summaryrefslogtreecommitdiff
path: root/numpy/lib/src/_compiled_base.c
blob: 3a8193f634c91cd1c4ab0a0a983c0291e884a0e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
#include "Python.h"
#include "structmember.h"
#include "numpy/noprefix.h"

static intp
incr_slot_(double x, double *bins, intp lbins)
{
    intp i;

    for ( i = 0; i < lbins; i ++ ) {
        if ( x < bins [i] ) {
            return i;
        }
    }
    return lbins;
}

static intp
decr_slot_(double x, double * bins, intp lbins)
{
    intp i;

    for ( i = lbins - 1; i >= 0; i -- ) {
        if (x < bins [i]) {
            return i + 1;
        }
    }
    return 0;
}

static int
monotonic_(double * a, int lena)
{
    int i;

    if (a [0] <= a [1]) {
        /* possibly monotonic increasing */
        for (i = 1; i < lena - 1; i ++) {
            if (a [i] > a [i + 1]) {
                return 0;
            }
        }
        return 1;
    }
    else {
        /* possibly monotonic decreasing */
        for (i = 1; i < lena - 1; i ++) {
            if (a [i] < a [i + 1]) {
                return 0;
            }
        }
        return -1;
    }
}



/* find the index of the maximum element of an integer array */
static intp
mxx (intp *i , intp len)
{
    intp mx = 0, max = i[0];
    intp j;

    for ( j = 1; j < len; j ++ ) {
        if ( i [j] > max ) {
            max = i [j];
            mx = j;
        }
    }
    return mx;
}

/* find the index of the minimum element of an integer array */
static intp
mnx (intp *i , intp len)
{
    intp mn = 0, min = i [0];
    intp j;

    for ( j = 1; j < len; j ++ )
        if ( i [j] < min )
            {min = i [j];
                mn = j;}
    return mn;
}


/*
 * arr_bincount is registered as bincount.
 *
 * bincount accepts one or two arguments. The first is an array of
 * non-negative integers and the second, if present, is an array of weights,
 * which must be promotable to double.  Call these arguments list and
 * weight. Both must be one-dimensional with len(weight) == len(list). If
 * weight is not present then bincount(list)[i] is the number of occurrences
 * of i in list.  If weight is present then bincount(self,list, weight)[i]
 * is the sum of all weight[j] where list [j] == i.  Self is not used.
 */
static PyObject *
arr_bincount(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds)
{
    PyArray_Descr *type;
    PyObject *list = NULL, *weight=Py_None;
    PyObject *lst=NULL, *ans=NULL, *wts=NULL;
    intp *numbers, *ians, len , mxi, mni, ans_size;
    int i;
    double *weights , *dans;
    static char *kwlist[] = {"list", "weights", NULL};

    if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O",
                kwlist, &list, &weight)) {
            goto fail;
    }
    if (!(lst = PyArray_ContiguousFromAny(list, PyArray_INTP, 1, 1))) {
            goto fail;
    }
    len = PyArray_SIZE(lst);
    numbers = (intp *) PyArray_DATA(lst);
    mxi = mxx(numbers, len);
    mni = mnx(numbers, len);
    if (numbers[mni] < 0) {
        PyErr_SetString(PyExc_ValueError,
                "The first argument of bincount must be non-negative");
        goto fail;
    }
    ans_size = numbers [mxi] + 1;
    type = PyArray_DescrFromType(PyArray_INTP);
    if (weight == Py_None) {
        if (!(ans = PyArray_Zeros(1, &ans_size, type, 0))) {
            goto fail;
        }
        ians = (intp *)(PyArray_DATA(ans));
        for (i = 0; i < len; i++)
            ians [numbers [i]] += 1;
        Py_DECREF(lst);
    }
    else {
        if (!(wts = PyArray_ContiguousFromAny(weight, PyArray_DOUBLE, 1, 1))) {
            goto fail;
        }
        weights = (double *)PyArray_DATA (wts);
        if (PyArray_SIZE(wts) != len) {
            PyErr_SetString(PyExc_ValueError,
                    "The weights and list don't have the same length.");
            goto fail;
        }
        type = PyArray_DescrFromType(PyArray_DOUBLE);
        if (!(ans = PyArray_Zeros(1, &ans_size, type, 0))) {
            goto fail;
        }
        dans = (double *)PyArray_DATA (ans);
        for (i = 0; i < len; i++) {
            dans[numbers[i]] += weights[i];
        }
        Py_DECREF(lst);
        Py_DECREF(wts);
    }
    return ans;

fail:
    Py_XDECREF(lst);
    Py_XDECREF(wts);
    Py_XDECREF(ans);
    return NULL;
}


/*
 * digitize (x, bins) returns an array of python integers the same
 * length of x. The values i returned are such that bins [i - 1] <= x <
 * bins [i] if bins is monotonically increasing, or bins [i - 1] > x >=
 * bins [i] if bins is monotonically decreasing.  Beyond the bounds of
 * bins, returns either i = 0 or i = len (bins) as appropriate.
 */
static PyObject *
arr_digitize(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds)
{
    /* self is not used */
    PyObject *ox, *obins;
    PyObject *ax = NULL, *abins = NULL, *aret = NULL;
    double *dx, *dbins;
    intp lbins, lx;             /* lengths */
    intp *iret;
    int m, i;
    static char *kwlist[] = {"x", "bins", NULL};
    PyArray_Descr *type;

    if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO", kwlist, &ox, &obins)) {
        goto fail;
    }
    type = PyArray_DescrFromType(PyArray_DOUBLE);
    if (!(ax = PyArray_FromAny(ox, type, 1, 1, CARRAY, NULL))) {
        goto fail;
    }
    Py_INCREF(type);
    if (!(abins = PyArray_FromAny(obins, type, 1, 1, CARRAY, NULL))) {
        goto fail;
    }

    lx = PyArray_SIZE(ax);
    dx = (double *)PyArray_DATA(ax);
    lbins = PyArray_SIZE(abins);
    dbins = (double *)PyArray_DATA(abins);
    if (!(aret = PyArray_SimpleNew(1, &lx, PyArray_INTP))) {
        goto fail;
    }
    iret = (intp *)PyArray_DATA(aret);

    if (lx <= 0 || lbins < 0) {
        PyErr_SetString(PyExc_ValueError,
                "Both x and bins must have non-zero length");
            goto fail;
    }

    if (lbins == 1)  {
        for (i = 0; i < lx; i++) {
            if (dx [i] >= dbins[0]) {
                iret[i] = 1;
            }
            else {
                iret[i] = 0;
            }
        }
    }
    else {
        m = monotonic_ (dbins, lbins);
        if ( m == -1 ) {
            for ( i = 0; i < lx; i ++ ) {
                iret [i] = decr_slot_ ((double)dx[i], dbins, lbins);
            }
        }
        else if ( m == 1 ) {
            for ( i = 0; i < lx; i ++ ) {
                iret [i] = incr_slot_ ((double)dx[i], dbins, lbins);
            }
        }
        else {
            PyErr_SetString(PyExc_ValueError,
                    "The bins must be montonically increasing or decreasing");
            goto fail;
        }
    }

    Py_DECREF(ax);
    Py_DECREF(abins);
    return aret;

fail:
    Py_XDECREF(ax);
    Py_XDECREF(abins);
    Py_XDECREF(aret);
    return NULL;
}



static char arr_insert__doc__[] = "Insert vals sequentially into equivalent 1-d positions indicated by mask.";

/*
 * Returns input array with values inserted sequentially into places
 * indicated by the mask
 */
static PyObject *
arr_insert(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwdict)
{
    PyObject *mask = NULL, *vals = NULL;
    PyArrayObject *ainput = NULL, *amask = NULL, *avals = NULL, *tmp = NULL;
    int numvals, totmask, sameshape;
    char *input_data, *mptr, *vptr, *zero = NULL;
    int melsize, delsize, copied, nd;
    intp *instrides, *inshape;
    int mindx, rem_indx, indx, i, k, objarray;

    static char *kwlist[] = {"input", "mask", "vals", NULL};

    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "O&OO", kwlist,
                PyArray_Converter, &ainput,
                &mask, &vals)) {
        goto fail;
    }

    amask = (PyArrayObject *) PyArray_FROM_OF(mask, CARRAY);
    if (amask == NULL) {
        goto fail;
    }
    /* Cast an object array */
    if (amask->descr->type_num == PyArray_OBJECT) {
        tmp = (PyArrayObject *)PyArray_Cast(amask, PyArray_INTP);
        if (tmp == NULL) {
            goto fail;
        }
        Py_DECREF(amask);
        amask = tmp;
    }

    sameshape = 1;
    if (amask->nd == ainput->nd) {
        for (k = 0; k < amask->nd; k++) {
            if (amask->dimensions[k] != ainput->dimensions[k]) {
                sameshape = 0;
            }
        }
    }
    else {
        /* Test to see if amask is 1d */
        if (amask->nd != 1) {
            sameshape = 0;
        }
        else if ((PyArray_SIZE(ainput)) != PyArray_SIZE(amask)) {
            sameshape = 0;
        }
    }
    if (!sameshape) {
        PyErr_SetString(PyExc_TypeError,
                        "mask array must be 1-d or same shape as input array");
        goto fail;
    }

    avals = (PyArrayObject *)PyArray_FromObject(vals, ainput->descr->type_num, 0, 1);
    if (avals == NULL) {
        goto fail;
    }
    numvals = PyArray_SIZE(avals);
    nd = ainput->nd;
    input_data = ainput->data;
    mptr = amask->data;
    melsize = amask->descr->elsize;
    vptr = avals->data;
    delsize = avals->descr->elsize;
    zero = PyArray_Zero(amask);
    if (zero == NULL) {
        goto fail;
    }
    objarray = (ainput->descr->type_num == PyArray_OBJECT);

    /* Handle zero-dimensional case separately */
    if (nd == 0) {
        if (memcmp(mptr,zero,melsize) != 0) {
            /* Copy value element over to input array */
            memcpy(input_data,vptr,delsize);
            if (objarray) {
                Py_INCREF(*((PyObject **)vptr));
            }
        }
        Py_DECREF(amask);
        Py_DECREF(avals);
        PyDataMem_FREE(zero);
        Py_DECREF(ainput);
        Py_INCREF(Py_None);
        return Py_None;
    }

    /*
     * Walk through mask array, when non-zero is encountered
     * copy next value in the vals array to the input array.
     * If we get through the value array, repeat it as necessary.
     */
    totmask = (int) PyArray_SIZE(amask);
    copied = 0;
    instrides = ainput->strides;
    inshape = ainput->dimensions;
    for (mindx = 0; mindx < totmask; mindx++) {
        if (memcmp(mptr,zero,melsize) != 0) {
            /* compute indx into input array */
            rem_indx = mindx;
            indx = 0;
            for(i = nd - 1; i > 0; --i) {
                indx += (rem_indx % inshape[i]) * instrides[i];
                rem_indx /= inshape[i];
            }
            indx += rem_indx * instrides[0];
            /* fprintf(stderr, "mindx = %d, indx=%d\n", mindx, indx); */
            /* Copy value element over to input array */
            memcpy(input_data+indx,vptr,delsize);
            if (objarray) {
                Py_INCREF(*((PyObject **)vptr));
            }
            vptr += delsize;
            copied += 1;
            /* If we move past value data.  Reset */
            if (copied >= numvals) {
                vptr = avals->data;
            }
        }
        mptr += melsize;
    }

    Py_DECREF(amask);
    Py_DECREF(avals);
    PyDataMem_FREE(zero);
    Py_DECREF(ainput);
    Py_INCREF(Py_None);
    return Py_None;

fail:
    PyDataMem_FREE(zero);
    Py_XDECREF(ainput);
    Py_XDECREF(amask);
    Py_XDECREF(avals);
    return NULL;
}

/*
 * binary_search accepts three arguments: a numeric value and
 * a numeric array and its length. It assumes that the array is sorted in
 * increasing order. It returns the index of the array's
 * largest element which is <= the value. It will return -1 if
 * the value is less than the least element of the array.
 * self is not used
 */
static npy_intp
binary_search(double dval, double dlist [], npy_intp len)
{
    npy_intp bottom , top , middle, result;

    if (dval < dlist [0]) {
        result = -1;
    }
    else {
        bottom = 0;
        top = len - 1;
        while (bottom < top) {
            middle = (top + bottom) / 2;
            if (dlist [middle] < dval) {
                bottom = middle + 1;
            }
            else if (dlist [middle] > dval) {
                top = middle - 1;
            }
            else {
                return middle;
            }
        }
        if (dlist [bottom] > dval) {
            result = bottom - 1;
        }
        else {
            result = bottom;
        }
    }
    return result;
}

static PyObject *
arr_interp(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwdict)
{

    PyObject *fp, *xp, *x;
    PyObject *left = NULL, *right = NULL;
    PyArrayObject *afp = NULL, *axp = NULL, *ax = NULL, *af = NULL;
    npy_intp i, lenx, lenxp, indx;
    double lval, rval;
    double *dy, *dx, *dz, *dres, *slopes;

    static char *kwlist[] = {"x", "xp", "fp", "left", "right", NULL};

    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "OOO|OO", kwlist,
                                     &x, &xp, &fp, &left, &right)) {
        return NULL;
    }

    afp = (NPY_AO*)PyArray_ContiguousFromAny(fp, NPY_DOUBLE, 1, 1);
    if (afp == NULL) {
        return NULL;
    }
    axp = (NPY_AO*)PyArray_ContiguousFromAny(xp, NPY_DOUBLE, 1, 1);
    if (axp == NULL) {
        goto fail;
    }
    ax = (NPY_AO*)PyArray_ContiguousFromAny(x, NPY_DOUBLE, 1, 0);
    if (ax == NULL) {
        goto fail;
    }

    lenxp = axp->dimensions[0];
    if (afp->dimensions[0] != lenxp) {
        PyErr_SetString(PyExc_ValueError,
                "fp and xp are not of the same length.");
        goto fail;
    }

    af = (NPY_AO*)PyArray_SimpleNew(ax->nd, ax->dimensions, NPY_DOUBLE);
    if (af == NULL) {
        goto fail;
    }
    lenx = PyArray_SIZE(ax);

    dy = (double *)PyArray_DATA(afp);
    dx = (double *)PyArray_DATA(axp);
    dz = (double *)PyArray_DATA(ax);
    dres = (double *)PyArray_DATA(af);

    /* Get left and right fill values. */
    if ((left == NULL) || (left == Py_None)) {
        lval = dy[0];
    }
    else {
        lval = PyFloat_AsDouble(left);
        if ((lval == -1) && PyErr_Occurred()) {
            goto fail;
        }
    }
    if ((right == NULL) || (right == Py_None)) {
        rval = dy[lenxp-1];
    }
    else {
        rval = PyFloat_AsDouble(right);
        if ((rval == -1) && PyErr_Occurred()) {
            goto fail;
        }
    }

    slopes = (double *) PyDataMem_NEW((lenxp-1)*sizeof(double));
    for (i = 0; i < lenxp - 1; i++) {
        slopes[i] = (dy[i + 1] - dy[i])/(dx[i + 1] - dx[i]);
    }
    for (i = 0; i < lenx; i++) {
        indx = binary_search(dz[i], dx, lenxp);
        if (indx < 0) {
            dres[i] = lval;
        }
        else if (indx >= lenxp - 1) {
            dres[i] = rval;
        }
        else {
            dres[i] = slopes[indx]*(dz[i]-dx[indx]) + dy[indx];
        }
    }

    PyDataMem_FREE(slopes);
    Py_DECREF(afp);
    Py_DECREF(axp);
    Py_DECREF(ax);
    return (PyObject *)af;

fail:
    Py_XDECREF(afp);
    Py_XDECREF(axp);
    Py_XDECREF(ax);
    Py_XDECREF(af);
    return NULL;
}



static PyTypeObject *PyMemberDescr_TypePtr = NULL;
static PyTypeObject *PyGetSetDescr_TypePtr = NULL;
static PyTypeObject *PyMethodDescr_TypePtr = NULL;

/* Can only be called if doc is currently NULL */
static PyObject *
arr_add_docstring(PyObject *NPY_UNUSED(dummy), PyObject *args)
{
    PyObject *obj;
    PyObject *str;
    char *docstr;
    static char *msg = "already has a docstring";

    /* Don't add docstrings */
    if (Py_OptimizeFlag > 1) {
        Py_INCREF(Py_None);
        return Py_None;
    }
    if (!PyArg_ParseTuple(args, "OO!", &obj, &PyString_Type, &str)) {
        return NULL;
    }

    docstr = PyString_AS_STRING(str);

#define _TESTDOC1(typebase) (obj->ob_type == &Py##typebase##_Type)
#define _TESTDOC2(typebase) (obj->ob_type == Py##typebase##_TypePtr)
#define _ADDDOC(typebase, doc, name) do {                               \
        Py##typebase##Object *new = (Py##typebase##Object *)obj;        \
        if (!(doc)) {                                                   \
            doc = docstr;                                               \
        }                                                               \
        else {                                                          \
            PyErr_Format(PyExc_RuntimeError, "%s method %s", name, msg); \
            return NULL;                                                \
        }                                                               \
    } while (0)

    if (_TESTDOC1(CFunction)) {
        _ADDDOC(CFunction, new->m_ml->ml_doc, new->m_ml->ml_name);
    }
    else if (_TESTDOC1(Type)) {
        _ADDDOC(Type, new->tp_doc, new->tp_name);
    }
    else if (_TESTDOC2(MemberDescr)) {
        _ADDDOC(MemberDescr, new->d_member->doc, new->d_member->name);
    }
    else if (_TESTDOC2(GetSetDescr)) {
        _ADDDOC(GetSetDescr, new->d_getset->doc, new->d_getset->name);
    }
    else if (_TESTDOC2(MethodDescr)) {
        _ADDDOC(MethodDescr, new->d_method->ml_doc, new->d_method->ml_name);
    }
    else {
        PyObject *doc_attr;

        doc_attr = PyObject_GetAttrString(obj, "__doc__");
        if (doc_attr != NULL && doc_attr != Py_None) {
            PyErr_Format(PyExc_RuntimeError, "object %s", msg);
            return NULL;
        }
        Py_XDECREF(doc_attr);

        if (PyObject_SetAttrString(obj, "__doc__", str) < 0) {
            PyErr_SetString(PyExc_TypeError,
                            "Cannot set a docstring for that object");
            return NULL;
        }
        Py_INCREF(Py_None);
        return Py_None;
    }

#undef _TESTDOC1
#undef _TESTDOC2
#undef _ADDDOC

    Py_INCREF(str);
    Py_INCREF(Py_None);
    return Py_None;
}


/*  PACKBITS
 *
 *  This function packs binary (0 or 1) 1-bit per pixel arrays
 *  into contiguous bytes.
 *
 */

static void
_packbits( void *In,
           int element_size,  /* in bytes */
           npy_intp in_N,
           npy_intp in_stride,
           void *Out,
           npy_intp out_N,
           npy_intp out_stride
)
{
    char build;
    int i, index;
    npy_intp out_Nm1;
    int maxi, remain, nonzero, j;
    char *outptr,*inptr;

    outptr = Out;    /* pointer to output buffer */
    inptr  = In;     /* pointer to input buffer */

    /*
     * Loop through the elements of In
     * Determine whether or not it is nonzero.
     *  Yes: set correspdoning bit (and adjust build value)
     *  No:  move on
     * Every 8th value, set the value of build and increment the outptr
     */

    remain = in_N % 8;                      /* uneven bits */
    if (remain == 0) {
        remain = 8;
    }
    out_Nm1 = out_N - 1;
    for (index = 0; index < out_N; index++) {
        build = 0;
        maxi = (index != out_Nm1 ? 8 : remain);
        for (i = 0; i < maxi; i++) {
            build <<= 1;
            nonzero = 0;
            for (j = 0; j < element_size; j++) {
                nonzero += (*(inptr++) != 0);
            }
            inptr += (in_stride - element_size);
            build += (nonzero != 0);
        }
        if (index == out_Nm1) build <<= (8-remain);
        /* printf("Here: %d %d %d %d\n",build,slice,index,maxi); */
        *outptr = build;
        outptr += out_stride;
    }
    return;
}


static void
_unpackbits(void *In,
        int NPY_UNUSED(el_size),  /* unused */
        npy_intp in_N,
        npy_intp in_stride,
        void *Out,
        npy_intp NPY_UNUSED(out_N),
        npy_intp out_stride
        )
{
    unsigned char mask;
    int i, index;
    char *inptr, *outptr;

    outptr = Out;
    inptr  = In;
    for (index = 0; index < in_N; index++) {
        mask = 128;
        for (i = 0; i < 8; i++) {
            *outptr = ((mask & (unsigned char)(*inptr)) != 0);
            outptr += out_stride;
            mask >>= 1;
        }
        inptr += in_stride;
    }
    return;
}

/* Fixme -- pack and unpack should be separate routines */
static PyObject *
pack_or_unpack_bits(PyObject *input, int axis, int unpack)
{
    PyArrayObject *inp;
    PyObject *new = NULL;
    PyObject *out = NULL;
    npy_intp outdims[MAX_DIMS];
    int i;
    void (*thefunc)(void *, int, npy_intp, npy_intp, void *, npy_intp, npy_intp);
    PyArrayIterObject *it, *ot;

    inp = (PyArrayObject *)PyArray_FROM_O(input);

    if (inp == NULL) {
        return NULL;
    }
    if (unpack) {
        if (PyArray_TYPE(inp) != NPY_UBYTE) {
            PyErr_SetString(PyExc_TypeError,
                    "Expected an input array of unsigned byte data type");
            goto fail;
        }
    }
    else if (!PyArray_ISINTEGER(inp)) {
        PyErr_SetString(PyExc_TypeError,
                "Expected an input array of integer data type");
        goto fail;
    }

    new = PyArray_CheckAxis(inp, &axis, 0);
    Py_DECREF(inp);
    if (new == NULL) {
        return NULL;
    }
    /* Handle zero-dim array separately */
    if (PyArray_SIZE(new) == 0) {
        return PyArray_Copy((PyArrayObject *)new);
    }

    if (PyArray_NDIM(new) == 0) {
        if (unpack) {
            /* Handle 0-d array by converting it to a 1-d array */
            PyObject *temp;
            PyArray_Dims newdim = {NULL, 1};
            npy_intp shape = 1;

            newdim.ptr = &shape;
            temp = PyArray_Newshape((PyArrayObject *)new, &newdim, NPY_CORDER);
            if (temp == NULL) {
                goto fail;
            }
            Py_DECREF(new);
            new = temp;
        }
        else {
            ubyte *optr, *iptr;
            out = PyArray_New(new->ob_type, 0, NULL, NPY_UBYTE,
                    NULL, NULL, 0, 0, NULL);
            if (out == NULL) {
                goto fail;
            }
            optr = PyArray_DATA(out);
            iptr = PyArray_DATA(new);
            *optr = 0;
            for (i = 0; i<PyArray_ITEMSIZE(new); i++) {
                if (*iptr != 0) {
                    *optr = 1;
                    break;
                }
                iptr++;
            }
            goto finish;
        }
    }


    /* Setup output shape */
    for (i=0; i<PyArray_NDIM(new); i++) {
        outdims[i] = PyArray_DIM(new, i);
    }

    if (unpack) {
        /* Multiply axis dimension by 8 */
        outdims[axis] <<= 3;
        thefunc = _unpackbits;
    }
    else {
        /*
         * Divide axis dimension by 8
         * 8 -> 1, 9 -> 2, 16 -> 2, 17 -> 3 etc..
         */
        outdims[axis] = ((outdims[axis] - 1) >> 3) + 1;
        thefunc = _packbits;
    }

    /* Create output array */
    out = PyArray_New(new->ob_type, PyArray_NDIM(new), outdims, PyArray_UBYTE,
            NULL, NULL, 0, PyArray_ISFORTRAN(new), NULL);
    if (out == NULL) {
        goto fail;
    }
    /* Setup iterators to iterate over all but given axis */
    it = (PyArrayIterObject *)PyArray_IterAllButAxis((PyObject *)new, &axis);
    ot = (PyArrayIterObject *)PyArray_IterAllButAxis((PyObject *)out, &axis);
    if (it == NULL || ot == NULL) {
        Py_XDECREF(it);
        Py_XDECREF(ot);
        goto fail;
    }

    while(PyArray_ITER_NOTDONE(it)) {
        thefunc(PyArray_ITER_DATA(it), PyArray_ITEMSIZE(new),
                PyArray_DIM(new, axis), PyArray_STRIDE(new, axis),
                PyArray_ITER_DATA(ot), PyArray_DIM(out, axis),
                PyArray_STRIDE(out, axis));
        PyArray_ITER_NEXT(it);
        PyArray_ITER_NEXT(ot);
    }
    Py_DECREF(it);
    Py_DECREF(ot);

finish:
    Py_DECREF(new);
    return out;

fail:
    Py_XDECREF(new);
    Py_XDECREF(out);
    return NULL;
}


static PyObject *
io_pack(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds)
{
    PyObject *obj;
    int axis = NPY_MAXDIMS;
    static char *kwlist[] = {"in", "axis", NULL};

    if (!PyArg_ParseTupleAndKeywords( args, kwds, "O|O&" , kwlist,
                &obj, PyArray_AxisConverter, &axis)) {
        return NULL;
    }
    return pack_or_unpack_bits(obj, axis, 0);
}

static PyObject *
io_unpack(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds)
{
    PyObject *obj;
    int axis = NPY_MAXDIMS;
    static char *kwlist[] = {"in", "axis", NULL};

    if (!PyArg_ParseTupleAndKeywords( args, kwds, "O|O&" , kwlist,
                &obj, PyArray_AxisConverter, &axis)) {
        return NULL;
    }
    return pack_or_unpack_bits(obj, axis, 1);
}

static struct PyMethodDef methods[] = {
    {"_insert", (PyCFunction)arr_insert,
        METH_VARARGS | METH_KEYWORDS, arr_insert__doc__},
    {"bincount", (PyCFunction)arr_bincount,
        METH_VARARGS | METH_KEYWORDS, NULL},
    {"digitize", (PyCFunction)arr_digitize,
        METH_VARARGS | METH_KEYWORDS, NULL},
    {"interp", (PyCFunction)arr_interp,
        METH_VARARGS | METH_KEYWORDS, NULL},
    {"add_docstring", (PyCFunction)arr_add_docstring,
        METH_VARARGS, NULL},
    {"packbits", (PyCFunction)io_pack,
        METH_VARARGS | METH_KEYWORDS, NULL},
    {"unpackbits", (PyCFunction)io_unpack,
        METH_VARARGS | METH_KEYWORDS, NULL},
    {NULL, NULL, 0, NULL}    /* sentinel */
};

static void
define_types(void)
{
    PyObject *tp_dict;
    PyObject *myobj;

    tp_dict = PyArrayDescr_Type.tp_dict;
    /* Get "subdescr" */
    myobj = PyDict_GetItemString(tp_dict, "fields");
    if (myobj == NULL) {
        return;
    }
    PyGetSetDescr_TypePtr = myobj->ob_type;
    myobj = PyDict_GetItemString(tp_dict, "alignment");
    if (myobj == NULL) {
        return;
    }
    PyMemberDescr_TypePtr = myobj->ob_type;
    myobj = PyDict_GetItemString(tp_dict, "newbyteorder");
    if (myobj == NULL) {
        return;
    }
    PyMethodDescr_TypePtr = myobj->ob_type;
    return;
}

/* Initialization function for the module (*must* be called init<name>) */
PyMODINIT_FUNC init_compiled_base(void) {
    PyObject *m, *d, *s;

    /* Create the module and add the functions */
    m = Py_InitModule("_compiled_base", methods);

    /* Import the array objects */
    import_array();

    /* Add some symbolic constants to the module */
    d = PyModule_GetDict(m);

    s = PyString_FromString("0.5");
    PyDict_SetItemString(d, "__version__", s);
    Py_DECREF(s);

    /*
     * PyExc_Exception should catch all the standard errors that are
     * now raised instead of the string exception "numpy.lib.error".
     * This is for backward compatibility with existing code.
     */
    PyDict_SetItemString(d, "error", PyExc_Exception);


    /* define PyGetSetDescr_Type and PyMemberDescr_Type */
    define_types();

    return;
}