1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
|
from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.lib.histograms import histogram, histogramdd, histogram_bin_edges
from numpy.testing import (
run_module_suite, assert_, assert_equal, assert_array_equal,
assert_almost_equal, assert_array_almost_equal, assert_raises,
assert_allclose, assert_array_max_ulp, assert_warns, assert_raises_regex,
dec, suppress_warnings, HAS_REFCOUNT,
)
class TestHistogram(object):
def setup(self):
pass
def teardown(self):
pass
def test_simple(self):
n = 100
v = np.random.rand(n)
(a, b) = histogram(v)
# check if the sum of the bins equals the number of samples
assert_equal(np.sum(a, axis=0), n)
# check that the bin counts are evenly spaced when the data is from
# a linear function
(a, b) = histogram(np.linspace(0, 10, 100))
assert_array_equal(a, 10)
def test_one_bin(self):
# Ticket 632
hist, edges = histogram([1, 2, 3, 4], [1, 2])
assert_array_equal(hist, [2, ])
assert_array_equal(edges, [1, 2])
assert_raises(ValueError, histogram, [1, 2], bins=0)
h, e = histogram([1, 2], bins=1)
assert_equal(h, np.array([2]))
assert_allclose(e, np.array([1., 2.]))
def test_normed(self):
# Check that the integral of the density equals 1.
n = 100
v = np.random.rand(n)
a, b = histogram(v, normed=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
# Check with non-constant bin widths (buggy but backwards
# compatible)
v = np.arange(10)
bins = [0, 1, 5, 9, 10]
a, b = histogram(v, bins, normed=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
def test_density(self):
# Check that the integral of the density equals 1.
n = 100
v = np.random.rand(n)
a, b = histogram(v, density=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
# Check with non-constant bin widths
v = np.arange(10)
bins = [0, 1, 3, 6, 10]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, .1)
assert_equal(np.sum(a * np.diff(b)), 1)
# Variale bin widths are especially useful to deal with
# infinities.
v = np.arange(10)
bins = [0, 1, 3, 6, np.inf]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, [.1, .1, .1, 0.])
# Taken from a bug report from N. Becker on the numpy-discussion
# mailing list Aug. 6, 2010.
counts, dmy = np.histogram(
[1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
assert_equal(counts, [.25, 0])
def test_outliers(self):
# Check that outliers are not tallied
a = np.arange(10) + .5
# Lower outliers
h, b = histogram(a, range=[0, 9])
assert_equal(h.sum(), 9)
# Upper outliers
h, b = histogram(a, range=[1, 10])
assert_equal(h.sum(), 9)
# Normalization
h, b = histogram(a, range=[1, 9], normed=True)
assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)
# Weights
w = np.arange(10) + .5
h, b = histogram(a, range=[1, 9], weights=w, normed=True)
assert_equal((h * np.diff(b)).sum(), 1)
h, b = histogram(a, bins=8, range=[1, 9], weights=w)
assert_equal(h, w[1:-1])
def test_type(self):
# Check the type of the returned histogram
a = np.arange(10) + .5
h, b = histogram(a)
assert_(np.issubdtype(h.dtype, np.integer))
h, b = histogram(a, normed=True)
assert_(np.issubdtype(h.dtype, np.floating))
h, b = histogram(a, weights=np.ones(10, int))
assert_(np.issubdtype(h.dtype, np.integer))
h, b = histogram(a, weights=np.ones(10, float))
assert_(np.issubdtype(h.dtype, np.floating))
def test_f32_rounding(self):
# gh-4799, check that the rounding of the edges works with float32
x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
assert_equal(counts_hist.sum(), 3.)
def test_weights(self):
v = np.random.rand(100)
w = np.ones(100) * 5
a, b = histogram(v)
na, nb = histogram(v, normed=True)
wa, wb = histogram(v, weights=w)
nwa, nwb = histogram(v, weights=w, normed=True)
assert_array_almost_equal(a * 5, wa)
assert_array_almost_equal(na, nwa)
# Check weights are properly applied.
v = np.linspace(0, 10, 10)
w = np.concatenate((np.zeros(5), np.ones(5)))
wa, wb = histogram(v, bins=np.arange(11), weights=w)
assert_array_almost_equal(wa, w)
# Check with integer weights
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
assert_array_equal(wa, [4, 5, 0, 1])
wa, wb = histogram(
[1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
# Check weights with non-uniform bin widths
a, b = histogram(
np.arange(9), [0, 1, 3, 6, 10],
weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
assert_almost_equal(a, [.2, .1, .1, .075])
def test_exotic_weights(self):
# Test the use of weights that are not integer or floats, but e.g.
# complex numbers or object types.
# Complex weights
values = np.array([1.3, 2.5, 2.3])
weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
# Check with custom bins
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Check with even bins
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Decimal weights
from decimal import Decimal
values = np.array([1.3, 2.5, 2.3])
weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
# Check with custom bins
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
# Check with even bins
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
def test_no_side_effects(self):
# This is a regression test that ensures that values passed to
# ``histogram`` are unchanged.
values = np.array([1.3, 2.5, 2.3])
np.histogram(values, range=[-10, 10], bins=100)
assert_array_almost_equal(values, [1.3, 2.5, 2.3])
def test_empty(self):
a, b = histogram([], bins=([0, 1]))
assert_array_equal(a, np.array([0]))
assert_array_equal(b, np.array([0, 1]))
def test_error_binnum_type (self):
# Tests if right Error is raised if bins argument is float
vals = np.linspace(0.0, 1.0, num=100)
histogram(vals, 5)
assert_raises(TypeError, histogram, vals, 2.4)
def test_finite_range(self):
# Normal ranges should be fine
vals = np.linspace(0.0, 1.0, num=100)
histogram(vals, range=[0.25,0.75])
assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])
def test_bin_edge_cases(self):
# Ensure that floating-point computations correctly place edge cases.
arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
mask = hist > 0
left_edges = edges[:-1][mask]
right_edges = edges[1:][mask]
for x, left, right in zip(arr, left_edges, right_edges):
assert_(x >= left)
assert_(x < right)
def test_last_bin_inclusive_range(self):
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
assert_equal(hist[-1], 1)
def test_unsigned_monotonicity_check(self):
# Ensures ValueError is raised if bins not increasing monotonically
# when bins contain unsigned values (see #9222)
arr = np.array([2])
bins = np.array([1, 3, 1], dtype='uint64')
with assert_raises(ValueError):
hist, edges = np.histogram(arr, bins=bins)
def test_object_array_of_0d(self):
# gh-7864
assert_raises(ValueError,
histogram, [np.array([0.4]) for i in range(10)] + [-np.inf])
assert_raises(ValueError,
histogram, [np.array([0.4]) for i in range(10)] + [np.inf])
# these should not crash
np.histogram([np.array([0.5]) for i in range(10)] + [.500000000000001])
np.histogram([np.array([0.5]) for i in range(10)] + [.5])
def test_some_nan_values(self):
# gh-7503
one_nan = np.array([0, 1, np.nan])
all_nan = np.array([np.nan, np.nan])
# the internal commparisons with NaN give warnings
sup = suppress_warnings()
sup.filter(RuntimeWarning)
with sup:
# can't infer range with nan
assert_raises(ValueError, histogram, one_nan, bins='auto')
assert_raises(ValueError, histogram, all_nan, bins='auto')
# explicit range solves the problem
h, b = histogram(one_nan, bins='auto', range=(0, 1))
assert_equal(h.sum(), 2) # nan is not counted
h, b = histogram(all_nan, bins='auto', range=(0, 1))
assert_equal(h.sum(), 0) # nan is not counted
# as does an explicit set of bins
h, b = histogram(one_nan, bins=[0, 1])
assert_equal(h.sum(), 2) # nan is not counted
h, b = histogram(all_nan, bins=[0, 1])
assert_equal(h.sum(), 0) # nan is not counted
def test_datetime(self):
begin = np.datetime64('2000-01-01', 'D')
offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20])
bins = np.array([0, 2, 7, 20])
dates = begin + offsets
date_bins = begin + bins
td = np.dtype('timedelta64[D]')
# Results should be the same for integer offsets or datetime values.
# For now, only explicit bins are supported, since linspace does not
# work on datetimes or timedeltas
d_count, d_edge = histogram(dates, bins=date_bins)
t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td))
i_count, i_edge = histogram(offsets, bins=bins)
assert_equal(d_count, i_count)
assert_equal(t_count, i_count)
assert_equal((d_edge - begin).astype(int), i_edge)
assert_equal(t_edge.astype(int), i_edge)
assert_equal(d_edge.dtype, dates.dtype)
assert_equal(t_edge.dtype, td)
def do_precision_lower_bound(self, float_small, float_large):
eps = np.finfo(float_large).eps
arr = np.array([1.0], float_small)
range = np.array([1.0 + eps, 2.0], float_large)
# test is looking for behavior when the bounds change between dtypes
if range.astype(float_small)[0] != 1:
return
# previously crashed
count, x_loc = np.histogram(arr, bins=1, range=range)
assert_equal(count, [1])
# gh-10322 means that the type comes from arr - this may change
assert_equal(x_loc.dtype, float_small)
def do_precision_upper_bound(self, float_small, float_large):
eps = np.finfo(float_large).eps
arr = np.array([1.0], float_small)
range = np.array([0.0, 1.0 - eps], float_large)
# test is looking for behavior when the bounds change between dtypes
if range.astype(float_small)[-1] != 1:
return
# previously crashed
count, x_loc = np.histogram(arr, bins=1, range=range)
assert_equal(count, [1])
# gh-10322 means that the type comes from arr - this may change
assert_equal(x_loc.dtype, float_small)
def do_precision(self, float_small, float_large):
self.do_precision_lower_bound(float_small, float_large)
self.do_precision_upper_bound(float_small, float_large)
def test_precision(self):
# not looping results in a useful stack trace upon failure
self.do_precision(np.half, np.single)
self.do_precision(np.half, np.double)
self.do_precision(np.half, np.longdouble)
self.do_precision(np.single, np.double)
self.do_precision(np.single, np.longdouble)
self.do_precision(np.double, np.longdouble)
def test_histogram_bin_edges(self):
hist, e = histogram([1, 2, 3, 4], [1, 2])
edges = histogram_bin_edges([1, 2, 3, 4], [1, 2])
assert_array_equal(edges, e)
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
hist, e = histogram(arr, bins=30, range=(-0.5, 5))
edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5))
assert_array_equal(edges, e)
hist, e = histogram(arr, bins='auto', range=(0, 1))
edges = histogram_bin_edges(arr, bins='auto', range=(0, 1))
assert_array_equal(edges, e)
class TestHistogramOptimBinNums(object):
"""
Provide test coverage when using provided estimators for optimal number of
bins
"""
def test_empty(self):
estimator_list = ['fd', 'scott', 'rice', 'sturges',
'doane', 'sqrt', 'auto']
# check it can deal with empty data
for estimator in estimator_list:
a, b = histogram([], bins=estimator)
assert_array_equal(a, np.array([0]))
assert_array_equal(b, np.array([0, 1]))
def test_simple(self):
"""
Straightforward testing with a mixture of linspace data (for
consistency). All test values have been precomputed and the values
shouldn't change
"""
# Some basic sanity checking, with some fixed data.
# Checking for the correct number of bins
basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
'doane': 8, 'sqrt': 8, 'auto': 7},
500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
'doane': 12, 'sqrt': 23, 'auto': 10},
5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
'doane': 17, 'sqrt': 71, 'auto': 17}}
for testlen, expectedResults in basic_test.items():
# Create some sort of non uniform data to test with
# (2 peak uniform mixture)
x1 = np.linspace(-10, -1, testlen // 5 * 2)
x2 = np.linspace(1, 10, testlen // 5 * 3)
x = np.concatenate((x1, x2))
for estimator, numbins in expectedResults.items():
a, b = np.histogram(x, estimator)
assert_equal(len(a), numbins, err_msg="For the {0} estimator "
"with datasize of {1}".format(estimator, testlen))
def test_small(self):
"""
Smaller datasets have the potential to cause issues with the data
adaptive methods, especially the FD method. All bin numbers have been
precalculated.
"""
small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
'doane': 1, 'sqrt': 1},
2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
'doane': 1, 'sqrt': 2},
3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
'doane': 3, 'sqrt': 2}}
for testlen, expectedResults in small_dat.items():
testdat = np.arange(testlen)
for estimator, expbins in expectedResults.items():
a, b = np.histogram(testdat, estimator)
assert_equal(len(a), expbins, err_msg="For the {0} estimator "
"with datasize of {1}".format(estimator, testlen))
def test_incorrect_methods(self):
"""
Check a Value Error is thrown when an unknown string is passed in
"""
check_list = ['mad', 'freeman', 'histograms', 'IQR']
for estimator in check_list:
assert_raises(ValueError, histogram, [1, 2, 3], estimator)
def test_novariance(self):
"""
Check that methods handle no variance in data
Primarily for Scott and FD as the SD and IQR are both 0 in this case
"""
novar_dataset = np.ones(100)
novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
'doane': 1, 'sqrt': 1, 'auto': 1}
for estimator, numbins in novar_resultdict.items():
a, b = np.histogram(novar_dataset, estimator)
assert_equal(len(a), numbins, err_msg="{0} estimator, "
"No Variance test".format(estimator))
def test_outlier(self):
"""
Check the FD, Scott and Doane with outliers.
The FD estimates a smaller binwidth since it's less affected by
outliers. Since the range is so (artificially) large, this means more
bins, most of which will be empty, but the data of interest usually is
unaffected. The Scott estimator is more affected and returns fewer bins,
despite most of the variance being in one area of the data. The Doane
estimator lies somewhere between the other two.
"""
xcenter = np.linspace(-10, 10, 50)
outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11}
for estimator, numbins in outlier_resultdict.items():
a, b = np.histogram(outlier_dataset, estimator)
assert_equal(len(a), numbins)
def test_simple_range(self):
"""
Straightforward testing with a mixture of linspace data (for
consistency). Adding in a 3rd mixture that will then be
completely ignored. All test values have been precomputed and
the shouldn't change.
"""
# some basic sanity checking, with some fixed data.
# Checking for the correct number of bins
basic_test = {
50: {'fd': 8, 'scott': 8, 'rice': 15,
'sturges': 14, 'auto': 14},
500: {'fd': 15, 'scott': 16, 'rice': 32,
'sturges': 20, 'auto': 20},
5000: {'fd': 33, 'scott': 33, 'rice': 69,
'sturges': 27, 'auto': 33}
}
for testlen, expectedResults in basic_test.items():
# create some sort of non uniform data to test with
# (3 peak uniform mixture)
x1 = np.linspace(-10, -1, testlen // 5 * 2)
x2 = np.linspace(1, 10, testlen // 5 * 3)
x3 = np.linspace(-100, -50, testlen)
x = np.hstack((x1, x2, x3))
for estimator, numbins in expectedResults.items():
a, b = np.histogram(x, estimator, range = (-20, 20))
msg = "For the {0} estimator".format(estimator)
msg += " with datasize of {0}".format(testlen)
assert_equal(len(a), numbins, err_msg=msg)
def test_simple_weighted(self):
"""
Check that weighted data raises a TypeError
"""
estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
for estimator in estimator_list:
assert_raises(TypeError, histogram, [1, 2, 3],
estimator, weights=[1, 2, 3])
class TestHistogramdd(object):
def test_simple(self):
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
H, edges = histogramdd(x, (2, 3, 3),
range=[[-1, 1], [0, 3], [0, 3]])
answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
[[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
assert_array_equal(H, answer)
# Check normalization
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
H, edges = histogramdd(x, bins=ed, normed=True)
assert_(np.all(H == answer / 12.))
# Check that H has the correct shape.
H, edges = histogramdd(x, (2, 3, 4),
range=[[-1, 1], [0, 3], [0, 4]],
normed=True)
answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
assert_array_almost_equal(H, answer / 6., 4)
# Check that a sequence of arrays is accepted and H has the correct
# shape.
z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
H, edges = histogramdd(
z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
answer = np.array([[[0, 0], [0, 0], [0, 0]],
[[0, 1], [0, 0], [1, 0]],
[[0, 1], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]]])
assert_array_equal(H, answer)
Z = np.zeros((5, 5, 5))
Z[list(range(5)), list(range(5)), list(range(5))] = 1.
H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
assert_array_equal(H, Z)
def test_shape_3d(self):
# All possible permutations for bins of different lengths in 3D.
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
(4, 5, 6))
r = np.random.rand(10, 3)
for b in bins:
H, edges = histogramdd(r, b)
assert_(H.shape == b)
def test_shape_4d(self):
# All possible permutations for bins of different lengths in 4D.
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
(5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
(7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
(4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
(6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
r = np.random.rand(10, 4)
for b in bins:
H, edges = histogramdd(r, b)
assert_(H.shape == b)
def test_weights(self):
v = np.random.rand(100, 2)
hist, edges = histogramdd(v)
n_hist, edges = histogramdd(v, normed=True)
w_hist, edges = histogramdd(v, weights=np.ones(100))
assert_array_equal(w_hist, hist)
w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True)
assert_array_equal(w_hist, n_hist)
w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
assert_array_equal(w_hist, 2 * hist)
def test_identical_samples(self):
x = np.zeros((10, 2), int)
hist, edges = histogramdd(x, bins=2)
assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
def test_empty(self):
a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
assert_array_max_ulp(a, np.array([[0.]]))
a, b = np.histogramdd([[], [], []], bins=2)
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
def test_bins_errors(self):
# There are two ways to specify bins. Check for the right errors
# when mixing those.
x = np.arange(8).reshape(2, 4)
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
assert_raises(
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]])
assert_raises(
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
def test_inf_edges(self):
# Test using +/-inf bin edges works. See #1788.
with np.errstate(invalid='ignore'):
x = np.arange(6).reshape(3, 2)
expected = np.array([[1, 0], [0, 1], [0, 1]])
h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
assert_allclose(h, expected)
h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
assert_allclose(h, expected)
h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
assert_allclose(h, expected)
def test_rightmost_binedge(self):
# Test event very close to rightmost binedge. See Github issue #4266
x = [0.9999999995]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0000000001]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0001]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 0.0)
def test_finite_range(self):
vals = np.random.random((100, 3))
histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
assert_raises(ValueError, histogramdd, vals,
range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
assert_raises(ValueError, histogramdd, vals,
range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
if __name__ == "__main__":
run_module_suite()
|