1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
__all__ = ['unravel_index',
'mgrid',
'ogrid',
'r_', 'c_', 's_',
'index_exp', 'ix_',
'ndenumerate','ndindex']
import sys
import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, ScalarType, array
import math
import function_base
import numpy.core.defmatrix as matrix
makemat = matrix.matrix
# contributed by Stefan van der Walt
def unravel_index(x,dims):
"""Convert a flat index into an index tuple for an array of given shape.
e.g. for a 2x2 array, unravel_index(2,(2,2)) returns (1,0).
Example usage:
p = x.argmax()
idx = unravel_index(p,x.shape)
x[idx] == x.max()
Note: x.flat[p] == x.max()
Thus, it may be easier to use flattened indexing than to re-map
the index to a tuple.
"""
if x > _nx.prod(dims)-1 or x < 0:
raise ValueError("Invalid index, must be 0 <= x <= number of elements.")
idx = _nx.empty_like(dims)
# Take dimensions
# [a,b,c,d]
# Reverse and drop first element
# [d,c,b]
# Prepend [1]
# [1,d,c,b]
# Calculate cumulative product
# [1,d,dc,dcb]
# Reverse
# [dcb,dc,d,1]
dim_prod = _nx.cumprod([1] + list(dims)[:0:-1])[::-1]
# Indices become [x/dcb % a, x/dc % b, x/d % c, x/1 % d]
return tuple(x/dim_prod % dims)
def ix_(*args):
""" Construct an open mesh from multiple sequences.
This function takes n 1-d sequences and returns n outputs with n
dimensions each such that the shape is 1 in all but one dimension and
the dimension with the non-unit shape value cycles through all n
dimensions.
Using ix_() one can quickly construct index arrays that will index
the cross product.
a[ix_([1,3,7],[2,5,8])] returns the array
a[1,2] a[1,5] a[1,8]
a[3,2] a[3,5] a[3,8]
a[7,2] a[7,5] a[7,8]
"""
out = []
nd = len(args)
baseshape = [1]*nd
for k in range(nd):
new = _nx.asarray(args[k])
if (new.ndim != 1):
raise ValueError, "Cross index must be 1 dimensional"
if issubclass(new.dtype.type, _nx.bool_):
new = new.nonzero()[0]
baseshape[k] = len(new)
new = new.reshape(tuple(baseshape))
out.append(new)
baseshape[k] = 1
return tuple(out)
class nd_grid(object):
""" Construct a "meshgrid" in N-dimensions.
grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a COMPLEX NUMBER (e.g. 5j), then the
integer part of it's magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value IS INCLUSIVE.
If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1
Example:
>>> mgrid = nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
<BLANKLINE>
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid = nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]
"""
def __init__(self, sparse=False):
self.sparse = sparse
def __getitem__(self,key):
try:
size = []
typ = int
for k in range(len(key)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if isinstance(step, complex):
size.append(int(abs(step)))
typ = float
else:
size.append(math.ceil((key[k].stop - start)/(step*1.0)))
if isinstance(step, float) or \
isinstance(start, float) or \
isinstance(key[k].stop, float):
typ = float
if self.sparse:
nn = map(lambda x,t: _nx.arange(x, dtype=t), size, \
(typ,)*len(size))
else:
nn = _nx.indices(size, typ)
for k in range(len(size)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if isinstance(step, complex):
step = int(abs(step))
if step != 1:
step = (key[k].stop - start)/float(step-1)
nn[k] = (nn[k]*step+start)
if self.sparse:
slobj = [_nx.newaxis]*len(size)
for k in range(len(size)):
slobj[k] = slice(None,None)
nn[k] = nn[k][slobj]
slobj[k] = _nx.newaxis
return nn
except (IndexError, TypeError):
step = key.step
stop = key.stop
start = key.start
if start is None: start = 0
if isinstance(step, complex):
step = abs(step)
length = int(step)
if step != 1:
step = (key.stop-start)/float(step-1)
stop = key.stop+step
return _nx.arange(0, length,1, float)*step + start
else:
return _nx.arange(start, stop, step)
def __getslice__(self,i,j):
return _nx.arange(i,j)
def __len__(self):
return 0
mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
class AxisConcatenator(object):
"""Translates slice objects to concatenation along an axis.
"""
def _retval(self, res):
if self.matrix:
oldndim = res.ndim
res = makemat(res)
if oldndim == 1 and self.col:
res = res.T
self.axis = self._axis
self.matrix = self._matrix
self.col = 0
return res
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
self._axis = axis
self._matrix = matrix
self.axis = axis
self.matrix = matrix
self.col = 0
self.trans1d = trans1d
self.ndmin = ndmin
def __getitem__(self,key):
trans1d = self.trans1d
ndmin = self.ndmin
if isinstance(key, str):
frame = sys._getframe().f_back
mymat = matrix.bmat(key,frame.f_globals,frame.f_locals)
return mymat
if type(key) is not tuple:
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if type(key[k]) is slice:
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None: start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = function_base.linspace(start, stop, num=size)
else:
newobj = _nx.arange(start, stop, step)
if ndmin > 1:
newobj = array(newobj,copy=False,ndmin=ndmin)
if trans1d != -1:
newobj = newobj.swapaxes(-1,trans1d)
elif isinstance(key[k],str):
if k != 0:
raise ValueError, "special directives must be the"\
"first entry."
key0 = key[0]
if key0 in 'rc':
self.matrix = True
self.col = (key0 == 'c')
continue
if ',' in key0:
vec = key0.split(',')
try:
self.axis, ndmin = \
[int(x) for x in vec[:2]]
if len(vec) == 3:
trans1d = int(vec[2])
continue
except:
raise ValueError, "unknown special directive"
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError, "unknown special directive"
elif type(key[k]) in ScalarType:
newobj = array(key[k],ndmin=ndmin)
scalars.append(k)
scalar = True
else:
newobj = key[k]
if ndmin > 1:
tempobj = array(newobj, copy=False, subok=True)
newobj = array(newobj, copy=False, subok=True,
ndmin=ndmin)
if trans1d != -1 and tempobj.ndim < ndmin:
k2 = ndmin-tempobj.ndim
if (trans1d < 0):
trans1d += k2 + 1
defaxes = range(ndmin)
k1 = trans1d
axes = defaxes[:k1] + defaxes[k2:] + \
defaxes[k1:k2]
newobj = newobj.transpose(axes)
del tempobj
objs.append(newobj)
if isinstance(newobj, _nx.ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = _nx.concatenate(tuple(objs),axis=self.axis)
return self._retval(res)
def __getslice__(self,i,j):
res = _nx.arange(i,j)
return self._retval(res)
def __len__(self):
return 0
# separate classes are used here instead of just making r_ = concatentor(0),
# etc. because otherwise we couldn't get the doc string to come out right
# in help(r_)
class RClass(AxisConcatenator):
"""Translates slice objects to concatenation along the first axis.
For example:
>>> r_[array([1,2,3]), 0, 0, array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
def __init__(self):
AxisConcatenator.__init__(self, 0)
r_ = RClass()
class CClass(AxisConcatenator):
"""Translates slice objects to concatenation along the second axis.
For example:
>>> c_[array([[1,2,3]]), 0, 0, array([[4,5,6]])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
def __init__(self):
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
c_ = CClass()
class ndenumerate(object):
"""
A simple nd index iterator over an array.
Example:
>>> a = array([[1,2],[3,4]])
>>> for index, x in ndenumerate(a):
... print index, x
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
"""
def __init__(self, arr):
self.iter = asarray(arr).flat
def next(self):
return self.iter.coords, self.iter.next()
def __iter__(self):
return self
class ndindex(object):
"""Pass in a sequence of integers corresponding
to the number of dimensions in the counter. This iterator
will then return an N-dimensional counter.
Example:
>>> for index in ndindex(3,2,1):
... print index
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)
"""
def __init__(self, *args):
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
self.nd = len(args)
self.ind = [0]*self.nd
self.index = 0
self.maxvals = args
tot = 1
for k in range(self.nd):
tot *= args[k]
self.total = tot
def _incrementone(self, axis):
if (axis < 0): # base case
return
if (self.ind[axis] < self.maxvals[axis]-1):
self.ind[axis] += 1
else:
self.ind[axis] = 0
self._incrementone(axis-1)
def ndincr(self):
self._incrementone(self.nd-1)
def next(self):
if (self.index >= self.total):
raise StopIteration
val = tuple(self.ind)
self.index += 1
self.ndincr()
return val
def __iter__(self):
return self
# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#
class IndexExpression(object):
"""
A nicer way to build up index tuples for arrays.
For any index combination, including slicing and axis insertion,
'a[indices]' is the same as 'a[index_exp[indices]]' for any
array 'a'. However, 'index_exp[indices]' can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.
"""
maxint = sys.maxint
def __init__(self, maketuple):
self.maketuple = maketuple
def __getitem__(self, item):
if self.maketuple and type(item) != type(()):
return (item,)
else:
return item
def __len__(self):
return self.maxint
def __getslice__(self, start, stop):
if stop == self.maxint:
stop = None
return self[start:stop:None]
index_exp = IndexExpression(maketuple=True)
s_ = IndexExpression(maketuple=False)
# End contribution from Konrad.
|