1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
"""
A collection of functions designed to help I/O with ascii file.
"""
__docformat__ = "restructuredtext en"
import numpy as np
import numpy.core.numeric as nx
from __builtin__ import bool, int, long, float, complex, object, unicode, str
def _is_string_like(obj):
"""
Check whether obj behaves like a string.
"""
try:
obj + ''
except (TypeError, ValueError):
return False
return True
def _to_filehandle(fname, flag='r', return_opened=False):
"""
Returns the filehandle corresponding to a string or a file.
If the string ends in '.gz', the file is automatically unzipped.
Parameters
----------
fname : string, filehandle
Name of the file whose filehandle must be returned.
flag : string, optional
Flag indicating the status of the file ('r' for read, 'w' for write).
return_opened : boolean, optional
Whether to return the opening status of the file.
"""
if _is_string_like(fname):
if fname.endswith('.gz'):
import gzip
fhd = gzip.open(fname, flag)
elif fname.endswith('.bz2'):
import bz2
fhd = bz2.BZ2File(fname)
else:
fhd = file(fname, flag)
opened = True
elif hasattr(fname, 'seek'):
fhd = fname
opened = False
else:
raise ValueError('fname must be a string or file handle')
if return_opened:
return fhd, opened
return fhd
def has_nested_fields(ndtype):
"""
Returns whether one or several fields of a structured array are nested.
"""
for name in ndtype.names or ():
if ndtype[name].names:
return True
return False
def flatten_dtype(ndtype, flatten_base=False):
"""
Unpack a structured data-type by collapsing nested fields and/or fields with
a shape.
Note that the field names are lost.
Parameters
----------
ndtype : dtype
The datatype to collapse
flatten_base : {False, True}, optional
Whether to transform a field with a shape into several fields or not.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
... ('block', int, (2, 3))])
>>> flatten_dtype(dt)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype(('int32',(2, 3)))]
>>> flatten_dtype(dt, flatten_base=True)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
dtype('int32')]
"""
names = ndtype.names
if names is None:
if flatten_base:
return [ndtype.base] * int(np.prod(ndtype.shape))
return [ndtype.base]
else:
types = []
for field in names:
(typ, _) = ndtype.fields[field]
flat_dt = flatten_dtype(typ, flatten_base)
types.extend(flat_dt)
return types
class LineSplitter:
"""
Defines a function to split a string at a given delimiter or at given places.
Parameters
----------
comment : {'#', string}
Character used to mark the beginning of a comment.
delimiter : var, optional
If a string, character used to delimit consecutive fields.
If an integer or a sequence of integers, width(s) of each field.
autostrip : boolean, optional
Whether to strip each individual fields
"""
def autostrip(self, method):
"Wrapper to strip each member of the output of `method`."
return lambda input: [_.strip() for _ in method(input)]
#
def __init__(self, delimiter=None, comments='#', autostrip=True):
self.comments = comments
# Delimiter is a character
if (delimiter is None) or _is_string_like(delimiter):
delimiter = delimiter or None
_handyman = self._delimited_splitter
# Delimiter is a list of field widths
elif hasattr(delimiter, '__iter__'):
_handyman = self._variablewidth_splitter
idx = np.cumsum([0]+list(delimiter))
delimiter = [slice(i,j) for (i,j) in zip(idx[:-1], idx[1:])]
# Delimiter is a single integer
elif int(delimiter):
(_handyman, delimiter) = (self._fixedwidth_splitter, int(delimiter))
else:
(_handyman, delimiter) = (self._delimited_splitter, None)
self.delimiter = delimiter
if autostrip:
self._handyman = self.autostrip(_handyman)
else:
self._handyman = _handyman
#
def _delimited_splitter(self, line):
line = line.split(self.comments)[0].strip()
if not line:
return []
return line.split(self.delimiter)
#
def _fixedwidth_splitter(self, line):
line = line.split(self.comments)[0]
if not line:
return []
fixed = self.delimiter
slices = [slice(i, i+fixed) for i in range(len(line))[::fixed]]
return [line[s] for s in slices]
#
def _variablewidth_splitter(self, line):
line = line.split(self.comments)[0]
if not line:
return []
slices = self.delimiter
return [line[s] for s in slices]
#
def __call__(self, line):
return self._handyman(line)
class NameValidator:
"""
Validates a list of strings to use as field names.
The strings are stripped of any non alphanumeric character, and spaces
are replaced by `_`. If the optional input parameter `case_sensitive`
is False, the strings are set to upper case.
During instantiation, the user can define a list of names to exclude, as
well as a list of invalid characters. Names in the exclusion list
are appended a '_' character.
Once an instance has been created, it can be called with a list of names
and a list of valid names will be created.
The `__call__` method accepts an optional keyword, `default`, that sets
the default name in case of ambiguity. By default, `default = 'f'`, so
that names will default to `f0`, `f1`
Parameters
----------
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default list
['return','file','print']. Excluded names are appended an underscore:
for example, `file` would become `file_`.
deletechars : string, optional
A string combining invalid characters that must be deleted from the names.
casesensitive : {True, False, 'upper', 'lower'}, optional
If True, field names are case_sensitive.
If False or 'upper', field names are converted to upper case.
If 'lower', field names are converted to lower case.
"""
#
defaultexcludelist = ['return','file','print']
defaultdeletechars = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""")
#
def __init__(self, excludelist=None, deletechars=None, case_sensitive=None):
#
if excludelist is None:
excludelist = []
excludelist.extend(self.defaultexcludelist)
self.excludelist = excludelist
#
if deletechars is None:
delete = self.defaultdeletechars
else:
delete = set(deletechars)
delete.add('"')
self.deletechars = delete
if (case_sensitive is None) or (case_sensitive is True):
self.case_converter = lambda x: x
elif (case_sensitive is False) or ('u' in case_sensitive):
self.case_converter = lambda x: x.upper()
elif 'l' in case_sensitive:
self.case_converter = lambda x: x.lower()
else:
self.case_converter = lambda x: x
#
def validate(self, names, default='f'):
#
if names is None:
return
#
validatednames = []
seen = dict()
#
deletechars = self.deletechars
excludelist = self.excludelist
#
case_converter = self.case_converter
#
for i, item in enumerate(names):
item = case_converter(item)
item = item.strip().replace(' ', '_')
item = ''.join([c for c in item if c not in deletechars])
if not len(item):
item = '%s%d' % (default, i)
elif item in excludelist:
item += '_'
cnt = seen.get(item, 0)
if cnt > 0:
validatednames.append(item + '_%d' % cnt)
else:
validatednames.append(item)
seen[item] = cnt+1
return validatednames
#
def __call__(self, names, default='f'):
return self.validate(names, default)
def str2bool(value):
"""
Tries to transform a string supposed to represent a boolean to a boolean.
Raises
------
ValueError
If the string is not 'True' or 'False' (case independent)
"""
value = value.upper()
if value == 'TRUE':
return True
elif value == 'FALSE':
return False
else:
raise ValueError("Invalid boolean")
class StringConverter:
"""
Factory class for function transforming a string into another object (int,
float).
After initialization, an instance can be called to transform a string
into another object. If the string is recognized as representing a missing
value, a default value is returned.
Parameters
----------
dtype_or_func : {None, dtype, function}, optional
Input data type, used to define a basic function and a default value
for missing data. For example, when `dtype` is float, the :attr:`func`
attribute is set to ``float`` and the default value to `np.nan`.
Alternatively, function used to convert a string to another object.
In that later case, it is recommended to give an associated default
value as input.
default : {None, var}, optional
Value to return by default, that is, when the string to be converted
is flagged as missing.
missing_values : {sequence}, optional
Sequence of strings indicating a missing value.
locked : {boolean}, optional
Whether the StringConverter should be locked to prevent automatic
upgrade or not.
Attributes
----------
func : function
Function used for the conversion
default : var
Default value to return when the input corresponds to a missing value.
type : type
Type of the output.
_status : integer
Integer representing the order of the conversion.
_mapper : sequence of tuples
Sequence of tuples (dtype, function, default value) to evaluate in order.
_locked : boolean
Whether the StringConverter is locked, thereby preventing automatic any
upgrade or not.
"""
#
_mapper = [(nx.bool_, str2bool, False),
(nx.integer, int, -1),
(nx.floating, float, nx.nan),
(complex, complex, nx.nan+0j),
(nx.string_, str, '???')]
(_defaulttype, _defaultfunc, _defaultfill) = zip(*_mapper)
#
@classmethod
def _getsubdtype(cls, val):
"""Returns the type of the dtype of the input variable."""
return np.array(val).dtype.type
#
@classmethod
def upgrade_mapper(cls, func, default=None):
"""
Upgrade the mapper of a StringConverter by adding a new function and its
corresponding default.
The input function (or sequence of functions) and its associated default
value (if any) is inserted in penultimate position of the mapper.
The corresponding type is estimated from the dtype of the default value.
Parameters
----------
func : var
Function, or sequence of functions
Examples
--------
>>> import dateutil.parser
>>> import datetime
>>> dateparser = datetutil.parser.parse
>>> defaultdate = datetime.date(2000, 1, 1)
>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate)
"""
# Func is a single functions
if hasattr(func, '__call__'):
cls._mapper.insert(-1, (cls._getsubdtype(default), func, default))
return
elif hasattr(func, '__iter__'):
if isinstance(func[0], (tuple, list)):
for _ in func:
cls._mapper.insert(-1, _)
return
if default is None:
default = [None] * len(func)
else:
default = list(default)
default.append([None] * (len(func)-len(default)))
for (fct, dft) in zip(func, default):
cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft))
#
def __init__(self, dtype_or_func=None, default=None, missing_values=None,
locked=False):
# Defines a lock for upgrade
self._locked = bool(locked)
# No input dtype: minimal initialization
if dtype_or_func is None:
self.func = str2bool
self._status = 0
self.default = default or False
ttype = np.bool
else:
# Is the input a np.dtype ?
try:
self.func = None
ttype = np.dtype(dtype_or_func).type
except TypeError:
# dtype_or_func must be a function, then
if not hasattr(dtype_or_func, '__call__'):
errmsg = "The input argument `dtype` is neither a function"\
" or a dtype (got '%s' instead)"
raise TypeError(errmsg % type(dtype_or_func))
# Set the function
self.func = dtype_or_func
# If we don't have a default, try to guess it or set it to None
if default is None:
try:
default = self.func('0')
except ValueError:
default = None
ttype = self._getsubdtype(default)
# Set the status according to the dtype
_status = -1
for (i, (deftype, func, default_def)) in enumerate(self._mapper):
if np.issubdtype(ttype, deftype):
_status = i
self.default = default or default_def
break
if _status == -1:
# We never found a match in the _mapper...
_status = 0
self.default = default
self._status = _status
# If the input was a dtype, set the function to the last we saw
if self.func is None:
self.func = func
# If the status is 1 (int), change the function to smthg more robust
if self.func == self._mapper[1][1]:
self.func = lambda x : int(float(x))
# Store the list of strings corresponding to missing values.
if missing_values is None:
self.missing_values = set([''])
else:
self.missing_values = set(list(missing_values) + [''])
#
self._callingfunction = self._strict_call
self.type = ttype
self._checked = False
#
def _loose_call(self, value):
try:
return self.func(value)
except ValueError:
return self.default
#
def _strict_call(self, value):
try:
return self.func(value)
except ValueError:
if value.strip() in self.missing_values:
if not self._status:
self._checked = False
return self.default
raise ValueError("Cannot convert string '%s'" % value)
#
def __call__(self, value):
return self._callingfunction(value)
#
def upgrade(self, value):
"""
Tries to find the best converter for `value`, by testing different
converters in order.
The order in which the converters are tested is read from the
:attr:`_status` attribute of the instance.
"""
self._checked = True
try:
self._strict_call(value)
except ValueError:
# Raise an exception if we locked the converter...
if self._locked:
raise ValueError("Converter is locked and cannot be upgraded")
_statusmax = len(self._mapper)
# Complains if we try to upgrade by the maximum
if self._status == _statusmax:
raise ValueError("Could not find a valid conversion function")
elif self._status < _statusmax - 1:
self._status += 1
(self.type, self.func, self.default) = self._mapper[self._status]
self.upgrade(value)
#
def update(self, func, default=None, missing_values='', locked=False):
"""
Sets the :attr:`func` and :attr:`default` attributes directly.
Parameters
----------
func : function
Conversion function.
default : {var}, optional
Default value to return when a missing value is encountered.
missing_values : {var}, optional
Sequence of strings representing missing values.
locked : {False, True}, optional
Whether the status should be locked to prevent automatic upgrade.
"""
self.func = func
self._locked = locked
# Don't reset the default to None if we can avoid it
if default is not None:
self.default = default
# Add the missing values to the existing set
if missing_values is not None:
if _is_string_like(missing_values):
self.missing_values.add(missing_values)
elif hasattr(missing_values, '__iter__'):
for val in missing_values:
self.missing_values.add(val)
else:
self.missing_values = []
# Update the type
try:
tester = func('0')
except ValueError:
tester = None
self.type = self._getsubdtype(tester)
|