1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
|
""" Basic functions for manipulating 2d arrays
"""
__all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu',
'tril','vander','histogram2d','mask_indices',
'tril_indices','tril_indices_from','triu_indices','triu_indices_from',
]
from numpy.core.numeric import asanyarray, equal, subtract, arange, \
zeros, greater_equal, multiply, ones, asarray, alltrue, where, \
empty
def fliplr(m):
"""
Flip array in the left/right direction.
Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.
Parameters
----------
m : array_like
Input array.
Returns
-------
f : ndarray
A view of `m` with the columns reversed. Since a view
is returned, this operation is :math:`\\mathcal O(1)`.
See Also
--------
flipud : Flip array in the up/down direction.
rot90 : Rotate array counterclockwise.
Notes
-----
Equivalent to A[:,::-1]. Does not require the array to be
two-dimensional.
Examples
--------
>>> A = np.diag([1.,2.,3.])
>>> A
array([[ 1., 0., 0.],
[ 0., 2., 0.],
[ 0., 0., 3.]])
>>> np.fliplr(A)
array([[ 0., 0., 1.],
[ 0., 2., 0.],
[ 3., 0., 0.]])
>>> A = np.random.randn(2,3,5)
>>> np.all(numpy.fliplr(A)==A[:,::-1,...])
True
"""
m = asanyarray(m)
if m.ndim < 2:
raise ValueError, "Input must be >= 2-d."
return m[:, ::-1]
def flipud(m):
"""
Flip array in the up/down direction.
Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.
Parameters
----------
m : array_like
Input array.
Returns
-------
out : array_like
A view of `m` with the rows reversed. Since a view is
returned, this operation is :math:`\\mathcal O(1)`.
See Also
--------
fliplr : Flip array in the left/right direction.
rot90 : Rotate array counterclockwise.
Notes
-----
Equivalent to ``A[::-1,...]``.
Does not require the array to be two-dimensional.
Examples
--------
>>> A = np.diag([1.0, 2, 3])
>>> A
array([[ 1., 0., 0.],
[ 0., 2., 0.],
[ 0., 0., 3.]])
>>> np.flipud(A)
array([[ 0., 0., 3.],
[ 0., 2., 0.],
[ 1., 0., 0.]])
>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A)==A[::-1,...])
True
>>> np.flipud([1,2])
array([2, 1])
"""
m = asanyarray(m)
if m.ndim < 1:
raise ValueError, "Input must be >= 1-d."
return m[::-1,...]
def rot90(m, k=1):
"""
Rotate an array by 90 degrees in the counter-clockwise direction.
The first two dimensions are rotated; therefore, the array must be at
least 2-D.
Parameters
----------
m : array_like
Array of two or more dimensions.
k : integer
Number of times the array is rotated by 90 degrees.
Returns
-------
y : ndarray
Rotated array.
See Also
--------
fliplr : Flip an array horizontally.
flipud : Flip an array vertically.
Examples
--------
>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],
[3, 4]])
>>> np.rot90(m)
array([[2, 4],
[1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],
[2, 1]])
"""
m = asanyarray(m)
if m.ndim < 2:
raise ValueError, "Input must >= 2-d."
k = k % 4
if k == 0: return m
elif k == 1: return fliplr(m).swapaxes(0,1)
elif k == 2: return fliplr(flipud(m))
else: return fliplr(m.swapaxes(0,1)) # k==3
def eye(N, M=None, k=0, dtype=float):
"""
Return a 2-D array with ones on the diagonal and zeros elsewhere.
Parameters
----------
N : int
Number of rows in the output.
M : int, optional
Number of columns in the output. If None, defaults to `N`.
k : int, optional
Index of the diagonal: 0 refers to the main diagonal, a positive value
refers to an upper diagonal, and a negative value to a lower diagonal.
dtype : dtype, optional
Data-type of the returned array.
Returns
-------
I : ndarray (N,M)
An array where all elements are equal to zero, except for the `k`-th
diagonal, whose values are equal to one.
See Also
--------
diag : Return a diagonal 2-D array using a 1-D array specified by the user.
Examples
--------
>>> np.eye(2, dtype=int)
array([[1, 0],
[0, 1]])
>>> np.eye(3, k=1)
array([[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 0., 0.]])
"""
if M is None:
M = N
m = zeros((N, M), dtype=dtype)
if k >= M:
return m
if k >= 0:
i = k
else:
i = (-k) * M
m[:M-k].flat[i::M+1] = 1
return m
def diag(v, k=0):
"""
Extract a diagonal or construct a diagonal array.
Parameters
----------
v : array_like
If `v` is a 2-D array, return a copy of its `k`-th diagonal.
If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th
diagonal.
k : int, optional
Diagonal in question. The default is 0.
Returns
-------
out : ndarray
The extracted diagonal or constructed diagonal array.
See Also
--------
diagonal : Return specified diagonals.
diagflat : Create a 2-D array with the flattened input as a diagonal.
trace : Sum along diagonals.
Examples
--------
>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(np.diag(x))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])
"""
v = asarray(v)
s = v.shape
if len(s) == 1:
n = s[0]+abs(k)
res = zeros((n,n), v.dtype)
if k >= 0:
i = k
else:
i = (-k) * n
res[:n-k].flat[i::n+1] = v
return res
elif len(s) == 2:
if k >= s[1]:
return empty(0, dtype=v.dtype)
if v.flags.f_contiguous:
# faster slicing
v, k, s = v.T, -k, s[::-1]
if k >= 0:
i = k
else:
i = (-k) * s[1]
return v[:s[1]-k].flat[i::s[1]+1]
else:
raise ValueError, "Input must be 1- or 2-d."
def diagflat(v,k=0):
"""
Create a two-dimensional array with the flattened input as a diagonal.
Parameters
----------
v : array_like
Input data, which is flattened and set as the `k`-th
diagonal of the output.
k : int, optional
Diagonal to set. The default is 0.
Returns
-------
out : ndarray
The 2-D output array.
See Also
--------
diag : Matlab workalike for 1-D and 2-D arrays.
diagonal : Return specified diagonals.
trace : Sum along diagonals.
Examples
--------
>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])
>>> np.diagflat([1,2], 1)
array([[0, 1, 0],
[0, 0, 2],
[0, 0, 0]])
"""
try:
wrap = v.__array_wrap__
except AttributeError:
wrap = None
v = asarray(v).ravel()
s = len(v)
n = s + abs(k)
res = zeros((n,n), v.dtype)
if (k>=0):
i = arange(0,n-k)
fi = i+k+i*n
else:
i = arange(0,n+k)
fi = i+(i-k)*n
res.flat[fi] = v
if not wrap:
return res
return wrap(res)
def tri(N, M=None, k=0, dtype=float):
"""
Construct an array filled with ones at and below the given diagonal.
Parameters
----------
N : int
Number of rows in the array.
M : int, optional
Number of columns in the array.
By default, `M` is taken equal to `N`.
k : int, optional
The sub-diagonal below which the array is filled.
`k` = 0 is the main diagonal, while `k` < 0 is below it,
and `k` > 0 is above. The default is 0.
dtype : dtype, optional
Data type of the returned array. The default is float.
Returns
-------
T : (N,M) ndarray
Array with a lower triangle filled with ones, in other words
``T[i,j] == 1`` for ``i <= j + k``.
Examples
--------
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
>>> np.tri(3, 5, -1)
array([[ 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 1., 1., 0., 0., 0.]])
"""
if M is None: M = N
m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
return m.astype(dtype)
def tril(m, k=0):
"""
Lower triangle of an array.
Return a copy of an array with elements above the `k`-th diagonal zeroed.
Parameters
----------
m : array_like, shape (M, N)
Input array.
k : int
Diagonal above which to zero elements.
`k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above.
Returns
-------
L : ndarray, shape (M, N)
Lower triangle of `m`, of same shape and data-type as `m`.
See Also
--------
triu
Examples
--------
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
"""
m = asanyarray(m)
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
return out
def triu(m, k=0):
"""
Upper triangle of an array.
Construct a copy of a matrix with elements below the k-th diagonal zeroed.
Please refer to the documentation for `tril`.
See Also
--------
tril
Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = asanyarray(m)
out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
return out
# borrowed from John Hunter and matplotlib
def vander(x, N=None):
"""
Generate a Van der Monde matrix.
The columns of the output matrix are decreasing powers of the input
vector. Specifically, the i-th output column is the input vector to
the power of ``N - i - 1``.
Parameters
----------
x : array_like
Input array.
N : int, optional
Order of (number of columns in) the output.
Returns
-------
out : ndarray
Van der Monde matrix of order `N`. The first column is ``x^(N-1)``,
the second ``x^(N-2)`` and so forth.
Examples
--------
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
"""
x = asarray(x)
if N is None: N=len(x)
X = ones( (len(x),N), x.dtype)
for i in range(N-1):
X[:,i] = x**(N-i-1)
return X
def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
"""
Compute the bidimensional histogram of two data samples.
Parameters
----------
x : array_like, shape(N,)
A sequence of values to be histogrammed along the first dimension.
y : array_like, shape(M,)
A sequence of values to be histogrammed along the second dimension.
bins : int or [int, int] or array-like or [array, array], optional
The bin specification:
* the number of bins for the two dimensions (nx=ny=bins),
* the number of bins in each dimension (nx, ny = bins),
* the bin edges for the two dimensions (x_edges=y_edges=bins),
* the bin edges in each dimension (x_edges, y_edges = bins).
range : array_like, shape(2,2), optional
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the `bins` parameters):
[[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
considered outliers and not tallied in the histogram.
normed : boolean, optional
If False, returns the number of samples in each bin. If True, returns
the bin density, ie, the bin count divided by the bin area.
weights : array-like, shape(N,), optional
An array of values `w_i` weighing each sample `(x_i, y_i)`. Weights are
normalized to 1 if normed is True. If normed is False, the values of the
returned histogram are equal to the sum of the weights belonging to the
samples falling into each bin.
Returns
-------
H : ndarray, shape(nx, ny)
The bidimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are histogrammed
along the second dimension.
xedges : ndarray, shape(nx,)
The bin edges along the first dimension.
yedges : ndarray, shape(ny,)
The bin edges along the second dimension.
See Also
--------
histogram: 1D histogram
histogramdd: Multidimensional histogram
Notes
-----
When normed is True, then the returned histogram is the sample density,
defined such that:
.. math::
\\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1
where :math:`H` is the histogram array and :math:`\\Delta x_i \\Delta y_i`
the area of bin :math:`{i,j}`.
Please note that the histogram does not follow the cartesian convention
where `x` values are on the abcissa and `y` values on the ordinate axis.
Rather, `x` is histogrammed along the first dimension of the array
(vertical), and `y` along the second dimension of the array (horizontal).
This ensures compatibility with `histogrammdd`.
Examples
--------
>>> x,y = np.random.randn(2,100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins = (5, 8))
>>> H.shape, xedges.shape, yedges.shape
((5,8), (6,), (9,))
"""
from numpy import histogramdd
try:
N = len(bins)
except TypeError:
N = 1
if N != 1 and N != 2:
xedges = yedges = asarray(bins, float)
bins = [xedges, yedges]
hist, edges = histogramdd([x,y], bins, range, normed, weights)
return hist, edges[0], edges[1]
def mask_indices(n,mask_func,k=0):
"""Return the indices to access (n,n) arrays, given a masking function.
Assume mask_func() is a function that, for a square array a of size (n,n)
with a possible offset argument k, when called as mask_func(a,k) returns a
new array with zeros in certain locations (functions like triu() or tril()
do precisely this). Then this function returns the indices where the
non-zero values would be located.
Parameters
----------
n : int
The returned indices will be valid to access arrays of shape (n,n).
mask_func : callable
A function whose api is similar to that of numpy.tri{u,l}. That is,
mask_func(x,k) returns a boolean array, shaped like x. k is an optional
argument to the function.
k : scalar
An optional argument which is passed through to mask_func(). Functions
like tri{u,l} take a second argument that is interpreted as an offset.
Returns
-------
indices : an n-tuple of index arrays.
The indices corresponding to the locations where mask_func(ones((n,n)),k)
is True.
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
These are the indices that would allow you to access the upper triangular
part of any 3x3 array:
>>> iu = mask_indices(3,np.triu)
For example, if `a` is a 3x3 array:
>>> a = np.arange(9).reshape(3,3)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
Then:
>>> a[iu]
array([0, 1, 2, 4, 5, 8])
An offset can be passed also to the masking function. This gets us the
indices starting on the first diagonal right of the main one:
>>> iu1 = mask_indices(3,np.triu,1)
with which we now extract only three elements:
>>> a[iu1]
array([1, 2, 5])
"""
m = ones((n,n),int)
a = mask_func(m,k)
return where(a != 0)
def tril_indices(n,k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see tril() for details).
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Commpute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> il1 = tril_indices(4)
>>> il2 = tril_indices(4,2)
Here is how they can be used with a sample array:
>>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]])
Both for indexing:
>>> a[il1]
array([ 1, 5, 6, 9, 10, 11, 13, 14, 15, 16])
And for assigning values:
>>> a[il1] = -1
>>> a
array([[-1, 2, 3, 4],
[-1, -1, 7, 8],
[-1, -1, -1, 12],
[-1, -1, -1, -1]])
These cover almost the whole array (two diagonals right of the main one):
>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 4],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])
See also
--------
- triu_indices : similar function, for upper-triangular.
- mask_indices : generic function accepting an arbitrary mask function.
"""
return mask_indices(n,tril,k)
def tril_indices_from(arr,k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
See tril_indices() for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see tril() for details).
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return tril_indices(arr.shape[0],k)
def triu_indices(n,k=0):
"""Return the indices for the upper-triangle of an (n,n) array.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see triu() for details).
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Commpute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> iu1 = triu_indices(4)
>>> iu2 = triu_indices(4,2)
Here is how they can be used with a sample array:
>>> a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]])
Both for indexing:
>>> a[il1]
array([ 1, 5, 6, 9, 10, 11, 13, 14, 15, 16])
And for assigning values:
>>> a[iu] = -1
>>> a
array([[-1, -1, -1, -1],
[ 5, -1, -1, -1],
[ 9, 10, -1, -1],
[13, 14, 15, -1]])
These cover almost the whole array (two diagonals right of the main one):
>>> a[iu2] = -10
>>> a
array([[ -1, -1, -10, -10],
[ 5, -1, -1, -10],
[ 9, 10, -1, -1],
[ 13, 14, 15, -1]])
See also
--------
- tril_indices : similar function, for lower-triangular.
- mask_indices : generic function accepting an arbitrary mask function.
"""
return mask_indices(n,triu,k)
def triu_indices_from(arr,k=0):
"""Return the indices for the lower-triangle of an (n,n) array.
See triu_indices() for full details.
Parameters
----------
n : int
Sets the size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see triu() for details).
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim==2 and arr.shape[0] == arr.shape[1]:
raise ValueError("input array must be 2-d and square")
return triu_indices(arr.shape[0],k)
|