1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
from collections.abc import Iterable
from typing import Any, TypeVar, overload, SupportsIndex
from numpy import generic
from numpy._typing import (
NDArray,
ArrayLike,
_ShapeLike,
_Shape,
_ArrayLike
)
_SCT = TypeVar("_SCT", bound=generic)
__all__: list[str]
class DummyArray:
__array_interface__: dict[str, Any]
base: None | NDArray[Any]
def __init__(
self,
interface: dict[str, Any],
base: None | NDArray[Any] = ...,
) -> None: ...
@overload
def as_strided(
x: _ArrayLike[_SCT],
shape: None | Iterable[int] = ...,
strides: None | Iterable[int] = ...,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def as_strided(
x: ArrayLike,
shape: None | Iterable[int] = ...,
strides: None | Iterable[int] = ...,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[Any]: ...
@overload
def sliding_window_view(
x: _ArrayLike[_SCT],
window_shape: int | Iterable[int],
axis: None | SupportsIndex = ...,
*,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def sliding_window_view(
x: ArrayLike,
window_shape: int | Iterable[int],
axis: None | SupportsIndex = ...,
*,
subok: bool = ...,
writeable: bool = ...,
) -> NDArray[Any]: ...
@overload
def broadcast_to(
array: _ArrayLike[_SCT],
shape: int | Iterable[int],
subok: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def broadcast_to(
array: ArrayLike,
shape: int | Iterable[int],
subok: bool = ...,
) -> NDArray[Any]: ...
def broadcast_shapes(*args: _ShapeLike) -> _Shape: ...
def broadcast_arrays(
*args: ArrayLike,
subok: bool = ...,
) -> list[NDArray[Any]]: ...
|