summaryrefslogtreecommitdiff
path: root/numpy/lib/io.py
blob: 03274845c602daa8e74a267af76f2fe14530c456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
__all__ = ['savetxt', 'loadtxt',
           'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv',
           'load', 'loads',
           'save', 'savez',
           'packbits', 'unpackbits',
           'fromregex',
           'DataSource']

import numpy as np
import format
import cStringIO
import os
import itertools

from cPickle import load as _cload, loads
from _datasource import DataSource
from _compiled_base import packbits, unpackbits

from _iotools import LineSplitter, NameValidator, StringConverter, \
                     _is_string_like, has_nested_fields, flatten_dtype

_file = file
_string_like = _is_string_like

def seek_gzip_factory(f):
    """Use this factory to produce the class so that we can do a lazy
    import on gzip.

    """
    import gzip, new

    def seek(self, offset, whence=0):
        # figure out new position (we can only seek forwards)
        if whence == 1:
            offset = self.offset + offset

        if whence not in [0, 1]:
            raise IOError, "Illegal argument"

        if offset < self.offset:
            # for negative seek, rewind and do positive seek
            self.rewind()
            count = offset - self.offset
            for i in range(count // 1024):
                self.read(1024)
            self.read(count % 1024)

    def tell(self):
        return self.offset

    if isinstance(f, str):
        f = gzip.GzipFile(f)

    f.seek = new.instancemethod(seek, f)
    f.tell = new.instancemethod(tell, f)

    return f

class BagObj(object):
    """A simple class that converts attribute lookups to
    getitems on the class passed in.
    """
    def __init__(self, obj):
        self._obj = obj
    def __getattribute__(self, key):
        try:
            return object.__getattribute__(self, '_obj')[key]
        except KeyError:
            raise AttributeError, key

class NpzFile(object):
    """A dictionary-like object with lazy-loading of files in the zipped
    archive provided on construction.

    The arrays and file strings are lazily loaded on either
    getitem access using obj['key'] or attribute lookup using obj.f.key

    A list of all files (without .npy) extensions can be obtained
    with .files and the ZipFile object itself using .zip
    """
    def __init__(self, fid):
        # Import is postponed to here since zipfile depends on gzip, an optional
        # component of the so-called standard library.
        import zipfile
        _zip = zipfile.ZipFile(fid)
        self._files = _zip.namelist()
        self.files = []
        for x in self._files:
            if x.endswith('.npy'):
                self.files.append(x[:-4])
            else:
                self.files.append(x)
        self.zip = _zip
        self.f = BagObj(self)

    def __getitem__(self, key):
        # FIXME: This seems like it will copy strings around
        #   more than is strictly necessary.  The zipfile
        #   will read the string and then
        #   the format.read_array will copy the string
        #   to another place in memory.
        #   It would be better if the zipfile could read
        #   (or at least uncompress) the data
        #   directly into the array memory.
        member = 0
        if key in self._files:
            member = 1
        elif key in self.files:
            member = 1
            key += '.npy'
        if member:
            bytes = self.zip.read(key)
            if bytes.startswith(format.MAGIC_PREFIX):
                value = cStringIO.StringIO(bytes)
                return format.read_array(value)
            else:
                return bytes
        else:
            raise KeyError, "%s is not a file in the archive" % key

def load(file, mmap_mode=None):
    """
    Load a pickled, ``.npy``, or ``.npz`` binary file.

    Parameters
    ----------
    file : file-like object or string
        The file to read.  It must support ``seek()`` and ``read()`` methods.
    mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
        If not None, then memory-map the file, using the given mode
        (see `numpy.memmap`).  The mode has no effect for pickled or
        zipped files.
        A memory-mapped array is stored on disk, and not directly loaded
        into memory.  However, it can be accessed and sliced like any
        ndarray.  Memory mapping is especially useful for accessing
        small fragments of large files without reading the entire file
        into memory.

    Returns
    -------
    result : array, tuple, dict, etc.
        Data stored in the file.

    Raises
    ------
    IOError
        If the input file does not exist or cannot be read.

    Notes
    -----
    - If the file contains pickle data, then whatever is stored in the
      pickle is returned.
    - If the file is a ``.npy`` file, then an array is returned.
    - If the file is a ``.npz`` file, then a dictionary-like object is
      returned, containing ``{filename: array}`` key-value pairs, one for
      each file in the archive.

    Examples
    --------
    Store data to disk, and load it again:

    >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
    >>> np.load('/tmp/123.npy')
    array([[1, 2, 3],
           [4, 5, 6]])

    Mem-map the stored array, and then access the second row
    directly from disk:

    >>> X = np.load('/tmp/123.npy', mmap_mode='r')
    >>> X[1, :]
    memmap([4, 5, 6])

    """
    import gzip

    if isinstance(file, basestring):
        fid = _file(file,"rb")
    elif isinstance(file, gzip.GzipFile):
        fid = seek_gzip_factory(file)
    else:
        fid = file

    # Code to distinguish from NumPy binary files and pickles.
    _ZIP_PREFIX = 'PK\x03\x04'
    N = len(format.MAGIC_PREFIX)
    magic = fid.read(N)
    fid.seek(-N,1) # back-up
    if magic.startswith(_ZIP_PREFIX):  # zip-file (assume .npz)
        return NpzFile(fid)
    elif magic == format.MAGIC_PREFIX: # .npy file
        if mmap_mode:
            return format.open_memmap(file, mode=mmap_mode)
        else:
            return format.read_array(fid)
    else:  # Try a pickle
        try:
            return _cload(fid)
        except:
            raise IOError, \
                "Failed to interpret file %s as a pickle" % repr(file)

def save(file, arr):
    """
    Save an array to a binary file in NumPy format.

    Parameters
    ----------
    f : file or string
        File or filename to which the data is saved.  If the filename
        does not already have a ``.npy`` extension, it is added.
    x : array_like
        Array data.

    See Also
    --------
    savez : Save several arrays into an .npz compressed archive
    savetxt : Save an array to a file as plain text

    Examples
    --------
    >>> from tempfile import TemporaryFile
    >>> outfile = TemporaryFile()

    >>> x = np.arange(10)
    >>> np.save(outfile, x)

    >>> outfile.seek(0)
    >>> np.load(outfile)
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

    """
    if isinstance(file, basestring):
        if not file.endswith('.npy'):
            file = file + '.npy'
        fid = open(file, "wb")
    else:
        fid = file

    arr = np.asanyarray(arr)
    format.write_array(fid, arr)

def savez(file, *args, **kwds):
    """
    Save several arrays into a single, compressed file with extension ".npz"

    If keyword arguments are given, the names for variables assigned to the
    keywords are the keyword names (not the variable names in the caller).
    If arguments are passed in with no keywords, the corresponding variable
    names are arr_0, arr_1, etc.

    Parameters
    ----------
    file : Either the filename (string) or an open file (file-like object)
        If file is a string, it names the output file.  ".npz" will be appended
        if it is not already there.
    args : Arguments
        Any function arguments other than the file name are variables to save.
        Since it is not possible for Python to know their names outside the
        savez function, they will be saved with names "arr_0", "arr_1", and so
        on.  These arguments can be any expression.
    kwds : Keyword arguments
        All keyword=value pairs cause the value to be saved with the name of
        the keyword.

    See Also
    --------
    save : Save a single array to a binary file in NumPy format
    savetxt : Save an array to a file as plain text

    Notes
    -----
    The .npz file format is a zipped archive of files named after the variables
    they contain.  Each file contains one variable in .npy format.

    """

    # Import is postponed to here since zipfile depends on gzip, an optional
    # component of the so-called standard library.
    import zipfile
    # Import deferred for startup time improvement
    import tempfile

    if isinstance(file, basestring):
        if not file.endswith('.npz'):
            file = file + '.npz'

    namedict = kwds
    for i, val in enumerate(args):
        key = 'arr_%d' % i
        if key in namedict.keys():
            raise ValueError, "Cannot use un-named variables and keyword %s" % key
        namedict[key] = val

    zip = zipfile.ZipFile(file, mode="w")

    # Stage arrays in a temporary file on disk, before writing to zip.
    fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy')
    os.close(fd)
    try:
        for key, val in namedict.iteritems():
            fname = key + '.npy'
            fid = open(tmpfile, 'wb')
            try:
                format.write_array(fid, np.asanyarray(val))
                fid.close()
                fid = None
                zip.write(tmpfile, arcname=fname)
            finally:
                if fid:
                    fid.close()
    finally:
        os.remove(tmpfile)

    zip.close()

# Adapted from matplotlib

def _getconv(dtype):
    typ = dtype.type
    if issubclass(typ, np.bool_):
        return lambda x: bool(int(x))
    if issubclass(typ, np.integer):
        return lambda x: int(float(x))
    elif issubclass(typ, np.floating):
        return float
    elif issubclass(typ, np.complex):
        return complex
    else:
        return str



def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None,
            skiprows=0, usecols=None, unpack=False):
    """
    Load data from a text file.

    Each row in the text file must have the same number of values.

    Parameters
    ----------
    fname : file or string
        File or filename to read.  If the filename extension is ``.gz`` or
        ``.bz2``, the file is first decompressed.
    dtype : data-type
        Data type of the resulting array.  If this is a record data-type,
        the resulting array will be 1-dimensional, and each row will be
        interpreted as an element of the array.   In this case, the number
        of columns used must match the number of fields in the data-type.
    comments : string, optional
        The character used to indicate the start of a comment.
    delimiter : string, optional
        The string used to separate values.  By default, this is any
        whitespace.
    converters : {}
        A dictionary mapping column number to a function that will convert
        that column to a float.  E.g., if column 0 is a date string:
        ``converters = {0: datestr2num}``. Converters can also be used to
        provide a default value for missing data:
        ``converters = {3: lambda s: float(s or 0)}``.
    skiprows : int
        Skip the first `skiprows` lines.
    usecols : sequence
        Which columns to read, with 0 being the first.  For example,
        ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns.
    unpack : bool
        If True, the returned array is transposed, so that arguments may be
        unpacked using ``x, y, z = loadtxt(...)``

    Returns
    -------
    out : ndarray
        Data read from the text file.

    See Also
    --------
    scipy.io.loadmat : reads Matlab(R) data files

    Examples
    --------
    >>> from StringIO import StringIO   # StringIO behaves like a file object
    >>> c = StringIO("0 1\\n2 3")
    >>> np.loadtxt(c)
    array([[ 0.,  1.],
           [ 2.,  3.]])

    >>> d = StringIO("M 21 72\\nF 35 58")
    >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
    ...                      'formats': ('S1', 'i4', 'f4')})
    array([('M', 21, 72.0), ('F', 35, 58.0)],
          dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

    >>> c = StringIO("1,0,2\\n3,0,4")
    >>> x,y = np.loadtxt(c, delimiter=',', usecols=(0,2), unpack=True)
    >>> x
    array([ 1.,  3.])
    >>> y
    array([ 2.,  4.])

    """
    user_converters = converters

    if usecols is not None:
        usecols = list(usecols)

    isstring = False
    if _is_string_like(fname):
        isstring = True
        if fname.endswith('.gz'):
            import gzip
            fh = seek_gzip_factory(fname)
        elif fname.endswith('.bz2'):
            import bz2
            fh = bz2.BZ2File(fname)
        else:
            fh = file(fname)
    elif hasattr(fname, 'readline'):
        fh = fname
    else:
        raise ValueError('fname must be a string or file handle')
    X = []

    def flatten_dtype(dt):
        """Unpack a structured data-type."""
        if dt.names is None:
            # If the dtype is flattened, return.
            # If the dtype has a shape, the dtype occurs
            # in the list more than once.
            return [dt.base] * int(np.prod(dt.shape))
        else:
            types = []
            for field in dt.names:
                tp, bytes = dt.fields[field]
                flat_dt = flatten_dtype(tp)
                types.extend(flat_dt)
            return types

    def split_line(line):
        """Chop off comments, strip, and split at delimiter."""
        line = line.split(comments)[0].strip()
        if line:
            return line.split(delimiter)
        else:
            return []

    try:
        # Make sure we're dealing with a proper dtype
        dtype = np.dtype(dtype)
        defconv = _getconv(dtype)

        # Skip the first `skiprows` lines
        for i in xrange(skiprows):
            fh.readline()

        # Read until we find a line with some values, and use
        # it to estimate the number of columns, N.
        first_vals = None
        while not first_vals:
            first_line = fh.readline()
            if first_line == '': # EOF reached
                raise IOError('End-of-file reached before encountering data.')
            first_vals = split_line(first_line)
        N = len(usecols or first_vals)

        dtype_types = flatten_dtype(dtype)
        if len(dtype_types) > 1:
            # We're dealing with a structured array, each field of
            # the dtype matches a column
            converters = [_getconv(dt) for dt in dtype_types]
        else:
            # All fields have the same dtype
            converters = [defconv for i in xrange(N)]

        # By preference, use the converters specified by the user
        for i, conv in (user_converters or {}).iteritems():
            if usecols:
                try:
                    i = usecols.index(i)
                except ValueError:
                    # Unused converter specified
                    continue
            converters[i] = conv

        # Parse each line, including the first
        for i, line in enumerate(itertools.chain([first_line], fh)):
            vals = split_line(line)
            if len(vals) == 0:
                continue

            if usecols:
                vals = [vals[i] for i in usecols]

            # Convert each value according to its column and store
            X.append(tuple([conv(val) for (conv, val) in zip(converters, vals)]))
    finally:
        if isstring:
            fh.close()

    if len(dtype_types) > 1:
        # We're dealing with a structured array, with a dtype such as
        # [('x', int), ('y', [('s', int), ('t', float)])]
        #
        # First, create the array using a flattened dtype:
        # [('x', int), ('s', int), ('t', float)]
        #
        # Then, view the array using the specified dtype.
        X = np.array(X, dtype=np.dtype([('', t) for t in dtype_types]))
        X = X.view(dtype)
    else:
        X = np.array(X, dtype)

    X = np.squeeze(X)
    if unpack:
        return X.T
    else:
        return X


def savetxt(fname, X, fmt='%.18e',delimiter=' '):
    """
    Save an array to file.

    Parameters
    ----------
    fname : filename or a file handle
        If the filename ends in .gz, the file is automatically saved in
        compressed gzip format.  The load() command understands gzipped
        files transparently.
    X : array_like
        Data.
    fmt : string or sequence of strings
        A single format (%10.5f), a sequence of formats, or a
        multi-format string, e.g. 'Iteration %d -- %10.5f', in which
        case delimiter is ignored.
    delimiter : str
        Character separating columns.

    See Also
    --------
    save : Save an array to a binary file in NumPy format
    savez : Save several arrays into an .npz compressed archive

    Notes
    -----
    Further explanation of the `fmt` parameter
    (``%[flag]width[.precision]specifier``):

    flags:
        ``-`` : left justify

        ``+`` : Forces to preceed result with + or -.

        ``0`` : Left pad the number with zeros instead of space (see width).

    width:
        Minimum number of characters to be printed. The value is not truncated
        if it has more characters.

    precision:
        - For integer specifiers (eg. ``d,i,o,x``), the minimum number of
          digits.
        - For ``e, E`` and ``f`` specifiers, the number of digits to print
          after the decimal point.
        - For ``g`` and ``G``, the maximum number of significant digits.
        - For ``s``, the maximum number of characters.

    specifiers:
        ``c`` : character

        ``d`` or ``i`` : signed decimal integer

        ``e`` or ``E`` : scientific notation with ``e`` or ``E``.

        ``f`` : decimal floating point

        ``g,G`` : use the shorter of ``e,E`` or ``f``

        ``o`` : signed octal

        ``s`` : string of characters

        ``u`` : unsigned decimal integer

        ``x,X`` : unsigned hexadecimal integer

    This is not an exhaustive specification.



    Examples
    --------
    >>> savetxt('test.out', x, delimiter=',') # X is an array
    >>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
    >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation

    """

    if _is_string_like(fname):
        if fname.endswith('.gz'):
            import gzip
            fh = gzip.open(fname,'wb')
        else:
            fh = file(fname,'w')
    elif hasattr(fname, 'seek'):
        fh = fname
    else:
        raise ValueError('fname must be a string or file handle')

    X = np.asarray(X)

    # Handle 1-dimensional arrays
    if X.ndim == 1:
        # Common case -- 1d array of numbers
        if X.dtype.names is None:
            X = np.atleast_2d(X).T
            ncol = 1

        # Complex dtype -- each field indicates a separate column
        else:
            ncol = len(X.dtype.descr)
    else:
        ncol = X.shape[1]

    # `fmt` can be a string with multiple insertion points or a list of formats.
    # E.g. '%10.5f\t%10d' or ('%10.5f', '$10d')
    if type(fmt) in (list, tuple):
        if len(fmt) != ncol:
            raise AttributeError('fmt has wrong shape.  %s' % str(fmt))
        format = delimiter.join(fmt)
    elif type(fmt) is str:
        if fmt.count('%') == 1:
            fmt = [fmt,]*ncol
            format = delimiter.join(fmt)
        elif fmt.count('%') != ncol:
            raise AttributeError('fmt has wrong number of %% formats.  %s'
                                 % fmt)
        else:
            format = fmt

    for row in X:
        fh.write(format % tuple(row) + '\n')

import re
def fromregex(file, regexp, dtype):
    """
    Construct an array from a text file, using regular-expressions parsing.

    Array is constructed from all matches of the regular expression
    in the file. Groups in the regular expression are converted to fields.

    Parameters
    ----------
    file : str or file
        File name or file object to read.
    regexp : str or regexp
        Regular expression used to parse the file.
        Groups in the regular expression correspond to fields in the dtype.
    dtype : dtype or dtype list
        Dtype for the structured array

    Examples
    --------
    >>> f = open('test.dat', 'w')
    >>> f.write("1312 foo\\n1534  bar\\n444   qux")
    >>> f.close()
    >>> np.fromregex('test.dat', r"(\\d+)\\s+(...)",
    ...              [('num', np.int64), ('key', 'S3')])
    array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
          dtype=[('num', '<i8'), ('key', '|S3')])

    """
    if not hasattr(file, "read"):
        file = open(file,'r')
    if not hasattr(regexp, 'match'):
        regexp = re.compile(regexp)
    if not isinstance(dtype, np.dtype):
        dtype = np.dtype(dtype)

    seq = regexp.findall(file.read())
    if seq and not isinstance(seq[0], tuple):
        # Only one group is in the regexp.
        # Create the new array as a single data-type and then
        #   re-interpret as a single-field structured array. 
        newdtype = np.dtype(dtype[dtype.names[0]])
        output = np.array(seq, dtype=newdtype)
        output.dtype = dtype
    else:
        output = np.array(seq, dtype=dtype)

    return output




#####--------------------------------------------------------------------------
#---- --- ASCII functions ---
#####--------------------------------------------------------------------------



def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0,
               converters=None, missing='', missing_values=None, usecols=None,
               names=None, excludelist=None, deletechars=None,
               case_sensitive=True, unpack=None, usemask=False, loose=True):
    """
    Load data from a text file.

    Each line past the first `skiprows` ones is split at the `delimiter`
    character, and characters following the `comments` character are discarded.
    


    Parameters
    ----------
    fname : file or string
        File or filename to read.  If the filename extension is `.gz` or `.bz2`,
        the file is first decompressed.
    dtype : data-type
        Data type of the resulting array.  If this is a flexible data-type,
        the resulting array will be 1-dimensional, and each row will be
        interpreted as an element of the array. In this case, the number
        of columns used must match the number of fields in the data-type,
        and the names of each field will be set by the corresponding name
        of the dtype.
        If None, the dtypes will be determined by the contents of each
        column, individually.
    comments : {string}, optional
        The character used to indicate the start of a comment.
        All the characters occurring on a line after a comment are discarded
    delimiter : {string}, optional
        The string used to separate values.  By default, any consecutive
        whitespace act as delimiter.
    skiprows : {int}, optional
        Numbers of lines to skip at the beginning of the file.
    converters : {None, dictionary}, optional
        A dictionary mapping column number to a function that will convert
        values in the column to a number. Converters can also be used to
        provide a default value for missing data:
        ``converters = {3: lambda s: float(s or 0)}``.
    missing : {string}, optional
        A string representing a missing value, irrespective of the column where
        it appears (e.g., `'missing'` or `'unused'`).
    missing_values : {None, dictionary}, optional
        A dictionary mapping a column number to a string indicating whether the
        corresponding field should be masked.
    usecols : {None, sequence}, optional
        Which columns to read, with 0 being the first.  For example,
        ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns.
    names : {None, True, string, sequence}, optional
        If `names` is True, the field names are read from the first valid line
        after the first `skiprows` lines.
        If `names` is a sequence or a single-string of comma-separated names,
        the names will be used to define the field names in a flexible dtype.
        If `names` is None, the names of the dtype fields will be used, if any.
    excludelist : {sequence}, optional
        A list of names to exclude. This list is appended to the default list
        ['return','file','print']. Excluded names are appended an underscore:
        for example, `file` would become `file_`.
    deletechars : {string}, optional
        A string combining invalid characters that must be deleted from the names.
    case_sensitive : {True, False, 'upper', 'lower'}, optional
        If True, field names are case_sensitive.
        If False or 'upper', field names are converted to upper case.
        If 'lower', field names are converted to lower case.
    unpack : {bool}, optional
        If True, the returned array is transposed, so that arguments may be
        unpacked using ``x, y, z = loadtxt(...)``
    usemask : {bool}, optional
        If True, returns a masked array.
        If False, return a regular standard array.

    Returns
    -------
    out : MaskedArray
        Data read from the text file.

    Notes
    --------
    * When spaces are used as delimiters, or when no delimiter has been given
      as input, there should not be any missing data between two fields.
    * When the variable are named (either by a flexible dtype or with `names`,
      there must not be any header in the file (else a :exc:ValueError exception
      is raised).

    Warnings
    --------
    * Individual values are not stripped of spaces by default.
      When using a custom converter, make sure the function does remove spaces.

    See Also
    --------
    numpy.loadtxt : equivalent function when no data is missing.

    """
    #
    if usemask:
        from numpy.ma import MaskedArray, make_mask_descr
    # Check the input dictionary of converters
    user_converters = converters or {}
    if not isinstance(user_converters, dict):
        errmsg = "The input argument 'converter' should be a valid dictionary "\
                 "(got '%s' instead)"
        raise TypeError(errmsg % type(user_converters))
    # Check the input dictionary of missing values
    user_missing_values = missing_values or {}
    if not isinstance(user_missing_values, dict):
        errmsg = "The input argument 'missing_values' should be a valid "\
                 "dictionary (got '%s' instead)"
        raise TypeError(errmsg % type(missing_values))
    defmissing = [_.strip() for _ in missing.split(',')] + ['']

    # Initialize the filehandle, the LineSplitter and the NameValidator
#    fhd = _to_filehandle(fname)
    if isinstance(fname, basestring):
        fhd = np.lib._datasource.open(fname)
    elif not hasattr(fname, 'read'):
        raise TypeError("The input should be a string or a filehandle. "\
                        "(got %s instead)" % type(fname))
    else:
        fhd = fname
    split_line = LineSplitter(delimiter=delimiter, comments=comments, 
                              autostrip=False)._handyman
    validate_names = NameValidator(excludelist=excludelist,
                                   deletechars=deletechars,
                                   case_sensitive=case_sensitive)

    # Get the first valid lines after the first skiprows ones
    for i in xrange(skiprows):
        fhd.readline()
    first_values = None
    while not first_values:
        first_line = fhd.readline()
        if first_line == '':
            raise IOError('End-of-file reached before encountering data.')
        if names is True:
            first_values = first_line.strip().split(delimiter)
        else:
            first_values = split_line(first_line)
    if names is True:
        fval = first_values[0].strip()
        if fval in comments:
            del first_values[0]

    # Check the columns to use
    if usecols is not None:
        usecols = list(usecols)
    nbcols = len(usecols or first_values)

    # Check the names and overwrite the dtype.names if needed
    if dtype is not None:
        dtype = np.dtype(dtype)
    dtypenames = getattr(dtype, 'names', None)
    if names is True:
        names = validate_names([_.strip() for _ in first_values])
        first_line =''
    elif _is_string_like(names):
        names = validate_names([_.strip() for _ in names.split(',')])
    elif names:
        names = validate_names(names)
    elif dtypenames:
        dtype.names = validate_names(dtypenames)
    if names and dtypenames:
        dtype.names = names

    # If usecols is a list of names, convert to a list of indices
    if usecols:
        for (i, current) in enumerate(usecols):
            if _is_string_like(current):
                usecols[i] = names.index(current)

    # If user_missing_values has names as keys, transform them to indices
    missing_values = {}
    for (key, val) in user_missing_values.iteritems():
        # If val is a list, flatten it. In any case, add missing &'' to the list
        if isinstance(val, (list, tuple)):
            val = [str(_) for _ in val]
        else:
            val = [str(val),]
        val.extend(defmissing)
        if _is_string_like(key):
            try:
                missing_values[names.index(key)] = val
            except ValueError:
                pass
        else:
            missing_values[key] = val


    # Initialize the default converters
    if dtype is None:
        # Note: we can't use a [...]*nbcols, as we would have 3 times the same
        # ... converter, instead of 3 different converters.
        converters = [StringConverter(None,
                              missing_values=missing_values.get(_, defmissing))
                      for _ in range(nbcols)]
    else:
        flatdtypes = flatten_dtype(dtype)
        # Initialize the converters
        if len(flatdtypes) > 1:
            # Flexible type : get a converter from each dtype
            converters = [StringConverter(dt,
                              missing_values=missing_values.get(i, defmissing),
                              locked=True)
                          for (i, dt) in enumerate(flatdtypes)]
        else:
            # Set to a default converter (but w/ different missing values)
            converters = [StringConverter(dtype,
                              missing_values=missing_values.get(_, defmissing),
                              locked=True)
                          for _ in range(nbcols)]
    missing_values = [_.missing_values for _ in converters]

    # Update the converters to use the user-defined ones
    uc_update = []
    for (i, conv) in user_converters.iteritems():
        # If the converter is specified by column names, use the index instead
        if _is_string_like(i):
            i = names.index(i)
        if usecols:
            try:
                i = usecols.index(i)
            except ValueError:
                # Unused converter specified
                continue
        converters[i].update(conv, default=None, 
                             missing_values=missing_values[i],
                             locked=True)
        uc_update.append((i, conv))
    # Make sure we have the corrected keys in user_converters...
    user_converters.update(uc_update)

    # Reset the names to match the usecols
    if (not first_line) and usecols:
        names = [names[_] for _ in usecols]

    rows = []
    append_to_rows = rows.append
    if usemask:
        masks = []
        append_to_masks = masks.append
    # Parse each line
    for line in itertools.chain([first_line,], fhd):
        values = split_line(line)
        # Skip an empty line
        if len(values) == 0:
            continue
        # Select only the columns we need
        if usecols:
            values = [values[_] for _ in usecols]
        # Check whether we need to update the converter
        if dtype is None:
            for (converter, item) in zip(converters, values):
                converter.upgrade(item)
        # Store the values
        append_to_rows(tuple(values))
        if usemask:
            append_to_masks(tuple([val.strip() in mss 
                                   for (val, mss) in zip(values,
                                                         missing_values)]))

    # Convert each value according to the converter:
    # We want to modify the list in place to avoid creating a new one...
    if loose:
        conversionfuncs = [conv._loose_call for conv in converters]
    else:
        conversionfuncs = [conv._strict_call for conv in converters]
    for (i, vals) in enumerate(rows):
        rows[i] = tuple([convert(val)
                         for (convert, val) in zip(conversionfuncs, vals)])

    # Reset the dtype
    data = rows
    if dtype is None:
        # Get the dtypes from the types of the converters
        coldtypes = [conv.type for conv in converters]
        # Find the columns with strings...
        strcolidx = [i for (i, v) in enumerate(coldtypes)
                     if v in (type('S'), np.string_)]
        # ... and take the largest number of chars.
        for i in strcolidx:
            coldtypes[i] = "|S%i" % max(len(row[i]) for row in data)
        #
        if names is None:
            # If the dtype is uniform, don't define names, else use ''
            base = set([c.type for c in converters if c._checked])
            
            if len(base) == 1:
                (ddtype, mdtype) = (list(base)[0], np.bool)
            else:
                ddtype = [('', dt) for dt in coldtypes]
                mdtype = [('', np.bool) for dt in coldtypes]
        else:
            ddtype = zip(names, coldtypes)
            mdtype = zip(names, [np.bool] * len(coldtypes))
        output = np.array(data, dtype=ddtype)
        if usemask:
            outputmask = np.array(masks, dtype=mdtype)
    else:
        # Overwrite the initial dtype names if needed
        if names and dtype.names:
            dtype.names = names
        flatdtypes = flatten_dtype(dtype)
        # Case 1. We have a structured type
        if len(flatdtypes) > 1:
            # Nested dtype, eg  [('a', int), ('b', [('b0', int), ('b1', 'f4')])]
            # First, create the array using a flattened dtype:
            # [('a', int), ('b1', int), ('b2', float)]
            # Then, view the array using the specified dtype.
            if has_nested_fields(dtype):
                if 'O' in (_.char for _ in flatdtypes):
                    errmsg = "Nested fields involving objects "\
                             "are not supported..."
                    raise NotImplementedError(errmsg)
                rows = np.array(data, dtype=[('', t) for t in flatdtypes])
                output = rows.view(dtype)
            else:
                output = np.array(data, dtype=dtype)
            # Now, process the rowmasks the same way
            if usemask:
                rowmasks = np.array(masks,
                                    dtype=np.dtype([('', np.bool)
                                                    for t in flatdtypes]))
                # Construct the new dtype
                mdtype = make_mask_descr(dtype)
                outputmask = rowmasks.view(mdtype)
        # Case #2. We have a basic dtype
        else:
            # We used some user-defined converters
            if user_converters:
                ishomogeneous = True
                descr = []
                for (i, ttype) in enumerate([conv.type for conv in converters]):
                    # Keep the dtype of the current converter
                    if i in user_converters:
                        ishomogeneous &= (ttype == dtype.type)
                        if ttype == np.string_:
                            ttype = "|S%i" % max(len(row[i]) for row in data)
                        descr.append(('', ttype))
                    else:
                        descr.append(('', dtype))
                # So we changed the dtype ?
                if not ishomogeneous:
                    # We have more than one field
                    if len(descr) > 1:
                        dtype = np.dtype(descr)
                    # We have only one field: drop the name if not needed.
                    else:
                        dtype = np.dtype(ttype)
            #
            output = np.array(data, dtype)
            if usemask:
                if dtype.names:
                    mdtype = [(_, np.bool) for _ in dtype.names]
                else:
                    mdtype = np.bool
                outputmask = np.array(masks, dtype=mdtype)
    # Try to take care of the missing data we missed
    if usemask and output.dtype.names:
        for (name, conv) in zip(names or (), converters):
            missing_values = [conv(_) for _ in conv.missing_values if _ != '']
            for mval in missing_values:
                outputmask[name] |= (output[name] == mval)
    # Construct the final array
    if usemask:
        output = output.view(MaskedArray)
        output._mask = outputmask
    if unpack:
        return output.squeeze().T
    return output.squeeze()



def ndfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0,
             converters=None, missing='', missing_values=None,
             usecols=None, unpack=None, names=None,
             excludelist=None, deletechars=None, case_sensitive=True,):
    """
    Load ASCII data stored in fname and returns a ndarray.
    
    Complete description of all the optional input parameters is available in
    the docstring of the `genfromtxt` function.
    
    See Also
    --------
    numpy.genfromtxt : generic function.
    
    """
    kwargs = dict(dtype=dtype, comments=comments, delimiter=delimiter, 
                  skiprows=skiprows, converters=converters,
                  missing=missing, missing_values=missing_values,
                  usecols=usecols, unpack=unpack, names=names, 
                  excludelist=excludelist, deletechars=deletechars,
                  case_sensitive=case_sensitive, usemask=False)
    return genfromtxt(fname, **kwargs)

def mafromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0,
              converters=None, missing='', missing_values=None,
              usecols=None, unpack=None, names=None,
              excludelist=None, deletechars=None, case_sensitive=True,):
    """
    Load ASCII data stored in fname and returns a MaskedArray.
    
    Complete description of all the optional input parameters is available in
    the docstring of the `genfromtxt` function.
    
    See Also
    --------
    numpy.genfromtxt : generic function.
    """
    kwargs = dict(dtype=dtype, comments=comments, delimiter=delimiter, 
                  skiprows=skiprows, converters=converters,
                  missing=missing, missing_values=missing_values,
                  usecols=usecols, unpack=unpack, names=names, 
                  excludelist=excludelist, deletechars=deletechars,
                  case_sensitive=case_sensitive,
                  usemask=True)
    return genfromtxt(fname, **kwargs)


def recfromtxt(fname, dtype=None, comments='#', delimiter=None, skiprows=0,
               converters=None, missing='', missing_values=None,
               usecols=None, unpack=None, names=None,
               excludelist=None, deletechars=None, case_sensitive=True,
               usemask=False):
    """
    Load ASCII data stored in fname and returns a standard recarray (if 
    `usemask=False`) or a MaskedRecords (if `usemask=True`).
    
    Complete description of all the optional input parameters is available in
    the docstring of the `genfromtxt` function.
    
    See Also
    --------
    numpy.genfromtxt : generic function

    Warnings
    --------
    * by default, `dtype=None`, which means that the dtype of the output array
      will be determined from the data.
    """
    kwargs = dict(dtype=dtype, comments=comments, delimiter=delimiter, 
                  skiprows=skiprows, converters=converters,
                  missing=missing, missing_values=missing_values,
                  usecols=usecols, unpack=unpack, names=names, 
                  excludelist=excludelist, deletechars=deletechars,
                  case_sensitive=case_sensitive, usemask=usemask)
    output = genfromtxt(fname, **kwargs)
    if usemask:
        from numpy.ma.mrecords import MaskedRecords
        output = output.view(MaskedRecords)
    else:
        output = output.view(np.recarray)
    return output


def recfromcsv(fname, dtype=None, comments='#', skiprows=0,
               converters=None, missing='', missing_values=None,
               usecols=None, unpack=None, names=True,
               excludelist=None, deletechars=None, case_sensitive='lower',
               usemask=False):
    """
    Load ASCII data stored in comma-separated file and returns a recarray (if 
    `usemask=False`) or a MaskedRecords (if `usemask=True`).
    
    Complete description of all the optional input parameters is available in
    the docstring of the `genfromtxt` function.
    
    See Also
    --------
    numpy.genfromtxt : generic function
    """
    kwargs = dict(dtype=dtype, comments=comments, delimiter=",", 
                  skiprows=skiprows, converters=converters,
                  missing=missing, missing_values=missing_values,
                  usecols=usecols, unpack=unpack, names=names, 
                  excludelist=excludelist, deletechars=deletechars,
                  case_sensitive=case_sensitive, usemask=usemask)
    output = genfromtxt(fname, **kwargs)
    if usemask:
        from numpy.ma.mrecords import MaskedRecords
        output = output.view(MaskedRecords)
    else:
        output = output.view(np.recarray)
    return output