1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
"""
Module of functions that are like ufuncs in acting on arrays and optionally
storing results in an output array.
"""
from __future__ import division, absolute_import, print_function
__all__ = ['fix', 'isneginf', 'isposinf']
import numpy.core.numeric as nx
def fix(x, y=None):
"""
Round to nearest integer towards zero.
Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.
Parameters
----------
x : array_like
An array of floats to be rounded
y : ndarray, optional
Output array
Returns
-------
out : ndarray of floats
The array of rounded numbers
See Also
--------
trunc, floor, ceil
around : Round to given number of decimals
Examples
--------
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2., 2., -2., -2.])
"""
x = nx.asanyarray(x)
y1 = nx.floor(x)
y2 = nx.ceil(x)
if y is None:
y = nx.asanyarray(y1)
y[...] = nx.where(x >= 0, y1, y2)
return y
def isposinf(x, y=None):
"""
Test element-wise for positive infinity, return result as bool array.
Parameters
----------
x : array_like
The input array.
y : array_like, optional
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A boolean array with the same dimensions as the input.
If second argument is not supplied then a boolean array is returned
with values True where the corresponding element of the input is
positive infinity and values False where the element of the input is
not positive infinity.
If a second argument is supplied the result is stored there. If the
type of that array is a numeric type the result is represented as zeros
and ones, if the type is boolean then as False and True.
The return value `y` is then a reference to that array.
See Also
--------
isinf, isneginf, isfinite, isnan
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).
Errors result if the second argument is also supplied when `x` is a
scalar input, or if first and second arguments have different shapes.
Examples
--------
>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
return y
def isneginf(x, y=None):
"""
Test element-wise for negative infinity, return result as bool array.
Parameters
----------
x : array_like
The input array.
y : array_like, optional
A boolean array with the same shape and type as `x` to store the
result.
Returns
-------
y : ndarray
A boolean array with the same dimensions as the input.
If second argument is not supplied then a numpy boolean array is
returned with values True where the corresponding element of the
input is negative infinity and values False where the element of
the input is not negative infinity.
If a second argument is supplied the result is stored there. If the
type of that array is a numeric type the result is represented as
zeros and ones, if the type is boolean then as False and True. The
return value `y` is then a reference to that array.
See Also
--------
isinf, isposinf, isnan, isfinite
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).
Errors result if the second argument is also supplied when x is a scalar
input, or if first and second arguments have different shapes.
Examples
--------
>>> np.isneginf(np.NINF)
array(True, dtype=bool)
>>> np.isneginf(np.inf)
array(False, dtype=bool)
>>> np.isneginf(np.PINF)
array(False, dtype=bool)
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False], dtype=bool)
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), nx.signbit(x), y)
return y
|