summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
blob: 4789f0d0c01278df6e1e73b005bdee439cbb91f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

__all__ = ['logspace', 'linspace',
           'select', 'piecewise', 'trim_zeros',
           'copy', 'iterable', #'base_repr', 'binary_repr',
           'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp',
           'unique', 'extract', 'insert', 'nansum', 'nanmax', 'nanargmax',
           'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average',
           'histogram', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort',
           'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman',
           'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid'
           ]

import types
import numpy.core.numeric as _nx
from numpy.core.numeric import ones, zeros, arange, concatenate, array, \
     asarray, asanyarray, empty, empty_like, asanyarray, ndarray
from numpy.core.numeric import ScalarType, dot, where, newaxis
from numpy.core.umath import pi, multiply, add, arctan2,  \
     frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp
from numpy.core.fromnumeric import ravel, nonzero, choose, sort
from numpy.core.numerictypes import typecodes
from numpy.lib.shape_base import atleast_1d
from numpy.lib.twodim_base import diag
from _compiled_base import _insert, add_docstring
from _compiled_base import digitize, bincount

#end Fernando's utilities

def linspace(start, stop, num=50, endpoint=True, retstep=False):
    """Return evenly spaced numbers.

    Return num evenly spaced samples from start to stop.  If
    endpoint is True, the last sample is stop. If retstep is
    True then return the step value used.
    """
    num = int(num)
    if num <= 0:
        return array([], float)
    if endpoint:
        if num == 1:
            return array([float(start)])
        step = (stop-start)/float((num-1))
    else:
        step = (stop-start)/float(num)
    y = _nx.arange(0, num) * step + start
    if retstep:
        return y, step
    else:
        return y

def logspace(start,stop,num=50,endpoint=True,base=10.0):
    """Evenly spaced numbers on a logarithmic scale.

    Computes int(num) evenly spaced exponents from base**start to
    base**stop. If endpoint=True, then last number is base**stop
    """
    y = linspace(start,stop,num=num,endpoint=endpoint)
    return _nx.power(base,y)

def iterable(y):
    try: iter(y)
    except: return 0
    return 1

def histogram(a, bins=10, range=None, normed=False):
    """histogram(sample, bins = 10, range = None, normed = False) -> H, ledges

    Return the distribution of a sample.

    Parameters
    ----------
    bins: Number of bins
    range: Lower and upper bin edges (default: [sample.min(), sample.max()]).
        Does not really work, all values greater than range are stored in
        the last bin.
    normed: If False (default), return the number of samples in each bin.
        If True, return a frequency distribution.

    Output
    ------
    histogram array, left bin edges array.
    """
    a = asarray(a).ravel()
    if not iterable(bins):
        if range is None:
            range = (a.min(), a.max())
        mn, mx = [mi+0.0 for mi in range]
        if mn == mx:
            mn -= 0.5
            mx += 0.5
        bins = linspace(mn, mx, bins, endpoint=False)

    n = sort(a).searchsorted(bins)
    n = concatenate([n, [len(a)]])
    n = n[1:]-n[:-1]

    if normed:
        db = bins[1] - bins[0]
        return 1.0/(a.size*db) * n, bins
    else:
        return n, bins

def average(a, axis=0, weights=None, returned=False):
    """average(a, axis=0, weights=None, returned=False)

    Average the array over the given axis.  If the axis is None, average
    over all dimensions of the array.  Equivalent to a.mean(axis), but
    with a default axis of 0 instead of None.

    If an integer axis is given, this equals:
        a.sum(axis) * 1.0 / len(a)

    If axis is None, this equals:
        a.sum(axis) * 1.0 / product(a.shape)

    If weights are given, result is:
        sum(a * weights) / sum(weights),
    where the weights must have a's shape or be 1D with length the
    size of a in the given axis. Integer weights are converted to
    Float.  Not specifying weights is equivalent to specifying
    weights that are all 1.

    If 'returned' is True, return a tuple: the result and the sum of
    the weights or count of values. The shape of these two results
    will be the same.

    Raises ZeroDivisionError if appropriate.  (The version in MA does
    not -- it returns masked values).
    """
    if axis is None:
        a = array(a).ravel()
        if weights is None:
            n = add.reduce(a)
            d = len(a) * 1.0
        else:
            w = array(weights).ravel() * 1.0
            n = add.reduce(multiply(a, w))
            d = add.reduce(w)
    else:
        a = array(a)
        ash = a.shape
        if ash == ():
            a.shape = (1,)
        if weights is None:
            n = add.reduce(a, axis)
            d = ash[axis] * 1.0
            if returned:
                d = ones(n.shape) * d
        else:
            w = array(weights, copy=False) * 1.0
            wsh = w.shape
            if wsh == ():
                wsh = (1,)
            if wsh == ash:
                n = add.reduce(a*w, axis)
                d = add.reduce(w, axis)
            elif wsh == (ash[axis],):
                ni = ash[axis]
                r = [newaxis]*ni
                r[axis] = slice(None, None, 1)
                w1 = eval("w["+repr(tuple(r))+"]*ones(ash, Float)")
                n = add.reduce(a*w1, axis)
                d = add.reduce(w1, axis)
            else:
                raise ValueError, 'averaging weights have wrong shape'

    if not isinstance(d, ndarray):
        if d == 0.0:
            raise ZeroDivisionError, 'zero denominator in average()'
    if returned:
        return n/d, d
    else:
        return n/d

def asarray_chkfinite(a):
    """Like asarray, but check that no NaNs or Infs are present.
    """
    a = asarray(a)
    if (a.dtype.char in typecodes['AllFloat']) \
           and (_nx.isnan(a).any() or _nx.isinf(a).any()):
        raise ValueError, "array must not contain infs or NaNs"
    return a

def piecewise(x, condlist, funclist, *args, **kw):
    """Return a piecewise-defined function.

    x is the domain

    condlist is a list of boolean arrays or a single boolean array
      The length of the condition list must be n2 or n2-1 where n2
      is the length of the function list.  If len(condlist)==n2-1, then
      an 'otherwise' condition is formed by |'ing all the conditions
      and inverting.

    funclist is a list of functions to call of length (n2).
      Each function should return an array output for an array input
      Each function can take (the same set) of extra arguments and
      keyword arguments which are passed in after the function list.
      A constant may be used in funclist for a function that returns a
      constant (e.g. val  and lambda x: val are equivalent in a funclist).

    The output is the same shape and type as x and is found by
      calling the functions on the appropriate portions of x.

    Note: This is similar to choose or select, except
          the the functions are only evaluated on elements of x
          that satisfy the corresponding condition.

    The result is
           |--
           |  f1(x)  for condition1
     y = --|  f2(x)  for condition2
           |   ...
           |  fn(x)  for conditionn
           |--

    """
    x = asanyarray(x)
    n2 = len(funclist)
    if not isinstance(condlist, type([])):
        condlist = [condlist]
    n = len(condlist)
    if n == n2-1:  # compute the "otherwise" condition.
        totlist = condlist[0]
        for k in range(1, n):
            totlist |= condlist[k]
        condlist.append(~totlist)
        n += 1
    if (n != n2):
        raise ValueError, "function list and condition list must be the same"
    y = empty(x.shape, x.dtype)
    for k in range(n):
        item = funclist[k]
        if not callable(item):
            y[condlist[k]] = item
        else:
            y[condlist[k]] = item(x[condlist[k]], *args, **kw)
    return y

def select(condlist, choicelist, default=0):
    """ Return an array composed of different elements of choicelist
        depending on the list of conditions.

        condlist is a list of condition arrays containing ones or zeros

        choicelist is a list of choice arrays (of the "same" size as the
        arrays in condlist).  The result array has the "same" size as the
        arrays in choicelist.  If condlist is [c0, ..., cN-1] then choicelist
        must be of length N.  The elements of the choicelist can then be
        represented as [v0, ..., vN-1]. The default choice if none of the
        conditions are met is given as the default argument.

        The conditions are tested in order and the first one statisfied is
        used to select the choice. In other words, the elements of the
        output array are found from the following tree (notice the order of
        the conditions matters):

        if c0: v0
        elif c1: v1
        elif c2: v2
        ...
        elif cN-1: vN-1
        else: default

        Note that one of the condition arrays must be large enough to handle
        the largest array in the choice list.
    """
    n = len(condlist)
    n2 = len(choicelist)
    if n2 != n:
        raise ValueError, "list of cases must be same length as list of conditions"
    choicelist.insert(0, default)
    S = 0
    pfac = 1
    for k in range(1, n+1):
        S += k * pfac * asarray(condlist[k-1])
        if k < n:
            pfac *= (1-asarray(condlist[k-1]))
    # handle special case of a 1-element condition but
    #  a multi-element choice
    if type(S) in ScalarType or max(asarray(S).shape)==1:
        pfac = asarray(1)
        for k in range(n2+1):
            pfac = pfac + asarray(choicelist[k])
        S = S*ones(asarray(pfac).shape)
    return choose(S, tuple(choicelist))

def _asarray1d(arr, copy=False):
    """Ensure 1D array for one array.
    """
    if copy:
        return asarray(arr).flatten()
    else:
        return asarray(arr).ravel()

def copy(a):
    """Return an array copy of the given object.
    """
    return array(a, copy=True)

# Basic operations

def gradient(f, *varargs):
    """Calculate the gradient of an N-dimensional scalar function.

    Uses central differences on the interior and first differences on boundaries
    to give the same shape.

    Inputs:

      f -- An N-dimensional array giving samples of a scalar function

      varargs -- 0, 1, or N scalars giving the sample distances in each direction

    Outputs:

      N arrays of the same shape as f giving the derivative of f with respect
       to each dimension.
    """
    N = len(f.shape)  # number of dimensions
    n = len(varargs)
    if n == 0:
        dx = [1.0]*N
    elif n == 1:
        dx = [varargs[0]]*N
    elif n == N:
        dx = list(varargs)
    else:
        raise SyntaxError, "invalid number of arguments"

    # use central differences on interior and first differences on endpoints

    outvals = []

    # create slice objects --- initially all are [:, :, ..., :]
    slice1 = [slice(None)]*N
    slice2 = [slice(None)]*N
    slice3 = [slice(None)]*N

    otype = f.dtype.char
    if otype not in ['f', 'd', 'F', 'D']:
        otype = 'd'

    for axis in range(N):
        # select out appropriate parts for this dimension
        out = zeros(f.shape, f.dtype.char)
        slice1[axis] = slice(1, -1)
        slice2[axis] = slice(2, None)
        slice3[axis] = slice(None, -2)
        # 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0
        out[slice1] = (f[slice2] - f[slice3])/2.0
        slice1[axis] = 0
        slice2[axis] = 1
        slice3[axis] = 0
        # 1D equivalent -- out[0] = (f[1] - f[0])
        out[slice1] = (f[slice2] - f[slice3])
        slice1[axis] = -1
        slice2[axis] = -1
        slice3[axis] = -2
        # 1D equivalent -- out[-1] = (f[-1] - f[-2])
        out[slice1] = (f[slice2] - f[slice3])

        # divide by step size
        outvals.append(out / dx[axis])

        # reset the slice object in this dimension to ":"
        slice1[axis] = slice(None)
        slice2[axis] = slice(None)
        slice3[axis] = slice(None)

    if N == 1:
        return outvals[0]
    else:
        return outvals


def diff(a, n=1, axis=-1):
    """Calculate the nth order discrete difference along given axis.
    """
    if n == 0:
        return a
    if n < 0:
        raise ValueError, 'order must be non-negative but got ' + repr(n)
    a = asanyarray(a)
    nd = len(a.shape)
    slice1 = [slice(None)]*nd
    slice2 = [slice(None)]*nd
    slice1[axis] = slice(1, None)
    slice2[axis] = slice(None, -1)
    slice1 = tuple(slice1)
    slice2 = tuple(slice2)
    if n > 1:
        return diff(a[slice1]-a[slice2], n-1, axis=axis)
    else:
        return a[slice1]-a[slice2]

add_docstring(digitize, 
   r"""(x,bins) --> index of the bin to which each value of x belongs.
   
    Each index i returned is such that bins[i-1] <= x < bins[i] if
    bins is monotonically increasing, or bins [i-1] > x >= bins[i] if
    bins is monotonically decreasing.

    Beyond the bounds of the bins 0 or len(bins) is returned as appropriate.
    """)

add_docstring(bincount,
   r"""(x,weights=None) --> the number of occurrences of each value in x.

    x must be a list of non-negative integers.  The output, b[i],
    represents the number of times that i is found in x.  If weights
    is specified, every occurrence of i at a position p contributes
    weights[p] instead of 1.

    See also: histogram, digitize, unique.
    """)

add_docstring(add_docstring,
   r"""(obj, docstring) --> None

   Add a docstring to a built-in obj if possible.
   If the obj already has a docstring raise a RuntimeError
   If this routine does not know how to add a docstring to the object
      raise a TypeError
   """)
    
def angle(z, deg=0):
    """Return the angle of the complex argument z.
    """
    if deg:
        fact = 180/pi
    else:
        fact = 1.0
    z = asarray(z)
    if (issubclass(z.dtype.type, _nx.complexfloating)):
        zimag = z.imag
        zreal = z.real
    else:
        zimag = 0
        zreal = z
    return arctan2(zimag, zreal) * fact

def unwrap(p, discont=pi, axis=-1):
    """Unwrap radian phase p by changing absolute jumps greater than
       'discont' to their 2*pi complement along the given axis.
    """
    p = asarray(p)
    nd = len(p.shape)
    dd = diff(p, axis=axis)
    slice1 = [slice(None, None)]*nd     # full slices
    slice1[axis] = slice(1, None)
    ddmod = mod(dd+pi, 2*pi)-pi
    _nx.putmask(ddmod, (ddmod==-pi) & (dd > 0), pi)
    ph_correct = ddmod - dd;
    _nx.putmask(ph_correct, abs(dd)<discont, 0)
    up = array(p, copy=True, dtype='d')
    up[slice1] = p[slice1] + ph_correct.cumsum(axis)
    return up

def sort_complex(a):
    """ Sort 'a' as a complex array using the real part first and then
    the imaginary part if the real part is equal (the default sort order
    for complex arrays).  This function is a wrapper ensuring a complex
    return type.
    """
    b = array(a,copy=True)
    b.sort()
    if not issubclass(b.dtype.type, _nx.complexfloating):
        if b.dtype.char in 'bhBH':
            return b.astype('F')
        elif b.dtype.char == 'g':
            return b.astype('G')
        else:
            return b.astype('D')
    else:
        return b

def trim_zeros(filt, trim='fb'):
    """ Trim the leading and trailing zeros from a 1D array.

    Example:
        >>> import numpy
        >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0))
        >>> numpy.trim_zeros(a)
        array([1, 2, 3, 2, 1])
    """
    first = 0
    trim = trim.upper()
    if 'F' in trim:
        for i in filt:
            if i != 0.: break
            else: first = first + 1
    last = len(filt)
    if 'B' in trim:
        for i in filt[::-1]:
            if i != 0.: break
            else: last = last - 1
    return filt[first:last]


import sys
if sys.hexversion < 0x2040000:
   from sets import Set as set

def unique(x):
    """Return sorted unique items from an array or sequence.

    Example:
    >>> unique([5,2,4,0,4,4,2,2,1])
    array([0,1,2,4,5])
    """
    try:
        tmp = x.flatten()
        if tmp.size == 0:
            return tmp
        tmp.sort()
        idx = concatenate(([True],tmp[1:]!=tmp[:-1]))
        return tmp[idx]
    except AttributeError:
        items = list(set(x))
        items.sort()
        return asarray(items)
        
def extract(condition, arr):
    """Return the elements of ravel(arr) where ravel(condition) is True
    (in 1D).

    Equivalent to compress(ravel(condition), ravel(arr)).
    """
    return _nx.take(ravel(arr), nonzero(ravel(condition)))

def insert(arr, mask, vals):
    """Similar to putmask arr[mask] = vals but the 1D array vals has the
    same number of elements as the non-zero values of mask. Inverse of
    extract.
    """
    return _insert(arr, mask, vals)

def nansum(a, axis=-1):
    """Sum the array over the given axis, treating NaNs as 0.
    """
    y = array(a)
    if not issubclass(y.dtype.type, _nx.integer):
        y[isnan(a)] = 0
    return y.sum(axis)

def nanmin(a, axis=-1):
    """Find the minimium over the given axis, ignoring NaNs.
    """
    y = array(a)
    if not issubclass(y.dtype.type, _nx.integer):
        y[isnan(a)] = _nx.inf
    return y.min(axis)

def nanargmin(a, axis=-1):
    """Find the indices of the minimium over the given axis ignoring NaNs.
    """
    y = array(a)
    if not issubclass(y.dtype.type, _nx.integer):
        y[isnan(a)] = _nx.inf
    return y.argmin(axis)

def nanmax(a, axis=-1):
    """Find the maximum over the given axis ignoring NaNs.
    """
    y = array(a)
    if not issubclass(y.dtype.type, _nx.integer):
        y[isnan(a)] = -_nx.inf
    return y.max(axis)

def nanargmax(a, axis=-1):
    """Find the maximum over the given axis ignoring NaNs.
    """
    y = array(a)
    if not issubclass(y.dtype.type, _nx.integer):
        y[isnan(a)] = -_nx.inf
    return y.argmax(axis)

def disp(mesg, device=None, linefeed=True):
    """Display a message to the given device (default is sys.stdout)
    with or without a linefeed.
    """
    if device is None:
        import sys
        device = sys.stdout
    if linefeed:
        device.write('%s\n' % mesg)
    else:
        device.write('%s' % mesg)
    device.flush()
    return

# return number of input arguments and
#  number of default arguments
import re
def _get_nargs(obj):
    if not callable(obj):
        raise TypeError, "Object is not callable."
    if hasattr(obj,'func_code'):
        fcode = obj.func_code
        nargs = fcode.co_argcount
        if obj.func_defaults is not None:
            ndefaults = len(obj.func_defaults)
        else:
            ndefaults = 0
        if isinstance(obj, types.MethodType):
            nargs -= 1
        return nargs, ndefaults
    terr = re.compile(r'.*? takes exactly (?P<exargs>\d+) argument(s|) \((?P<gargs>\d+) given\)')
    try:
        obj()
        return 0, 0
    except TypeError, msg:
        m = terr.match(str(msg))
        if m:
            nargs = int(m.group('exargs'))
            ndefaults = int(m.group('gargs'))
            if isinstance(obj, types.MethodType):
                nargs -= 1
            return nargs, ndefaults
    raise ValueError, 'failed to determine the number of arguments for %s' % (obj)


class vectorize(object):
    """
 vectorize(somefunction, otypes=None, doc=None)
 Generalized Function class.

  Description:

    Define a vectorized function which takes nested sequence
    objects or numpy arrays as inputs and returns a
    numpy array as output, evaluating the function over successive
    tuples of the input arrays like the python map function except it uses
    the broadcasting rules of numpy.

  Input:

    somefunction -- a Python function or method

  Example:

    def myfunc(a, b):
        if a > b:
            return a-b
        else
            return a+b

    vfunc = vectorize(myfunc)

    >>> vfunc([1, 2, 3, 4], 2)
    array([3, 4, 1, 2])

    """
    def __init__(self, pyfunc, otypes='', doc=None):
        self.thefunc = pyfunc
        self.ufunc = None
        nin, ndefault = _get_nargs(pyfunc)
        if nin == 0 and ndefault == 0:
            self.nin = None
            self.nin_wo_defaults = None
        else:
            self.nin = nin
            self.nin_wo_defaults = nin - ndefault
        self.nout = None
        if doc is None:
            self.__doc__ = pyfunc.__doc__
        else:
            self.__doc__ = doc
        if isinstance(otypes, types.StringType):
            self.otypes = otypes
        else:
            raise ValueError, "output types must be a string"
        for char in self.otypes:
            if char not in typecodes['All']:
                raise ValueError, "invalid typecode specified"
        self.lastcallargs = 0

    def __call__(self, *args):
        # get number of outputs and output types by calling
        #  the function on the first entries of args
        nargs = len(args)
        if self.nin:
            if (nargs > self.nin) or (nargs < self.nin_wo_defaults):
                raise ValueError, "mismatch between python function inputs"\
                      " and received arguments"
        if self.nout is None or self.otypes == '':
            newargs = []
            for arg in args:
                newargs.append(asarray(arg).flat[0])
            theout = self.thefunc(*newargs)
            if isinstance(theout, types.TupleType):
                self.nout = len(theout)
            else:
                self.nout = 1
                theout = (theout,)
            if self.otypes == '':
                otypes = []
                for k in range(self.nout):
                    otypes.append(asarray(theout[k]).dtype.char)
                self.otypes = ''.join(otypes)

        if (self.ufunc is None) or (self.lastcallargs != nargs):
            self.ufunc = frompyfunc(self.thefunc, nargs, self.nout)
            self.lastcallargs = nargs

        if self.nout == 1:
            return array(self.ufunc(*args),copy=False).astype(self.otypes[0])
        else:
            return tuple([array(x,copy=False).astype(c) \
                          for x, c in zip(self.ufunc(*args), self.otypes)])

def cov(m,y=None, rowvar=1, bias=0):
    """Estimate the covariance matrix.

    If m is a vector, return the variance.  For matrices return the
    covariance matrix.

    If y is given it is treated as an additional (set of)
    variable(s). 

    Normalization is by (N-1) where N is the number of observations
    (unbiased estimate).  If bias is 1 then normalization is by N.

    If rowvar is non-zero (default), then each row is a variable with
    observations in the columns, otherwise each column
    is a variable and the observations are in the rows.
    """

    X = array(m,ndmin=2)
    if X.shape[0] == 1:
        rowvar = 1
    if rowvar:
        axis = 0
        tup = (slice(None),newaxis)
    else:
        axis = 1
        tup = (newaxis, slice(None))

        
    if y is not None:
        y = array(y,copy=False,ndmin=2)
        X = concatenate((X,y),axis)

    X -= X.mean(axis=1-axis)[tup]
    if rowvar:
        N = X.shape[1]
    else:
        N = X.shape[0]

    if bias:
        fact = N*1.0
    else:
        fact = N-1.0

    if not rowvar:
        return (dot(X.transpose(), X.conj()) / fact).squeeze()
    else:
        return (dot(X,X.transpose().conj())/fact).squeeze()
    
def corrcoef(x, y=None, rowvar=1, bias=0):
    """The correlation coefficients
    """
    c = cov(x, y, rowvar, bias)
    try:
        d = diag(c)
    except ValueError: # scalar covariance
        return 1
    return c/sqrt(multiply.outer(d,d))

def blackman(M):
    """blackman(M) returns the M-point Blackman window.
    """
    n = arange(0,M)
    return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))

def bartlett(M):
    """bartlett(M) returns the M-point Bartlett window.
    """
    n = arange(0,M)
    return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))

def hanning(M):
    """hanning(M) returns the M-point Hanning window.
    """
    n = arange(0,M)
    return 0.5-0.5*cos(2.0*pi*n/(M-1))

def hamming(M):
    """hamming(M) returns the M-point Hamming window.
    """
    n = arange(0,M)
    return 0.54-0.46*cos(2.0*pi*n/(M-1))

## Code from cephes for i0

_i0A = [
-4.41534164647933937950E-18,
 3.33079451882223809783E-17,
-2.43127984654795469359E-16,
 1.71539128555513303061E-15,
-1.16853328779934516808E-14,
 7.67618549860493561688E-14,
-4.85644678311192946090E-13,
 2.95505266312963983461E-12,
-1.72682629144155570723E-11,
 9.67580903537323691224E-11,
-5.18979560163526290666E-10,
 2.65982372468238665035E-9,
-1.30002500998624804212E-8,
 6.04699502254191894932E-8,
-2.67079385394061173391E-7,
 1.11738753912010371815E-6,
-4.41673835845875056359E-6,
 1.64484480707288970893E-5,
-5.75419501008210370398E-5,
 1.88502885095841655729E-4,
-5.76375574538582365885E-4,
 1.63947561694133579842E-3,
-4.32430999505057594430E-3,
 1.05464603945949983183E-2,
-2.37374148058994688156E-2,
 4.93052842396707084878E-2,
-9.49010970480476444210E-2,
 1.71620901522208775349E-1,
-3.04682672343198398683E-1,
 6.76795274409476084995E-1]

_i0B = [
-7.23318048787475395456E-18,
-4.83050448594418207126E-18,
 4.46562142029675999901E-17,
 3.46122286769746109310E-17,
-2.82762398051658348494E-16,
-3.42548561967721913462E-16,
 1.77256013305652638360E-15,
 3.81168066935262242075E-15,
-9.55484669882830764870E-15,
-4.15056934728722208663E-14,
 1.54008621752140982691E-14,
 3.85277838274214270114E-13,
 7.18012445138366623367E-13,
-1.79417853150680611778E-12,
-1.32158118404477131188E-11,
-3.14991652796324136454E-11,
 1.18891471078464383424E-11,
 4.94060238822496958910E-10,
 3.39623202570838634515E-9,
 2.26666899049817806459E-8,
 2.04891858946906374183E-7,
 2.89137052083475648297E-6,
 6.88975834691682398426E-5,
 3.36911647825569408990E-3,
 8.04490411014108831608E-1]

def _chbevl(x, vals):
    b0 = vals[0]
    b1 = 0.0

    for i in xrange(1,len(vals)):
        b2 = b1
        b1 = b0
        b0 = x*b1 - b2 + vals[i]

    return 0.5*(b0 - b2)

def _i0_1(x):
    return exp(x) * _chbevl(x/2.0-2, _i0A)

def _i0_2(x):
    return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x)

def i0(x):
    x = atleast_1d(x).copy()
    y = empty_like(x)
    ind = (x<0)
    x[ind] = -x[ind]
    ind = (x<=8.0)
    y[ind] = _i0_1(x[ind])
    ind2 = ~ind
    y[ind2] = _i0_2(x[ind2])
    return y.squeeze()

## End of cephes code for i0

def kaiser(M,beta):
    """kaiser(M, beta) returns a Kaiser window of length M with shape parameter
    beta. It depends on numpy.special (in full numpy) for the modified bessel
    function i0.
    """
    from numpy.dual import i0
    n = arange(0,M)
    alpha = (M-1)/2.0
    return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(beta)

def sinc(x):
    """sinc(x) returns sin(pi*x)/(pi*x) at all points of array x.
    """
    y = pi* where(x == 0, 1.0e-20, x)
    return sin(y)/y

def msort(a):
    b = array(a,subok=True,copy=True)
    b.sort(0)
    return b

def median(m):
    """median(m) returns a median of m along the first dimension of m.
    """
    sorted = msort(m)
    if sorted.shape[0] % 2 == 1:
        return sorted[int(sorted.shape[0]/2)]
    else:
        sorted = msort(m)
        index = sorted.shape[0]/2
        return (sorted[index-1]+sorted[index])/2.0

def trapz(y, x=None, dx=1.0, axis=-1):
    """Integrate y(x) using samples along the given axis and the composite
    trapezoidal rule.  If x is None, spacing given by dx is assumed.
    """
    y = asarray(y)
    if x is None:
        d = dx
    else:
        d = diff(x,axis=axis)
    nd = len(y.shape)
    slice1 = [slice(None)]*nd
    slice2 = [slice(None)]*nd
    slice1[axis] = slice(1,None)
    slice2[axis] = slice(None,-1)
    return add.reduce(d * (y[slice1]+y[slice2])/2.0,axis)

#always succeed
def add_newdoc(place, obj, doc):
    """Adds documentation to obj which is in module place. 

    If doc is a string add it to obj as a docstring

    If doc is a tuple, then the first element is interpreted as
       an attribute of obj and the second as the docstring
          (method, docstring)
          
    If doc is a list, then each element of the list should be a
       sequence of length two --> [(method1, docstring1),
       (method2, docstring2), ...]

    This routine never raises an error. 
       """
    try:
        new = {}
        exec 'from %s import %s' % (place, obj) in new
        if isinstance(doc, str):
            add_docstring(new[obj], doc.strip())
        elif isinstance(doc, tuple):
            add_docstring(getattr(new[obj], doc[0]), doc[1].strip())
        elif isinstance(doc, list):
            for val in doc:
                add_docstring(getattr(new[obj], val[0]), val[1].strip())
    except:
        pass


# From matplotlib
def meshgrid(x,y):
    """
    For vectors x, y with lengths Nx=len(x) and Ny=len(y), return X, Y
    where X and Y are (Ny, Nx) shaped arrays with the elements of x
    and y repeated to fill the matrix

    EG,

      [X, Y] = meshgrid([1,2,3], [4,5,6,7])

       X =
         1   2   3
         1   2   3
         1   2   3
         1   2   3


       Y =
         4   4   4
         5   5   5
         6   6   6
         7   7   7
  """
    x = asarray(x)
    y = asarray(y)
    numRows, numCols = len(y), len(x)  # yes, reversed
    x = x.reshape(1,numCols)
    X = x.repeat(numRows, axis=0)
    
    y = y.reshape(numRows,1)
    Y = y.repeat(numCols, axis=1)
    return X, Y