
Wrapper to strip each member of the output of `method`.
Parameters
----------
method : function
Function that takes a single argument and returns a sequence of
strings.
Returns
-------
wrapped : function
The result of wrapping `method`. `wrapped` takes a single input
argument and returns a list of strings that are stripped of
white-space.
"""
return lambda input: [_.strip() for _ in method(input)]
#
def __init__(self, delimiter=None, comments='#', autostrip=True):
self.comments = comments
# Delimiter is a character
if (delimiter is None) or _is_string_like(delimiter):
delimiter = delimiter or None
_handyman = self._delimited_splitter
# Delimiter is a list of field widths
elif hasattr(delimiter, '__iter__'):
_handyman = self._variablewidth_splitter
idx = np.cumsum([0]+list(delimiter))
delimiter = [slice(i,j) for (i,j) in zip(idx[:-1], idx[1:])]
# Delimiter is a single integer
elif int(delimiter):
(_handyman, delimiter) = (self._fixedwidth_splitter, int(delimiter))
else:
(_handyman, delimiter) = (self._delimited_splitter, None)
self.delimiter = delimiter
if autostrip:
self._handyman = self.autostrip(_handyman)
else:
self._handyman = _handyman
#
def _delimited_splitter(self, line):
line = line.split(self.comments)[0].strip()
if not line:
return []
return line.split(self.delimiter)
#
def _fixedwidth_splitter(self, line):
line = line.split(self.comments)[0]
if not line:
return []
fixed = self.delimiter
slices = [slice(i, i+fixed) for i in range(len(line))[::fixed]]
return [line[s] for s in slices]
#
def _variablewidth_splitter(self, line):
line = line.split(self.comments)[0]
if not line:
return []
slices = self.delimiter
return [line[s] for s in slices]
#
def __call__(self, line):
return self._handyman(line)
class NameValidator:
"""
Object to validate a list of strings to use as field names.
The strings are stripped of any non alphanumeric character, and spaces
are replaced by '_'. During instantiation, the user can define a list of
names to exclude, as well as a list of invalid characters. Names in the
exclusion list are appended a '_' character.
Once an instance has been created, it can be called with a list of names,
and a list of valid names will be created.
The `__call__` method accepts an optional keyword "default" that sets
the default name in case of ambiguity. By default this is 'f', so
that names will default to `f0`, `f1`, etc.
Parameters
----------
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default list
['return', 'file', 'print']. Excluded names are appended an underscore:
for example, `file` becomes `file_` if supplied.
deletechars : str, optional
A string combining invalid characters that must be deleted from the
names.
casesensitive : {True, False, 'upper', 'lower'}, optional
* If True, field names are case-sensitive.
* If False or 'upper', field names are converted to upper case.
* If 'lower', field names are converted to lower case.
The default value is True.
Notes
-----
Calling an instance of `NameValidator` is the same as calling its method
`validate`.
Examples
--------
>>> validator = np.lib._iotools.NameValidator()
>>> validator(['file', 'field2', 'with space', 'CaSe'])
['file_', 'field2', 'with_space', 'CaSe']
>>> validator = np.lib._iotools.NameValidator(excludelist=['excl'],
deletechars='q',
case_sensitive='False')
>>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe'])
['excl_', 'field2', 'no_', 'with_space', 'case']
"""
#
defaultexcludelist = ['return','file','print']
defaultdeletechars = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""")
#
def __init__(self, excludelist=None, deletechars=None, case_sensitive=None):
#
if excludelist is None:
excludelist = []
excludelist.extend(self.defaultexcludelist)
self.excludelist = excludelist
#
if deletechars is None:
delete = self.defaultdeletechars
else:
delete = set(deletechars)
delete.add('"')
self.deletechars = delete
if (case_sensitive is None) or (case_sensitive is True):
self.case_converter = lambda x: x
elif (case_sensitive is False) or ('u' in case_sensitive):
self.case_converter = lambda x: x.upper()
elif 'l' in case_sensitive:
self.case_converter = lambda x: x.lower()
else:
self.case_converter = lambda x: x
#
def validate(self, names, default='f'):
"""
Validate a list of strings to use as field names for a structured array.
Parameters
----------
names : list of str
The strings that are to be validated.
default : str, optional
The default field name, used if validating a given string reduces its
length to zero.
Returns
-------
validatednames : list of str
The list of validated field names.
Notes
-----
A `NameValidator` instance can be called directly, which is the same as
calling `validate`. For examples, see `NameValidator`.
"""
#
if names is None:
return
#
validatednames = []
seen = dict()
#
deletechars = self.deletechars
excludelist = self.excludelist
#
case_converter = self.case_converter
#
for i, item in enumerate(names):
item = case_converter(item)
item = item.strip().replace(' ', '_')
item = ''.join([c for c in item if c not in deletechars])
if not len(item):
item = '%s%d' % (default, i)
elif item in excludelist:
item += '_'
cnt = seen.get(item, 0)
if cnt > 0:
validatednames.append(item + '_%d' % cnt)
else:
validatednames.append(item)
seen[item] = cnt+1
return validatednames
#
def __call__(self, names, default='f'):
return self.validate(names, default)
def str2bool(value):
"""
Tries to transform a string supposed to represent a boolean to a boolean.
Parameters
----------
value : str
The string that is transformed to a boolean.
Returns
-------
boolval : bool
The boolean representation of `value`.
Raises
------
ValueError
If the string is not 'True' or 'False' (case independent)
Examples
--------
>>> np.lib._iotools.str2bool('TRUE')
True
>>> np.lib._iotools.str2bool('false')
False
"""
value = value.upper()
if value == 'TRUE':
return True
elif value == 'FALSE':
return False
else:
raise ValueError("Invalid boolean")
class StringConverter:
"""
Factory class for function transforming a string into another object (int,
float).
After initialization, an instance can be called to transform a string
into another object. If the string is recognized as representing a missing
value, a default value is returned.
Attributes
----------
func : function
Function used for the conversion.
default : any
Default value to return when the input corresponds to a missing value.
type : type
Type of the output.
_status : int
Integer representing the order of the conversion.
_mapper : sequence of tuples
Sequence of tuples (dtype, function, default value) to evaluate in
order.
_locked : bool
Holds `locked` parameter.
Parameters
----------
dtype_or_func : {None, dtype, function}, optional
If a `dtype`, specifies the input data type, used to define a basic
function and a default value for missing data. For example, when
`dtype` is float, the `func` attribute is set to `float` and the
default value to `np.nan`.
If a function, this function is used to convert a string to another
object. In this case, it is recommended to give an associated default
value as input.
default : any, optional
Value to return by default, that is, when the string to be converted
is flagged as missing. If not given, `StringConverter` tries to supply
a reasonable default value.
missing_values : sequence of str, optional
Sequence of strings indicating a missing value.
locked : bool, optional
Whether the StringConverter should be locked to prevent automatic
upgrade or not. Default is False.
"""
#
_mapper = [(nx.bool_, str2bool, False),
(nx.integer, int, -1),
(nx.floating, float, nx.nan),
(complex, complex, nx.nan+0j),
(nx.string_, str, '???')]
(_defaulttype, _defaultfunc, _defaultfill) = zip(*_mapper)
#
@classmethod
def _getsubdtype(cls, val):
"""Returns the type of the dtype of the input variable."""
return np.array(val).dtype.type
#
@classmethod
def upgrade_mapper(cls, func, default=None):
"""
Upgrade the mapper of a StringConverter by adding a new function and its
corresponding default.
The input function (or sequence of functions) and its associated default
value (if any) is inserted in penultimate position of the mapper.
The corresponding type is estimated from the dtype of the default value.
Parameters
----------
func : var
Function, or sequence of functions
Examples
--------
>>> import dateutil.parser
>>> import datetime
>>> dateparser = datetutil.parser.parse
>>> defaultdate = datetime.date(2000, 1, 1)
>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate)
"""
# Func is a single functions
if hasattr(func, '__call__'):
cls._mapper.insert(-1, (cls._getsubdtype(default), func, default))
return
elif hasattr(func, '__iter__'):
if isinstance(func[0], (tuple, list)):
for _ in func:
cls._mapper.insert(-1, _)
return
if default is None:
default = [None] * len(func)
else:
default = list(default)
default.append([None] * (len(func)-len(default)))
for (fct, dft) in zip(func, default):
cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft))
#
def __init__(self, dtype_or_func=None, default=None, missing_values=None,
locked=False):
# Defines a lock for upgrade
self._locked = bool(locked)
# No input dtype: minimal initialization
if dtype_or_func is None:
self.func = str2bool
self._status = 0
self.default = default or False
ttype = np.bool
else:
# Is the input a np.dtype ?
try:
self.func = None
ttype = np.dtype(dtype_or_func).type
except TypeError:
# dtype_or_func must be a function, then
if not hasattr(dtype_or_func, '__call__'):
errmsg = "The input argument `dtype` is neither a function"\
" or a dtype (got '%s' instead)"
raise TypeError(errmsg % type(dtype_or_func))
# Set the function
self.func = dtype_or_func
# If we don't have a default, try to guess it or set it to None
if default is None:
try:
default = self.func('0')
except ValueError:
default = None
ttype = self._getsubdtype(default)
# Set the status according to the dtype
_status = -1
for (i, (deftype, func, default_def)) in enumerate(self._mapper):
if np.issubdtype(ttype, deftype):
_status = i
self.default = default or default_def
break
if _status == -1:
# We never found a match in the _mapper...
_status = 0
self.default = default
self._status = _status
# If the input was a dtype, set the function to the last we saw
if self.func is None:
self.func = func
# If the status is 1 (int), change the function to smthg more robust
if self.func == self._mapper[1][1]:
self.func = lambda x : int(float(x))
# Store the list of strings corresponding to missing values.
if missing_values is None:
self.missing_values = set([''])
else:
self.missing_values = set(list(missing_values) + [''])
#
self._callingfunction = self._strict_call
self.type = ttype
self._checked = False
#
def _loose_call(self, value):
try:
return self.func(value)
except ValueError:
return self.default
#
def _strict_call(self, value):
try:
return self.func(value)
except ValueError:
if value.strip() in self.missing_values:
if not self._status:
self._checked = False
return self.default
raise ValueError("Cannot convert string '%s'" % value)
#
def __call__(self, value):
return self._callingfunction(value)
#
def upgrade(self, value):
"""
Try to find the best converter for a given string, and return the result.
The supplied string `value` is converted by testing different
converters in order. First the `func` method of the `StringConverter`
instance is tried, if this fails other available converters are tried.
The order in which these other converters are tried is determined by the
`_status` attribute of the instance.
Parameters
----------
value : str
The string to convert.
Returns
-------
out : any
The result of converting `value` with the appropriate converter.
"""
self._checked = True
try:
self._strict_call(value)
except ValueError:
# Raise an exception if we locked the converter...
if self._locked:
raise ValueError("Converter is locked and cannot be upgraded")
_statusmax = len(self._mapper)
# Complains if we try to upgrade by the maximum
if self._status == _statusmax:
raise ValueError("Could not find a valid conversion function")
elif self._status < _statusmax - 1:
self._status += 1
(self.type, self.func, self.default) = self._mapper[self._status]
self.upgrade(value)
#
def update(self, func, default=None, missing_values='', locked=False):
"""
Set StringConverter attributes directly.
Parameters
----------
func : function
Conversion function.
default : any, optional
Value to return by default, that is, when the string to be converted
is flagged as missing. If not given, `StringConverter` tries to supply
a reasonable default value.
missing_values : sequence of str, optional
Sequence of strings indicating a missing value.
locked : bool, optional
Whether the StringConverter should be locked to prevent automatic
upgrade or not. Default is False.
Notes
-----
`update` takes the same parameters as the constructor of `StringConverter`,
except that `func` does not accept a `dtype` whereas `dtype_or_func` in
the constructor does.
"""
self.func = func
self._locked = locked
# Don't reset the default to None if we can avoid it
if default is not None:
self.default = default
self.type = self._getsubdtype(default)
else:
try:
tester = func('0')
except (TypeError, ValueError):
tester = None
self.type = self._getsubdtype(tester)
# Add the missing values to the existing set
if missing_values is not None:
if _is_string_like(missing_values):
self.missing_values.add(missing_values)
elif hasattr(missing_values, '__iter__'):
for val in missing_values:
self.missing_values.add(val)
else:
self.missing_values = []
|