summaryrefslogtreecommitdiff
path: root/numpy/lib/polynomial.py
blob: 3cebba5527354dfa636cbb5a286d9e542af32aba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
Functions to operate on polynomials.
"""

__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
           'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
           'polyfit']

import re
import numeric as NX

from type_check import isscalar
from twodim_base import diag, vander
from shape_base import hstack, atleast_1d
from function_base import trim_zeros, sort_complex
eigvals = None
lstsq = None

def get_linalg_funcs():
    "Look for linear algebra functions in numpy"
    global eigvals, lstsq
    from numpy.corelinalg import eigvals, lstsq
    return

def _eigvals(arg):
    "Return the eigenvalues of the argument"
    try:
        return eigvals(arg)
    except TypeError:
        get_linalg_funcs()
        return eigvals(arg)

def _lstsq(X, y):
    "Do least squares on the arguments"
    try:
        return lstsq(X, y)
    except TypeError:
        get_linalg_funcs()
        return lstsq(X, y)

def poly(seq_of_zeros):
    """ Return a sequence representing a polynomial given a sequence of roots.

        If the input is a matrix, return the characteristic polynomial.

        Example:

         >>> b = roots([1,3,1,5,6])
         >>> poly(b)
         array([1., 3., 1., 5., 6.])
    """
    seq_of_zeros = atleast_1d(seq_of_zeros)
    sh = seq_of_zeros.shape
    if len(sh) == 2 and sh[0] == sh[1]:
        seq_of_zeros = _eigvals(seq_of_zeros)
    elif len(sh) ==1:
        pass
    else:
        raise ValueError, "input must be 1d or square 2d array."

    if len(seq_of_zeros) == 0:
        return 1.0

    a = [1]
    for k in range(len(seq_of_zeros)):
        a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full')

    if issubclass(a.dtype, NX.complexfloating):
        # if complex roots are all complex conjugates, the roots are real.
        roots = NX.asarray(seq_of_zeros, complex)
        pos_roots = sort_complex(NX.compress(roots.imag > 0, roots))
        neg_roots = NX.conjugate(sort_complex(
                                        NX.compress(roots.imag < 0,roots)))
        if (len(pos_roots) == len(neg_roots) and
            NX.alltrue(neg_roots == pos_roots)):
            a = a.real.copy()

    return a

def roots(p):
    """ Return the roots of the polynomial coefficients in p.

        The values in the rank-1 array p are coefficients of a polynomial.
        If the length of p is n+1 then the polynomial is
        p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
    """
    # If input is scalar, this makes it an array
    p = atleast_1d(p)
    if len(p.shape) != 1:
        raise ValueError,"Input must be a rank-1 array."

    # find non-zero array entries
    non_zero = NX.nonzero(NX.ravel(p))

    # find the number of trailing zeros -- this is the number of roots at 0.
    trailing_zeros = len(p) - non_zero[-1] - 1

    # strip leading and trailing zeros
    p = p[int(non_zero[0]):int(non_zero[-1])+1]

    # casting: if incoming array isn't floating point, make it floating point.
    if not issubclass(p.dtype, (NX.floating, NX.complexfloating)):
        p = p.astype(float)

    N = len(p)
    if N > 1:
        # build companion matrix and find its eigenvalues (the roots)
        A = diag(NX.ones((N-2,), p.dtype), -1)
        A[0, :] = -p[1:] / p[0]
        roots = _eigvals(A)
    else:
        return NX.array([])

    # tack any zeros onto the back of the array
    roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
    return roots

def polyint(p, m=1, k=None):
    """Return the mth analytical integral of the polynomial p.

    If k is None, then zero-valued constants of integration are used.
    otherwise, k should be a list of length m (or a scalar if m=1) to
    represent the constants of integration to use for each integration
    (starting with k[0])
    """
    m = int(m)
    if m < 0:
        raise ValueError, "Order of integral must be positive (see polyder)"
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError, \
              "k must be a scalar or a rank-1 array of length 1 or >m."
    if m == 0:
        return p
    else:
        truepoly = isinstance(p, poly1d)
        p = NX.asarray(p)
        y = NX.zeros(len(p)+1, float)
        y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
        y[-1] = k[0]
        val = polyint(y, m-1, k=k[1:])
        if truepoly:
            val = poly1d(val)
        return val

def polyder(p, m=1):
    """Return the mth derivative of the polynomial p.
    """
    m = int(m)
    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    n = len(p)-1
    y = p[:-1] * NX.arange(n, 0, -1)
    if m < 0:
        raise ValueError, "Order of derivative must be positive (see polyint)"
    if m == 0:
        return p
    else:
        val = polyder(y, m-1)
        if truepoly:
            val = poly1d(val)
        return val

def polyfit(x, y, N):
    """

    Do a best fit polynomial of order N of y to x.  Return value is a
    vector of polynomial coefficients [pk ... p1 p0].  Eg, for N=2

      p2*x0^2 +  p1*x0 + p0 = y1
      p2*x1^2 +  p1*x1 + p0 = y1
      p2*x2^2 +  p1*x2 + p0 = y2
      .....
      p2*xk^2 +  p1*xk + p0 = yk


    Method: if X is a the Vandermonde Matrix computed from x (see
    http://mathworld.wolfram.com/VandermondeMatrix.html), then the
    polynomial least squares solution is given by the 'p' in

      X*p = y

    where X is a len(x) x N+1 matrix, p is a N+1 length vector, and y
    is a len(x) x 1 vector

    This equation can be solved as

      p = (XT*X)^-1 * XT * y

    where XT is the transpose of X and -1 denotes the inverse.

    For more info, see
    http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html,
    but note that the k's and n's in the superscripts and subscripts
    on that page.  The linear algebra is correct, however.

    See also polyval

    """
    x = NX.asarray(x)+0.
    y = NX.asarray(y)+0.
    y = NX.reshape(y, (len(y), 1))
    X = vander(x, N+1)
    c, resids, rank, s = _lstsq(X, y)
    c.shape = (N+1,)
    return c



def polyval(p, x):
    """Evaluate the polynomial p at x.  If x is a polynomial then composition.

    Description:

      If p is of length N, this function returns the value:
      p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]

      x can be a sequence and p(x) will be returned for all elements of x.
      or x can be another polynomial and the composite polynomial p(x) will be
      returned.

      Notice:  This can produce inaccurate results for polynomials with
      significant variability. Use carefully.
    """
    p = NX.asarray(p)
    if isinstance(x, poly1d):
        y = 0
    else:
        x = NX.asarray(x)
        y = NX.zeros_like(x)
    for i in range(len(p)):
        y = x * y + p[i]
    return y

def polyadd(a1, a2):
    """Adds two polynomials represented as sequences
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        return a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val

def polysub(a1, a2):
    """Subtracts two polynomials represented as sequences
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        return a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val


def polymul(a1, a2):
    """Multiplies two polynomials represented as sequences.
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    val = NX.convolve(a1, a2)
    if truepoly:
        val = poly1d(val)
    return val


def deconvolve(signal, divisor):
    """Deconvolves divisor out of signal.  Requires numpy.signal library
    """
    import numpy.signal
    num = atleast_1d(signal)
    den = atleast_1d(divisor)
    N = len(num)
    D = len(den)
    if D > N:
        quot = [];
        rem = num;
    else:
        input = NX.ones(N-D+1, float)
        input[1:] = 0
        quot = numpy.signal.lfilter(num, den, input)
        rem = num - NX.convolve(den, quot, mode='full')
    return quot, rem

def polydiv(u, v):
    """Computes q and r polynomials so that u(s) = q(s)*v(s) + r(s)
    and deg r < deg v.
    """
    truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d))
    u = atleast_1d(u)
    v = atleast_1d(v)
    m = len(u) - 1
    n = len(v) - 1
    scale = 1. / v[0]
    q = NX.zeros((m-n+1,), float)
    r = u.copy()
    for k in range(0, m-n+1):
        d = scale * r[k]
        q[k] = d
        r[k:k+n+1] -= d*v
    while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
        r = r[1:]
    if truepoly:
        q = poly1d(q)
        r = poly1d(r)
    return q, r

_poly_mat = re.compile(r"[*][*]([0-9]*)")
def _raise_power(astr, wrap=70):
    n = 0
    line1 = ''
    line2 = ''
    output = ' '
    while 1:
        mat = _poly_mat.search(astr, n)
        if mat is None:
            break
        span = mat.span()
        power = mat.groups()[0]
        partstr = astr[n:span[0]]
        n = span[1]
        toadd2 = partstr + ' '*(len(power)-1)
        toadd1 = ' '*(len(partstr)-1) + power
        if ((len(line2)+len(toadd2) > wrap) or \
            (len(line1)+len(toadd1) > wrap)):
            output += line1 + "\n" + line2 + "\n "
            line1 = toadd1
            line2 = toadd2
        else:
            line2 += partstr + ' '*(len(power)-1)
            line1 += ' '*(len(partstr)-1) + power
    output += line1 + "\n" + line2
    return output + astr[n:]


class poly1d(object):
    """A one-dimensional polynomial class.

    p = poly1d([1,2,3]) constructs the polynomial x**2 + 2 x + 3

    p(0.5) evaluates the polynomial at the location
    p.r  is a list of roots
    p.c  is the coefficient array [1,2,3]
    p.order is the polynomial order (after leading zeros in p.c are removed)
    p[k] is the coefficient on the kth power of x (backwards from
         sequencing the coefficient array.

    polynomials can be added, substracted, multplied and divided (returns
         quotient and remainder).
    asarray(p) will also give the coefficient array, so polynomials can
         be used in all functions that accept arrays.

    p = poly1d([1,2,3], variable='lambda') will use lambda in the
    string representation of p.
    """
    def __init__(self, c_or_r, r=0, variable=None):
        if isinstance(c_or_r, poly1d):
            for key in c_or_r.__dict__.keys():
                self.__dict__[key] = c_or_r.__dict__[key]
            if variable is not None:
                self.__dict__['variable'] = variable
            return
        if r:
            c_or_r = poly(c_or_r)
        c_or_r = atleast_1d(c_or_r)
        if len(c_or_r.shape) > 1:
            raise ValueError, "Polynomial must be 1d only."
        c_or_r = trim_zeros(c_or_r, trim='f')
        if len(c_or_r) == 0:
            c_or_r = NX.array([0.])
        self.__dict__['coeffs'] = c_or_r
        self.__dict__['order'] = len(c_or_r) - 1
        if variable is None:
            variable = 'x'
        self.__dict__['variable'] = variable

    def __array__(self, t=None):
        if t:
            return NX.asarray(self.coeffs, t)
        else:
            return NX.asarray(self.coeffs)

    def __repr__(self):
        vals = repr(self.coeffs)
        vals = vals[6:-1]
        return "poly1d(%s)" % vals

    def __len__(self):
        return self.order

    def __str__(self):
        N = self.order
        thestr = "0"
        var = self.variable
        for k in range(len(self.coeffs)):
            coefstr ='%.4g' % abs(self.coeffs[k])
            if coefstr[-4:] == '0000':
                coefstr = coefstr[:-5]
            power = (N-k)
            if power == 0:
                if coefstr != '0':
                    newstr = '%s' % (coefstr,)
                else:
                    if k == 0:
                        newstr = '0'
                    else:
                        newstr = ''
            elif power == 1:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = var
                else:
                    newstr = '%s %s' % (coefstr, var)
            else:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = '%s**%d' % (var, power,)
                else:
                    newstr = '%s %s**%d' % (coefstr, var, power)

            if k > 0:
                if newstr != '':
                    if self.coeffs[k] < 0:
                        thestr = "%s - %s" % (thestr, newstr)
                    else:
                        thestr = "%s + %s" % (thestr, newstr)
            elif (k == 0) and (newstr != '') and (self.coeffs[k] < 0):
                thestr = "-%s" % (newstr,)
            else:
                thestr = newstr
        return _raise_power(thestr)


    def __call__(self, val):
        return polyval(self.coeffs, val)

    def __mul__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs * other)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __rmul__(self, other):
        if isscalar(other):
            return poly1d(other * self.coeffs)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __add__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __radd__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __pow__(self, val):
        if not isscalar(val) or int(val) != val or val < 0:
            raise ValueError, "Power to non-negative integers only."
        res = [1]
        for k in range(val):
            res = polymul(self.coeffs, res)
        return poly1d(res)

    def __sub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(self.coeffs, other.coeffs))

    def __rsub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(other.coeffs, self.coeffs))

    def __div__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs/other)
        else:
            other = poly1d(other)
            return polydiv(self, other)

    def __rdiv__(self, other):
        if isscalar(other):
            return poly1d(other/self.coeffs)
        else:
            other = poly1d(other)
            return polydiv(other, self)

    def __setattr__(self, key, val):
        raise ValueError, "Attributes cannot be changed this way."

    def __getattr__(self, key):
        if key in ['r', 'roots']:
            return roots(self.coeffs)
        elif key in ['c','coef','coefficients']:
            return self.coeffs
        elif key in ['o']:
            return self.order
        else:
            return self.__dict__[key]

    def __getitem__(self, val):
        ind = self.order - val
        if val > self.order:
            return 0
        if val < 0:
            return 0
        return self.coeffs[ind]

    def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError, "Does not support negative powers."
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
            self.__dict__['order'] = key
            ind = 0
        self.__dict__['coeffs'][ind] = val
        return

    def integ(self, m=1, k=0):
        """Return the mth analytical integral of this polynomial.
        See the documentation for polyint.
        """
        return poly1d(polyint(self.coeffs, m=m, k=k))

    def deriv(self, m=1):
        """Return the mth derivative of this polynomial.
        """
        return poly1d(polyder(self.coeffs, m=m))