summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
blob: e1c1c8803b14b1c7bd6634f8744e26ca73402266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""
Set operations for arrays based on sorting.

:Contains:
  unique,
  isin,
  ediff1d,
  intersect1d,
  setxor1d,
  in1d,
  union1d,
  setdiff1d

:Notes:

For floating point arrays, inaccurate results may appear due to usual round-off
and floating point comparison issues.

Speed could be gained in some operations by an implementation of
sort(), that can provide directly the permutation vectors, avoiding
thus calls to argsort().

To do: Optionally return indices analogously to unique for all functions.

:Author: Robert Cimrman

"""
from __future__ import division, absolute_import, print_function

import numpy as np


__all__ = [
    'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique',
    'in1d', 'isin'
    ]


def ediff1d(ary, to_end=None, to_begin=None):
    """
    The differences between consecutive elements of an array.

    Parameters
    ----------
    ary : array_like
        If necessary, will be flattened before the differences are taken.
    to_end : array_like, optional
        Number(s) to append at the end of the returned differences.
    to_begin : array_like, optional
        Number(s) to prepend at the beginning of the returned differences.

    Returns
    -------
    ediff1d : ndarray
        The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.

    See Also
    --------
    diff, gradient

    Notes
    -----
    When applied to masked arrays, this function drops the mask information
    if the `to_begin` and/or `to_end` parameters are used.

    Examples
    --------
    >>> x = np.array([1, 2, 4, 7, 0])
    >>> np.ediff1d(x)
    array([ 1,  2,  3, -7])

    >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
    array([-99,   1,   2,   3,  -7,  88,  99])

    The returned array is always 1D.

    >>> y = [[1, 2, 4], [1, 6, 24]]
    >>> np.ediff1d(y)
    array([ 1,  2, -3,  5, 18])

    """
    # force a 1d array
    ary = np.asanyarray(ary).ravel()

    # fast track default case
    if to_begin is None and to_end is None:
        return ary[1:] - ary[:-1]

    if to_begin is None:
        l_begin = 0
    else:
        to_begin = np.asanyarray(to_begin).ravel()
        l_begin = len(to_begin)

    if to_end is None:
        l_end = 0
    else:
        to_end = np.asanyarray(to_end).ravel()
        l_end = len(to_end)

    # do the calculation in place and copy to_begin and to_end
    l_diff = max(len(ary) - 1, 0)
    result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype)
    result = ary.__array_wrap__(result)
    if l_begin > 0:
        result[:l_begin] = to_begin
    if l_end > 0:
        result[l_begin + l_diff:] = to_end
    np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
    return result


def _unpack_tuple(x):
    """ Unpacks one-element tuples for use as return values """
    if len(x) == 1:
        return x[0]
    else:
        return x


def unique(ar, return_index=False, return_inverse=False,
           return_counts=False, axis=None):
    """
    Find the unique elements of an array.

    Returns the sorted unique elements of an array. There are three optional
    outputs in addition to the unique elements: the indices of the input array
    that give the unique values, the indices of the unique array that
    reconstruct the input array, and the number of times each unique value
    comes up in the input array.

    Parameters
    ----------
    ar : array_like
        Input array. Unless `axis` is specified, this will be flattened if it
        is not already 1-D.
    return_index : bool, optional
        If True, also return the indices of `ar` (along the specified axis,
        if provided, or in the flattened array) that result in the unique array.
    return_inverse : bool, optional
        If True, also return the indices of the unique array (for the specified
        axis, if provided) that can be used to reconstruct `ar`.
    return_counts : bool, optional
        If True, also return the number of times each unique item appears
        in `ar`.

        .. versionadded:: 1.9.0

    axis : int or None, optional
        The axis to operate on. If None, `ar` will be flattened beforehand.
        Otherwise, duplicate items will be removed along the provided axis,
        with all the other axes belonging to the each of the unique elements.
        Object arrays or structured arrays that contain objects are not
        supported if the `axis` kwarg is used.

        .. versionadded:: 1.13.0



    Returns
    -------
    unique : ndarray
        The sorted unique values.
    unique_indices : ndarray, optional
        The indices of the first occurrences of the unique values in the
        original array. Only provided if `return_index` is True.
    unique_inverse : ndarray, optional
        The indices to reconstruct the original array from the
        unique array. Only provided if `return_inverse` is True.
    unique_counts : ndarray, optional
        The number of times each of the unique values comes up in the
        original array. Only provided if `return_counts` is True.

        .. versionadded:: 1.9.0

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.unique([1, 1, 2, 2, 3, 3])
    array([1, 2, 3])
    >>> a = np.array([[1, 1], [2, 3]])
    >>> np.unique(a)
    array([1, 2, 3])

    Return the unique rows of a 2D array

    >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
    >>> np.unique(a, axis=0)
    array([[1, 0, 0], [2, 3, 4]])

    Return the indices of the original array that give the unique values:

    >>> a = np.array(['a', 'b', 'b', 'c', 'a'])
    >>> u, indices = np.unique(a, return_index=True)
    >>> u
    array(['a', 'b', 'c'],
           dtype='|S1')
    >>> indices
    array([0, 1, 3])
    >>> a[indices]
    array(['a', 'b', 'c'],
           dtype='|S1')

    Reconstruct the input array from the unique values:

    >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
    >>> u, indices = np.unique(a, return_inverse=True)
    >>> u
    array([1, 2, 3, 4, 6])
    >>> indices
    array([0, 1, 4, 3, 1, 2, 1])
    >>> u[indices]
    array([1, 2, 6, 4, 2, 3, 2])

    """
    ar = np.asanyarray(ar)
    if axis is None:
        ret = _unique1d(ar, return_index, return_inverse, return_counts)
        return _unpack_tuple(ret)

    if not (-ar.ndim <= axis < ar.ndim):
        raise ValueError('Invalid axis kwarg specified for unique')

    ar = np.swapaxes(ar, axis, 0)
    orig_shape, orig_dtype = ar.shape, ar.dtype
    # Must reshape to a contiguous 2D array for this to work...
    ar = ar.reshape(orig_shape[0], -1)
    ar = np.ascontiguousarray(ar)

    if ar.dtype.char in (np.typecodes['AllInteger'] +
                         np.typecodes['Datetime'] + 'S'):
        # Optimization: Creating a view of your data with a np.void data type of
        # size the number of bytes in a full row. Handles any type where items
        # have a unique binary representation, i.e. 0 is only 0, not +0 and -0.
        dtype = np.dtype((np.void, ar.dtype.itemsize * ar.shape[1]))
    else:
        dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]

    try:
        consolidated = ar.view(dtype)
    except TypeError:
        # There's no good way to do this for object arrays, etc...
        msg = 'The axis argument to unique is not supported for dtype {dt}'
        raise TypeError(msg.format(dt=ar.dtype))

    def reshape_uniq(uniq):
        uniq = uniq.view(orig_dtype)
        uniq = uniq.reshape(-1, *orig_shape[1:])
        uniq = np.swapaxes(uniq, 0, axis)
        return uniq

    output = _unique1d(consolidated, return_index,
                       return_inverse, return_counts)
    output = (reshape_uniq(output[0]),) + output[1:]
    return _unpack_tuple(output)


def _unique1d(ar, return_index=False, return_inverse=False,
              return_counts=False):
    """
    Find the unique elements of an array, ignoring shape.
    """
    ar = np.asanyarray(ar).flatten()

    optional_indices = return_index or return_inverse

    if optional_indices:
        perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
        aux = ar[perm]
    else:
        ar.sort()
        aux = ar
    mask = np.empty(aux.shape, dtype=np.bool_)
    mask[:1] = True
    mask[1:] = aux[1:] != aux[:-1]

    ret = (aux[mask],)
    if return_index:
        ret += (perm[mask],)
    if return_inverse:
        imask = np.cumsum(mask) - 1
        inv_idx = np.empty(ar.shape, dtype=np.intp)
        inv_idx[perm] = imask
        ret += (inv_idx,)
    if return_counts:
        idx = np.concatenate(np.nonzero(mask) + ([ar.size],))
        ret += (np.diff(idx),)
    return ret


def intersect1d(ar1, ar2, assume_unique=False):
    """
    Find the intersection of two arrays.

    Return the sorted, unique values that are in both of the input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    intersect1d : ndarray
        Sorted 1D array of common and unique elements.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
    array([1, 3])

    To intersect more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([3])
    """
    if not assume_unique:
        # Might be faster than unique( intersect1d( ar1, ar2 ) )?
        ar1 = unique(ar1)
        ar2 = unique(ar2)
    aux = np.concatenate((ar1, ar2))
    aux.sort()
    return aux[:-1][aux[1:] == aux[:-1]]

def setxor1d(ar1, ar2, assume_unique=False):
    """
    Find the set exclusive-or of two arrays.

    Return the sorted, unique values that are in only one (not both) of the
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setxor1d : ndarray
        Sorted 1D array of unique values that are in only one of the input
        arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4])
    >>> b = np.array([2, 3, 5, 7, 5])
    >>> np.setxor1d(a,b)
    array([1, 4, 5, 7])

    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
    return aux[flag[1:] & flag[:-1]]


def in1d(ar1, ar2, assume_unique=False, invert=False):
    """
    Test whether each element of a 1-D array is also present in a second array.

    Returns a boolean array the same length as `ar1` that is True
    where an element of `ar1` is in `ar2` and False otherwise.

    We recommend using :func:`isin` instead of `in1d` for new code.

    Parameters
    ----------
    ar1 : (M,) array_like
        Input array.
    ar2 : array_like
        The values against which to test each value of `ar1`.
    assume_unique : bool, optional
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.
    invert : bool, optional
        If True, the values in the returned array are inverted (that is,
        False where an element of `ar1` is in `ar2` and True otherwise).
        Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
        to (but is faster than) ``np.invert(in1d(a, b))``.

        .. versionadded:: 1.8.0

    Returns
    -------
    in1d : (M,) ndarray, bool
        The values `ar1[in1d]` are in `ar2`.

    See Also
    --------
    isin                  : Version of this function that preserves the
                            shape of ar1.
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Notes
    -----
    `in1d` can be considered as an element-wise function version of the
    python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
    equivalent to ``np.array([item in b for item in a])``.
    However, this idea fails if `ar2` is a set, or similar (non-sequence)
    container:  As ``ar2`` is converted to an array, in those cases
    ``asarray(ar2)`` is an object array rather than the expected array of
    contained values.

    .. versionadded:: 1.4.0

    Examples
    --------
    >>> test = np.array([0, 1, 2, 5, 0])
    >>> states = [0, 2]
    >>> mask = np.in1d(test, states)
    >>> mask
    array([ True, False,  True, False,  True])
    >>> test[mask]
    array([0, 2, 0])
    >>> mask = np.in1d(test, states, invert=True)
    >>> mask
    array([False,  True, False,  True, False])
    >>> test[mask]
    array([1, 5])
    """
    # Ravel both arrays, behavior for the first array could be different
    ar1 = np.asarray(ar1).ravel()
    ar2 = np.asarray(ar2).ravel()

    # Check if one of the arrays may contain arbitrary objects
    contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject

    # This code is run when
    # a) the first condition is true, making the code significantly faster
    # b) the second condition is true (i.e. `ar1` or `ar2` may contain
    #    arbitrary objects), since then sorting is not guaranteed to work
    if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
        if invert:
            mask = np.ones(len(ar1), dtype=bool)
            for a in ar2:
                mask &= (ar1 != a)
        else:
            mask = np.zeros(len(ar1), dtype=bool)
            for a in ar2:
                mask |= (ar1 == a)
        return mask

    # Otherwise use sorting
    if not assume_unique:
        ar1, rev_idx = np.unique(ar1, return_inverse=True)
        ar2 = np.unique(ar2)

    ar = np.concatenate((ar1, ar2))
    # We need this to be a stable sort, so always use 'mergesort'
    # here. The values from the first array should always come before
    # the values from the second array.
    order = ar.argsort(kind='mergesort')
    sar = ar[order]
    if invert:
        bool_ar = (sar[1:] != sar[:-1])
    else:
        bool_ar = (sar[1:] == sar[:-1])
    flag = np.concatenate((bool_ar, [invert]))
    ret = np.empty(ar.shape, dtype=bool)
    ret[order] = flag

    if assume_unique:
        return ret[:len(ar1)]
    else:
        return ret[rev_idx]


def isin(element, test_elements, assume_unique=False, invert=False):
    """
    Calculates `element in test_elements`, broadcasting over `element` only.
    Returns a boolean array of the same shape as `element` that is True
    where an element of `element` is in `test_elements` and False otherwise.

    Parameters
    ----------
    element : array_like
        Input array.
    test_elements : array_like
        The values against which to test each value of `element`.
        This argument is flattened if it is an array or array_like.
        See notes for behavior with non-array-like parameters.
    assume_unique : bool, optional
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.
    invert : bool, optional
        If True, the values in the returned array are inverted, as if
        calculating `element not in test_elements`. Default is False.
        ``np.isin(a, b, invert=True)`` is equivalent to (but faster
        than) ``np.invert(np.isin(a, b))``.

    Returns
    -------
    isin : ndarray, bool
        Has the same shape as `element`. The values `element[isin]`
        are in `test_elements`.

    See Also
    --------
    in1d                  : Flattened version of this function.
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Notes
    -----

    `isin` is an element-wise function version of the python keyword `in`.
    ``isin(a, b)`` is roughly equivalent to
    ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.

    `element` and `test_elements` are converted to arrays if they are not
    already. If `test_elements` is a set (or other non-sequence collection)
    it will be converted to an object array with one element, rather than an
    array of the values contained in `test_elements`. This is a consequence
    of the `array` constructor's way of handling non-sequence collections.
    Converting the set to a list usually gives the desired behavior.

    .. versionadded:: 1.13.0

    Examples
    --------
    >>> element = 2*np.arange(4).reshape((2, 2))
    >>> element
    array([[0, 2],
           [4, 6]])
    >>> test_elements = [1, 2, 4, 8]
    >>> mask = np.isin(element, test_elements)
    >>> mask
    array([[ False,  True],
           [ True,  False]])
    >>> element[mask]
    array([2, 4])
    >>> mask = np.isin(element, test_elements, invert=True)
    >>> mask
    array([[ True, False],
           [ False, True]])
    >>> element[mask]
    array([0, 6])

    Because of how `array` handles sets, the following does not
    work as expected:

    >>> test_set = {1, 2, 4, 8}
    >>> np.isin(element, test_set)
    array([[ False, False],
           [ False, False]])

    Casting the set to a list gives the expected result:

    >>> np.isin(element, list(test_set))
    array([[ False,  True],
           [ True,  False]])
    """
    element = np.asarray(element)
    return in1d(element, test_elements, assume_unique=assume_unique,
                invert=invert).reshape(element.shape)


def union1d(ar1, ar2):
    """
    Find the union of two arrays.

    Return the unique, sorted array of values that are in either of the two
    input arrays.

    Parameters
    ----------
    ar1, ar2 : array_like
        Input arrays. They are flattened if they are not already 1D.

    Returns
    -------
    union1d : ndarray
        Unique, sorted union of the input arrays.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> np.union1d([-1, 0, 1], [-2, 0, 2])
    array([-2, -1,  0,  1,  2])

    To find the union of more than two arrays, use functools.reduce:

    >>> from functools import reduce
    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
    array([1, 2, 3, 4, 6])
    """
    return unique(np.concatenate((ar1, ar2), axis=None))

def setdiff1d(ar1, ar2, assume_unique=False):
    """
    Find the set difference of two arrays.

    Return the sorted, unique values in `ar1` that are not in `ar2`.

    Parameters
    ----------
    ar1 : array_like
        Input array.
    ar2 : array_like
        Input comparison array.
    assume_unique : bool
        If True, the input arrays are both assumed to be unique, which
        can speed up the calculation.  Default is False.

    Returns
    -------
    setdiff1d : ndarray
        Sorted 1D array of values in `ar1` that are not in `ar2`.

    See Also
    --------
    numpy.lib.arraysetops : Module with a number of other functions for
                            performing set operations on arrays.

    Examples
    --------
    >>> a = np.array([1, 2, 3, 2, 4, 1])
    >>> b = np.array([3, 4, 5, 6])
    >>> np.setdiff1d(a, b)
    array([1, 2])

    """
    if assume_unique:
        ar1 = np.asarray(ar1).ravel()
    else:
        ar1 = unique(ar1)
        ar2 = unique(ar2)
    return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]