1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
"""
Define a simple format for saving numpy arrays to disk with the full
information about them.
WARNING: Due to limitations in the interpretation of structured dtypes, dtypes
with fields with empty names will have the names replaced by 'f0', 'f1', etc.
Such arrays will not round-trip through the format entirely accurately. The
data is intact; only the field names will differ. We are working on a fix for
this. This fix will not require a change in the file format. The arrays with
such structures can still be saved and restored, and the correct dtype may be
restored by using the `loadedarray.view(correct_dtype)` method.
Format Version 1.0
------------------
The first 6 bytes are a magic string: exactly "\\\\x93NUMPY".
The next 1 byte is an unsigned byte: the major version number of the file
format, e.g. \\\\x01.
The next 1 byte is an unsigned byte: the minor version number of the file
format, e.g. \\\\x00. Note: the version of the file format is not tied to the
version of the numpy package.
The next 2 bytes form a little-endian unsigned short int: the length of the
header data HEADER_LEN.
The next HEADER_LEN bytes form the header data describing the array's format.
It is an ASCII string which contains a Python literal expression of a
dictionary. It is terminated by a newline ('\\\\n') and padded with spaces
('\\\\x20') to make the total length of the magic string + 4 + HEADER_LEN be
evenly divisible by 16 for alignment purposes.
The dictionary contains three keys:
"descr" : dtype.descr
An object that can be passed as an argument to the numpy.dtype()
constructor to create the array's dtype.
"fortran_order" : bool
Whether the array data is Fortran-contiguous or not. Since
Fortran-contiguous arrays are a common form of non-C-contiguity, we
allow them to be written directly to disk for efficiency.
"shape" : tuple of int
The shape of the array.
For repeatability and readability, the dictionary keys are sorted in alphabetic
order. This is for convenience only. A writer SHOULD implement this if
possible. A reader MUST NOT depend on this.
Following the header comes the array data. If the dtype contains Python objects
(i.e. dtype.hasobject is True), then the data is a Python pickle of the array.
Otherwise the data is the contiguous (either C- or Fortran-, depending on
fortran_order) bytes of the array. Consumers can figure out the number of bytes
by multiplying the number of elements given by the shape (noting that shape=()
means there is 1 element) by dtype.itemsize.
"""
import cPickle
import numpy
from numpy.lib.utils import safe_eval
MAGIC_PREFIX = '\x93NUMPY'
MAGIC_LEN = len(MAGIC_PREFIX) + 2
def magic(major, minor):
""" Return the magic string for the given file format version.
Parameters
----------
major : int in [0, 255]
minor : int in [0, 255]
Returns
-------
magic : str
Raises
------
ValueError if the version cannot be formatted.
"""
if major < 0 or major > 255:
raise ValueError("major version must be 0 <= major < 256")
if minor < 0 or minor > 255:
raise ValueError("minor version must be 0 <= minor < 256")
return '%s%s%s' % (MAGIC_PREFIX, chr(major), chr(minor))
def read_magic(fp):
""" Read the magic string to get the version of the file format.
Parameters
----------
fp : filelike object
Returns
-------
major : int
minor : int
"""
magic_str = fp.read(MAGIC_LEN)
if len(magic_str) != MAGIC_LEN:
msg = "could not read %d characters for the magic string; got %r"
raise ValueError(msg % (MAGIC_LEN, magic_str))
if magic_str[:-2] != MAGIC_PREFIX:
msg = "the magic string is not correct; expected %r, got %r"
raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
major, minor = map(ord, magic_str[-2:])
return major, minor
def dtype_to_descr(dtype):
"""
Get a serializable descriptor from the dtype.
The .descr attribute of a dtype object cannot be round-tripped through
the dtype() constructor. Simple types, like dtype('float32'), have
a descr which looks like a record array with one field with '' as
a name. The dtype() constructor interprets this as a request to give
a default name. Instead, we construct descriptor that can be passed to
dtype().
Parameters
----------
dtype : dtype
The dtype of the array that will be written to disk.
Returns
-------
descr : object
An object that can be passed to `numpy.dtype()` in order to
replicate the input dtype.
"""
if dtype.names is not None:
# This is a record array. The .descr is fine.
# XXX: parts of the record array with an empty name, like padding bytes,
# still get fiddled with. This needs to be fixed in the C implementation
# of dtype().
return dtype.descr
else:
return dtype.str
def header_data_from_array_1_0(array):
""" Get the dictionary of header metadata from a numpy.ndarray.
Parameters
----------
array : numpy.ndarray
Returns
-------
d : dict
This has the appropriate entries for writing its string representation
to the header of the file.
"""
d = {}
d['shape'] = array.shape
if array.flags.c_contiguous:
d['fortran_order'] = False
elif array.flags.f_contiguous:
d['fortran_order'] = True
else:
# Totally non-contiguous data. We will have to make it C-contiguous
# before writing. Note that we need to test for C_CONTIGUOUS first
# because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
d['fortran_order'] = False
d['descr'] = dtype_to_descr(array.dtype)
return d
def write_array_header_1_0(fp, d):
""" Write the header for an array using the 1.0 format.
Parameters
----------
fp : filelike object
d : dict
This has the appropriate entries for writing its string representation
to the header of the file.
"""
import struct
header = ["{"]
for key, value in sorted(d.items()):
# Need to use repr here, since we eval these when reading
header.append("'%s': %s, " % (key, repr(value)))
header.append("}")
header = "".join(header)
# Pad the header with spaces and a final newline such that the magic
# string, the header-length short and the header are aligned on a 16-byte
# boundary. Hopefully, some system, possibly memory-mapping, can take
# advantage of our premature optimization.
current_header_len = MAGIC_LEN + 2 + len(header) + 1 # 1 for the newline
topad = 16 - (current_header_len % 16)
header = '%s%s\n' % (header, ' '*topad)
if len(header) >= (256*256):
raise ValueError("header does not fit inside %s bytes" % (256*256))
header_len_str = struct.pack('<H', len(header))
fp.write(header_len_str)
fp.write(header)
def read_array_header_1_0(fp):
"""
Read an array header from a filelike object using the 1.0 file format
version.
This will leave the file object located just after the header.
Parameters
----------
fp : filelike object
A file object or something with a `.read()` method like a file.
Returns
-------
shape : tuple of int
The shape of the array.
fortran_order : bool
The array data will be written out directly if it is either C-contiguous
or Fortran-contiguous. Otherwise, it will be made contiguous before
writing it out.
dtype : dtype
The dtype of the file's data.
Raises
------
ValueError :
If the data is invalid.
"""
# Read an unsigned, little-endian short int which has the length of the
# header.
import struct
hlength_str = fp.read(2)
if len(hlength_str) != 2:
msg = "EOF at %s before reading array header length"
raise ValueError(msg % fp.tell())
header_length = struct.unpack('<H', hlength_str)[0]
header = fp.read(header_length)
if len(header) != header_length:
raise ValueError("EOF at %s before reading array header" % fp.tell())
# The header is a pretty-printed string representation of a literal Python
# dictionary with trailing newlines padded to a 16-byte boundary. The keys
# are strings.
# "shape" : tuple of int
# "fortran_order" : bool
# "descr" : dtype.descr
try:
d = safe_eval(header)
except SyntaxError, e:
msg = "Cannot parse header: %r\nException: %r"
raise ValueError(msg % (header, e))
if not isinstance(d, dict):
msg = "Header is not a dictionary: %r"
raise ValueError(msg % d)
keys = d.keys()
keys.sort()
if keys != ['descr', 'fortran_order', 'shape']:
msg = "Header does not contain the correct keys: %r"
raise ValueError(msg % (keys,))
# Sanity-check the values.
if (not isinstance(d['shape'], tuple) or
not numpy.all([isinstance(x, (int,long)) for x in d['shape']])):
msg = "shape is not valid: %r"
raise ValueError(msg % (d['shape'],))
if not isinstance(d['fortran_order'], bool):
msg = "fortran_order is not a valid bool: %r"
raise ValueError(msg % (d['fortran_order'],))
try:
dtype = numpy.dtype(d['descr'])
except TypeError, e:
msg = "descr is not a valid dtype descriptor: %r"
raise ValueError(msg % (d['descr'],))
return d['shape'], d['fortran_order'], dtype
def write_array(fp, array, version=(1,0)):
"""
Write an array to an NPY file, including a header.
If the array is neither C-contiguous or Fortran-contiguous AND if the
filelike object is not a real file object, then this function will have
to copy data in memory.
Parameters
----------
fp : filelike object
An open, writable file object or similar object with a `.write()`
method.
array : numpy.ndarray
The array to write to disk.
version : (int, int), optional
The version number of the format.
Raises
------
ValueError
If the array cannot be persisted.
Various other errors
If the array contains Python objects as part of its dtype, the
process of pickling them may raise arbitrary errors if the objects
are not picklable.
"""
if version != (1, 0):
msg = "we only support format version (1,0), not %s"
raise ValueError(msg % (version,))
fp.write(magic(*version))
write_array_header_1_0(fp, header_data_from_array_1_0(array))
if array.dtype.hasobject:
# We contain Python objects so we cannot write out the data directly.
# Instead, we will pickle it out with version 2 of the pickle protocol.
cPickle.dump(array, fp, protocol=2)
elif array.flags.f_contiguous and not array.flags.c_contiguous:
# Use a suboptimal, possibly memory-intensive, but correct way to
# handle Fortran-contiguous arrays.
fp.write(array.data)
else:
if isinstance(fp, file):
array.tofile(fp)
else:
# XXX: We could probably chunk this using something like
# arrayterator.
fp.write(array.tostring('C'))
def read_array(fp):
"""
Read an array from an NPY file.
Parameters
----------
fp : filelike object
If this is not a real file object, then this may take extra memory and
time.
Returns
-------
array : numpy.ndarray
The array from the data on disk.
Raises
------
ValueError
If the data is invalid.
"""
version = read_magic(fp)
if version != (1, 0):
msg = "only support version (1,0) of file format, not %r"
raise ValueError(msg % (version,))
shape, fortran_order, dtype = read_array_header_1_0(fp)
if len(shape) == 0:
count = 1
else:
count = numpy.multiply.reduce(shape)
# Now read the actual data.
if dtype.hasobject:
# The array contained Python objects. We need to unpickle the data.
array = cPickle.load(fp)
else:
if isinstance(fp, file):
# We can use the fast fromfile() function.
array = numpy.fromfile(fp, dtype=dtype, count=count)
else:
# This is not a real file. We have to read it the memory-intensive
# way.
# XXX: we can probably chunk this to avoid the memory hit.
data = fp.read(count * dtype.itemsize)
array = numpy.fromstring(data, dtype=dtype, count=count)
if fortran_order:
array.shape = shape[::-1]
array = array.transpose()
else:
array.shape = shape
return array
def open_memmap(filename, mode='r+', dtype=None, shape=None,
fortran_order=False, version=(1,0)):
"""
Open a .npy file as a memory-mapped array.
This may be used to read an existing file or create a new one.
Parameters
----------
filename : str
The name of the file on disk. This may not be a file-like object.
mode : str, optional
The mode to open the file with. In addition to the standard file modes,
'c' is also accepted to mean "copy on write". See `numpy.memmap` for
the available mode strings.
dtype : dtype, optional
The data type of the array if we are creating a new file in "write"
mode.
shape : tuple of int, optional
The shape of the array if we are creating a new file in "write"
mode.
fortran_order : bool, optional
Whether the array should be Fortran-contiguous (True) or
C-contiguous (False) if we are creating a new file in "write" mode.
version : tuple of int (major, minor)
If the mode is a "write" mode, then this is the version of the file
format used to create the file.
Returns
-------
marray : numpy.memmap
The memory-mapped array.
Raises
------
ValueError
If the data or the mode is invalid.
IOError
If the file is not found or cannot be opened correctly.
See Also
--------
numpy.memmap
"""
if not isinstance(filename, basestring):
raise ValueError("Filename must be a string. Memmap cannot use" \
" existing file handles.")
if 'w' in mode:
# We are creating the file, not reading it.
# Check if we ought to create the file.
if version != (1, 0):
msg = "only support version (1,0) of file format, not %r"
raise ValueError(msg % (version,))
# Ensure that the given dtype is an authentic dtype object rather than
# just something that can be interpreted as a dtype object.
dtype = numpy.dtype(dtype)
if dtype.hasobject:
msg = "Array can't be memory-mapped: Python objects in dtype."
raise ValueError(msg)
d = dict(
descr=dtype_to_descr(dtype),
fortran_order=fortran_order,
shape=shape,
)
# If we got here, then it should be safe to create the file.
fp = open(filename, mode+'b')
try:
fp.write(magic(*version))
write_array_header_1_0(fp, d)
offset = fp.tell()
finally:
fp.close()
else:
# Read the header of the file first.
fp = open(filename, 'rb')
try:
version = read_magic(fp)
if version != (1, 0):
msg = "only support version (1,0) of file format, not %r"
raise ValueError(msg % (version,))
shape, fortran_order, dtype = read_array_header_1_0(fp)
if dtype.hasobject:
msg = "Array can't be memory-mapped: Python objects in dtype."
raise ValueError(msg)
offset = fp.tell()
finally:
fp.close()
if fortran_order:
order = 'F'
else:
order = 'C'
# We need to change a write-only mode to a read-write mode since we've
# already written data to the file.
if mode == 'w+':
mode = 'r+'
marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
mode=mode, offset=offset)
return marray
|