1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
import os
import sys
import types
import re
from numpy.core.numerictypes import issubclass_, issubsctype, issubdtype
from numpy.core import product, ndarray
__all__ = ['issubclass_', 'get_numpy_include', 'issubsctype',
'issubdtype', 'deprecate', 'deprecate_with_doc',
'get_numarray_include',
'get_include', 'info', 'source', 'who', 'lookfor',
'byte_bounds', 'may_share_memory', 'safe_eval']
def get_include():
"""
Return the directory that contains the numpy \\*.h header files.
Extension modules that need to compile against numpy should use this
function to locate the appropriate include directory.
Notes
-----
When using ``distutils``, for example in ``setup.py``.
::
import numpy as np
...
Extension('extension_name', ...
include_dirs=[np.get_include()])
...
"""
import numpy
if numpy.show_config is None:
# running from numpy source directory
d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include')
else:
# using installed numpy core headers
import numpy.core as core
d = os.path.join(os.path.dirname(core.__file__), 'include')
return d
def get_numarray_include(type=None):
"""
Return the directory that contains the numarray \\*.h header files.
Extension modules that need to compile against numarray should use this
function to locate the appropriate include directory.
Notes
-----
When using ``distutils``, for example in ``setup.py``.
::
import numpy as np
...
Extension('extension_name', ...
include_dirs=[np.get_numarray_include()])
...
"""
from numpy.numarray import get_numarray_include_dirs
include_dirs = get_numarray_include_dirs()
if type is None:
return include_dirs[0]
else:
return include_dirs + [get_include()]
if sys.version_info < (2, 4):
# Can't set __name__ in 2.3
import new
def _set_function_name(func, name):
func = new.function(func.func_code, func.func_globals,
name, func.func_defaults, func.func_closure)
return func
else:
def _set_function_name(func, name):
func.__name__ = name
return func
def deprecate(func, oldname=None, newname=None):
"""Deprecate old functions.
Issues a DeprecationWarning, adds warning to oldname's docstring,
rebinds oldname.__name__ and returns new function object.
Example:
oldfunc = deprecate(newfunc, 'oldfunc', 'newfunc')
"""
import warnings
if oldname is None:
try:
oldname = func.func_name
except AttributeError:
oldname = func.__name__
if newname is None:
str1 = "%s is deprecated" % (oldname,)
depdoc = "%s is DEPRECATED!!" % (oldname,)
else:
str1 = "%s is deprecated, use %s" % (oldname, newname),
depdoc = '%s is DEPRECATED!! -- use %s instead' % (oldname, newname,)
def newfunc(*args,**kwds):
"""Use get_include, get_numpy_include is DEPRECATED."""
warnings.warn(str1, DeprecationWarning)
return func(*args, **kwds)
newfunc = _set_function_name(newfunc, oldname)
doc = func.__doc__
if doc is None:
doc = depdoc
else:
doc = '\n\n'.join([depdoc, doc])
newfunc.__doc__ = doc
try:
d = func.__dict__
except AttributeError:
pass
else:
newfunc.__dict__.update(d)
return newfunc
def deprecate_with_doc(somestr):
"""Decorator to deprecate functions and provide detailed documentation
with 'somestr' that is added to the functions docstring.
Example:
depmsg = 'function scipy.foo has been merged into numpy.foobar'
@deprecate_with_doc(depmsg)
def foo():
pass
"""
def _decorator(func):
newfunc = deprecate(func)
newfunc.__doc__ += "\n" + somestr
return newfunc
return _decorator
get_numpy_include = deprecate(get_include, 'get_numpy_include', 'get_include')
#--------------------------------------------
# Determine if two arrays can share memory
#--------------------------------------------
def byte_bounds(a):
"""(low, high) are pointers to the end-points of an array
low is the first byte
high is just *past* the last byte
If the array is not single-segment, then it may not actually
use every byte between these bounds.
The array provided must conform to the Python-side of the array interface
"""
ai = a.__array_interface__
a_data = ai['data'][0]
astrides = ai['strides']
ashape = ai['shape']
nd_a = len(ashape)
bytes_a = int(ai['typestr'][2:])
a_low = a_high = a_data
if astrides is None: # contiguous case
a_high += product(ashape, dtype=int)*bytes_a
else:
for shape, stride in zip(ashape, astrides):
if stride < 0:
a_low += (shape-1)*stride
else:
a_high += (shape-1)*stride
a_high += bytes_a
return a_low, a_high
def may_share_memory(a, b):
"""Determine if two arrays can share memory
The memory-bounds of a and b are computed. If they overlap then
this function returns True. Otherwise, it returns False.
A return of True does not necessarily mean that the two arrays
share any element. It just means that they *might*.
"""
a_low, a_high = byte_bounds(a)
b_low, b_high = byte_bounds(b)
if b_low >= a_high or a_low >= b_high:
return False
return True
#-----------------------------------------------------------------------------
# Function for output and information on the variables used.
#-----------------------------------------------------------------------------
def who(vardict=None):
"""
Print the Numpy arrays in the given dictionary.
If there is no dictionary passed in or `vardict` is None then returns
Numpy arrays in the globals() dictionary (all Numpy arrays in the
namespace).
Parameters
----------
vardict : dict, optional
A dictionary possibly containing ndarrays. Default is globals().
Returns
-------
out : None
Returns 'None'.
Notes
-----
Prints out the name, shape, bytes and type of all of the ndarrays present
in `vardict`.
Examples
--------
>>> d = {'x': arange(2.0), 'y': arange(3.0), 'txt': 'Some str', 'idx': 5}
>>> np.whos(d)
Name Shape Bytes Type
===========================================================
<BLANKLINE>
y 3 24 float64
x 2 16 float64
<BLANKLINE>
Upper bound on total bytes = 40
"""
if vardict is None:
frame = sys._getframe().f_back
vardict = frame.f_globals
sta = []
cache = {}
for name in vardict.keys():
if isinstance(vardict[name],ndarray):
var = vardict[name]
idv = id(var)
if idv in cache.keys():
namestr = name + " (%s)" % cache[idv]
original=0
else:
cache[idv] = name
namestr = name
original=1
shapestr = " x ".join(map(str, var.shape))
bytestr = str(var.itemsize*product(var.shape))
sta.append([namestr, shapestr, bytestr, var.dtype.name,
original])
maxname = 0
maxshape = 0
maxbyte = 0
totalbytes = 0
for k in range(len(sta)):
val = sta[k]
if maxname < len(val[0]):
maxname = len(val[0])
if maxshape < len(val[1]):
maxshape = len(val[1])
if maxbyte < len(val[2]):
maxbyte = len(val[2])
if val[4]:
totalbytes += int(val[2])
if len(sta) > 0:
sp1 = max(10,maxname)
sp2 = max(10,maxshape)
sp3 = max(10,maxbyte)
prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ')
print prval + "\n" + "="*(len(prval)+5) + "\n"
for k in range(len(sta)):
val = sta[k]
print "%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4),
val[1], ' '*(sp2-len(val[1])+5),
val[2], ' '*(sp3-len(val[2])+5),
val[3])
print "\nUpper bound on total bytes = %d" % totalbytes
return
#-----------------------------------------------------------------------------
# NOTE: pydoc defines a help function which works simliarly to this
# except it uses a pager to take over the screen.
# combine name and arguments and split to multiple lines of
# width characters. End lines on a comma and begin argument list
# indented with the rest of the arguments.
def _split_line(name, arguments, width):
firstwidth = len(name)
k = firstwidth
newstr = name
sepstr = ", "
arglist = arguments.split(sepstr)
for argument in arglist:
if k == firstwidth:
addstr = ""
else:
addstr = sepstr
k = k + len(argument) + len(addstr)
if k > width:
k = firstwidth + 1 + len(argument)
newstr = newstr + ",\n" + " "*(firstwidth+2) + argument
else:
newstr = newstr + addstr + argument
return newstr
_namedict = None
_dictlist = None
# Traverse all module directories underneath globals
# to see if something is defined
def _makenamedict(module='numpy'):
module = __import__(module, globals(), locals(), [])
thedict = {module.__name__:module.__dict__}
dictlist = [module.__name__]
totraverse = [module.__dict__]
while 1:
if len(totraverse) == 0:
break
thisdict = totraverse.pop(0)
for x in thisdict.keys():
if isinstance(thisdict[x],types.ModuleType):
modname = thisdict[x].__name__
if modname not in dictlist:
moddict = thisdict[x].__dict__
dictlist.append(modname)
totraverse.append(moddict)
thedict[modname] = moddict
return thedict, dictlist
def info(object=None,maxwidth=76,output=sys.stdout,toplevel='numpy'):
"""
Get help information for a function, class, or module.
Parameters
----------
object : optional
Input object to get information about.
maxwidth : int, optional
Printing width.
output : file like object open for writing, optional
Write into file like object.
toplevel : string, optional
Start search at this level.
Examples
--------
>>> np.info(np.polyval) # doctest: +SKIP
polyval(p, x)
Evaluate the polymnomial p at x.
...
"""
global _namedict, _dictlist
# Local import to speed up numpy's import time.
import pydoc, inspect
if hasattr(object,'_ppimport_importer') or \
hasattr(object, '_ppimport_module'):
object = object._ppimport_module
elif hasattr(object, '_ppimport_attr'):
object = object._ppimport_attr
if object is None:
info(info)
elif isinstance(object, ndarray):
import numpy.numarray as nn
nn.info(object, output=output, numpy=1)
elif isinstance(object, str):
if _namedict is None:
_namedict, _dictlist = _makenamedict(toplevel)
numfound = 0
objlist = []
for namestr in _dictlist:
try:
obj = _namedict[namestr][object]
if id(obj) in objlist:
print >> output, "\n *** Repeat reference found in %s *** " % namestr
else:
objlist.append(id(obj))
print >> output, " *** Found in %s ***" % namestr
info(obj)
print >> output, "-"*maxwidth
numfound += 1
except KeyError:
pass
if numfound == 0:
print >> output, "Help for %s not found." % object
else:
print >> output, "\n *** Total of %d references found. ***" % numfound
elif inspect.isfunction(object):
name = object.func_name
arguments = inspect.formatargspec(*inspect.getargspec(object))
if len(name+arguments) > maxwidth:
argstr = _split_line(name, arguments, maxwidth)
else:
argstr = name + arguments
print >> output, " " + argstr + "\n"
print >> output, inspect.getdoc(object)
elif inspect.isclass(object):
name = object.__name__
arguments = "()"
try:
if hasattr(object, '__init__'):
arguments = inspect.formatargspec(*inspect.getargspec(object.__init__.im_func))
arglist = arguments.split(', ')
if len(arglist) > 1:
arglist[1] = "("+arglist[1]
arguments = ", ".join(arglist[1:])
except:
pass
if len(name+arguments) > maxwidth:
argstr = _split_line(name, arguments, maxwidth)
else:
argstr = name + arguments
print >> output, " " + argstr + "\n"
doc1 = inspect.getdoc(object)
if doc1 is None:
if hasattr(object,'__init__'):
print >> output, inspect.getdoc(object.__init__)
else:
print >> output, inspect.getdoc(object)
methods = pydoc.allmethods(object)
if methods != []:
print >> output, "\n\nMethods:\n"
for meth in methods:
if meth[0] == '_':
continue
thisobj = getattr(object, meth, None)
if thisobj is not None:
methstr, other = pydoc.splitdoc(inspect.getdoc(thisobj) or "None")
print >> output, " %s -- %s" % (meth, methstr)
elif type(object) is types.InstanceType: ## check for __call__ method
print >> output, "Instance of class: ", object.__class__.__name__
print >> output
if hasattr(object, '__call__'):
arguments = inspect.formatargspec(*inspect.getargspec(object.__call__.im_func))
arglist = arguments.split(', ')
if len(arglist) > 1:
arglist[1] = "("+arglist[1]
arguments = ", ".join(arglist[1:])
else:
arguments = "()"
if hasattr(object,'name'):
name = "%s" % object.name
else:
name = "<name>"
if len(name+arguments) > maxwidth:
argstr = _split_line(name, arguments, maxwidth)
else:
argstr = name + arguments
print >> output, " " + argstr + "\n"
doc = inspect.getdoc(object.__call__)
if doc is not None:
print >> output, inspect.getdoc(object.__call__)
print >> output, inspect.getdoc(object)
else:
print >> output, inspect.getdoc(object)
elif inspect.ismethod(object):
name = object.__name__
arguments = inspect.formatargspec(*inspect.getargspec(object.im_func))
arglist = arguments.split(', ')
if len(arglist) > 1:
arglist[1] = "("+arglist[1]
arguments = ", ".join(arglist[1:])
else:
arguments = "()"
if len(name+arguments) > maxwidth:
argstr = _split_line(name, arguments, maxwidth)
else:
argstr = name + arguments
print >> output, " " + argstr + "\n"
print >> output, inspect.getdoc(object)
elif hasattr(object, '__doc__'):
print >> output, inspect.getdoc(object)
def source(object, output=sys.stdout):
"""
Print or write to a file the source code for a Numpy object.
Parameters
----------
object : numpy object
Input object.
output : file object, optional
If `output` not supplied then source code is printed to screen
(sys.stdout). File object must be created with either write 'w' or
append 'a' modes.
"""
# Local import to speed up numpy's import time.
import inspect
try:
print >> output, "In file: %s\n" % inspect.getsourcefile(object)
print >> output, inspect.getsource(object)
except:
print >> output, "Not available for this object."
# Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...}
# where kind: "func", "class", "module", "object"
# and index: index in breadth-first namespace traversal
_lookfor_caches = {}
# regexp whose match indicates that the string may contain a function signature
_function_signature_re = re.compile(r"[a-z_]+\(.*[,=].*\)", re.I)
def lookfor(what, module=None, import_modules=True, regenerate=False):
"""
Do a keyword search on docstrings.
A list of of objects that matched the search is displayed,
sorted by relevance.
Parameters
----------
what : str
String containing words to look for.
module : str, module
Module whose docstrings to go through.
import_modules : bool
Whether to import sub-modules in packages.
Will import only modules in ``__all__``.
regenerate : bool
Whether to re-generate the docstring cache.
Examples
--------
>>> np.lookfor('binary representation')
Search results for 'binary representation'
------------------------------------------
numpy.binary_repr
Return the binary representation of the input number as a string.
"""
import pydoc
# Cache
cache = _lookfor_generate_cache(module, import_modules, regenerate)
# Search
# XXX: maybe using a real stemming search engine would be better?
found = []
whats = str(what).lower().split()
if not whats: return
for name, (docstring, kind, index) in cache.iteritems():
if kind in ('module', 'object'):
# don't show modules or objects
continue
ok = True
doc = docstring.lower()
for w in whats:
if w not in doc:
ok = False
break
if ok:
found.append(name)
# Relevance sort
# XXX: this is full Harrison-Stetson heuristics now,
# XXX: it probably could be improved
kind_relevance = {'func': 1000, 'class': 1000,
'module': -1000, 'object': -1000}
def relevance(name, docstr, kind, index):
r = 0
# do the keywords occur within the start of the docstring?
first_doc = "\n".join(docstr.lower().strip().split("\n")[:3])
r += sum([200 for w in whats if w in first_doc])
# do the keywords occur in the function name?
r += sum([30 for w in whats if w in name])
# is the full name long?
r += -len(name) * 5
# is the object of bad type?
r += kind_relevance.get(kind, -1000)
# is the object deep in namespace hierarchy?
r += -name.count('.') * 10
r += max(-index / 100, -100)
return r
def relevance_sort(a, b):
dr = relevance(b, *cache[b]) - relevance(a, *cache[a])
if dr != 0: return dr
else: return cmp(a, b)
found.sort(relevance_sort)
# Pretty-print
s = "Search results for '%s'" % (' '.join(whats))
help_text = [s, "-"*len(s)]
for name in found:
doc, kind, ix = cache[name]
doclines = [line.strip() for line in doc.strip().split("\n")
if line.strip()]
# find a suitable short description
try:
first_doc = doclines[0].strip()
if _function_signature_re.search(first_doc):
first_doc = doclines[1].strip()
except IndexError:
first_doc = ""
help_text.append("%s\n %s" % (name, first_doc))
# Output
if len(help_text) > 10:
pager = pydoc.getpager()
pager("\n".join(help_text))
else:
print "\n".join(help_text)
def _lookfor_generate_cache(module, import_modules, regenerate):
"""
Generate docstring cache for given module.
Parameters
----------
module : str, None, module
Module for which to generate docstring cache
import_modules : bool
Whether to import sub-modules in packages.
Will import only modules in __all__
regenerate: bool
Re-generate the docstring cache
Returns
-------
cache : dict {obj_full_name: (docstring, kind, index), ...}
Docstring cache for the module, either cached one (regenerate=False)
or newly generated.
"""
global _lookfor_caches
# Local import to speed up numpy's import time.
import inspect
if module is None:
module = "numpy"
if isinstance(module, str):
module = __import__(module)
if id(module) in _lookfor_caches and not regenerate:
return _lookfor_caches[id(module)]
# walk items and collect docstrings
cache = {}
_lookfor_caches[id(module)] = cache
seen = {}
index = 0
stack = [(module.__name__, module)]
while stack:
name, item = stack.pop(0)
if id(item) in seen: continue
seen[id(item)] = True
index += 1
kind = "object"
if inspect.ismodule(item):
kind = "module"
try:
_all = item.__all__
except AttributeError:
_all = None
# import sub-packages
if import_modules and hasattr(item, '__path__'):
for pth in item.__path__:
for mod_path in os.listdir(pth):
init_py = os.path.join(pth, mod_path, '__init__.py')
if not os.path.isfile(init_py):
continue
if _all is not None and mod_path not in _all:
continue
try:
__import__("%s.%s" % (name, mod_path))
except ImportError:
continue
for n, v in inspect.getmembers(item):
if _all is not None and n not in _all:
continue
stack.append(("%s.%s" % (name, n), v))
elif inspect.isclass(item):
kind = "class"
for n, v in inspect.getmembers(item):
stack.append(("%s.%s" % (name, n), v))
elif callable(item):
kind = "func"
doc = inspect.getdoc(item)
if doc is not None:
cache[name] = (doc, kind, index)
return cache
#-----------------------------------------------------------------------------
# The following SafeEval class and company are adapted from Michael Spencer's
# ASPN Python Cookbook recipe:
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/364469
# Accordingly it is mostly Copyright 2006 by Michael Spencer.
# The recipe, like most of the other ASPN Python Cookbook recipes was made
# available under the Python license.
# http://www.python.org/license
# It has been modified to:
# * handle unary -/+
# * support True/False/None
# * raise SyntaxError instead of a custom exception.
class SafeEval(object):
def visit(self, node, **kw):
cls = node.__class__
meth = getattr(self,'visit'+cls.__name__,self.default)
return meth(node, **kw)
def default(self, node, **kw):
raise SyntaxError("Unsupported source construct: %s" % node.__class__)
def visitExpression(self, node, **kw):
for child in node.getChildNodes():
return self.visit(child, **kw)
def visitConst(self, node, **kw):
return node.value
def visitDict(self, node,**kw):
return dict([(self.visit(k),self.visit(v)) for k,v in node.items])
def visitTuple(self, node, **kw):
return tuple([self.visit(i) for i in node.nodes])
def visitList(self, node, **kw):
return [self.visit(i) for i in node.nodes]
def visitUnaryAdd(self, node, **kw):
return +self.visit(node.getChildNodes()[0])
def visitUnarySub(self, node, **kw):
return -self.visit(node.getChildNodes()[0])
def visitName(self, node, **kw):
if node.name == 'False':
return False
elif node.name == 'True':
return True
elif node.name == 'None':
return None
else:
raise SyntaxError("Unknown name: %s" % node.name)
def safe_eval(source):
"""
Protected string evaluation.
Evaluate a string containing a Python literal expression without
allowing the execution of arbitrary non-literal code.
Parameters
----------
source : str
Returns
-------
obj : object
Raises
------
SyntaxError
If the code has invalid Python syntax, or if it contains non-literal
code.
Examples
--------
>>> from numpy.lib.utils import safe_eval
>>> safe_eval('1')
1
>>> safe_eval('[1, 2, 3]')
[1, 2, 3]
>>> safe_eval('{"foo": ("bar", 10.0)}')
{'foo': ('bar', 10.0)}
>>> safe_eval('import os')
Traceback (most recent call last):
...
SyntaxError: invalid syntax
>>> safe_eval('open("/home/user/.ssh/id_dsa").read()')
Traceback (most recent call last):
...
SyntaxError: Unsupported source construct: compiler.ast.CallFunc
>>> safe_eval('dict')
Traceback (most recent call last):
...
SyntaxError: Unknown name: dict
"""
# Local import to speed up numpy's import time.
import compiler
walker = SafeEval()
try:
ast = compiler.parse(source, "eval")
except SyntaxError, err:
raise
try:
return walker.visit(ast)
except SyntaxError, err:
raise
#-----------------------------------------------------------------------------
|