1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
|
"""Linear Algebra functions implemented as gufuncs, so they broadcast.
.. warning:: This module is only for testing, the functionality will be
integrated into numpy.linalg proper.
=======================
gufuncs_linalg module
=======================
gufuncs_linalg implements a series of linear algebra functions as gufuncs.
Most of these functions are already present in numpy.linalg, but as they
are implemented using gufunc kernels they can be broadcasting. Some parts
that are python in numpy.linalg are implemented inside C functions, as well
as the iteration used when used on vectors. This can result in faster
execution as well.
In addition, there are some ufuncs thrown in that implement fused operations
over numpy vectors that can result in faster execution on large vector
compared to non-fused versions (for example: multiply_add, multiply3).
In fact, gufuncs_linalg is a very thin wrapper of python code that wraps
the actual kernels (gufuncs). This wrapper was needed in order to provide
a sane interface for some functions. Mostly working around limitations on
what can be described in a gufunc signature. Things like having one dimension
of a result depending on the minimum of two dimensions of the sources (like
in svd) or passing an uniform keyword parameter to the whole operation
(like UPLO on functions over symmetric/hermitian matrices).
The gufunc kernels are in a c module named _umath_linalg, that is imported
privately in gufuncs_linalg.
==========
Contents
==========
Here is an enumeration of the functions. These are the functions exported by
the module and should appear in its __all__ attribute. All the functions
contain a docstring explaining them in detail.
General
=======
- inner1d
- innerwt
- matrix_multiply
- quadratic_form
Lineal Algebra
==============
- det
- slogdet
- cholesky
- eig
- eigvals
- eigh
- eigvalsh
- solve
- svd
- chosolve
- inv
- poinv
Fused Operations
================
- add3
- multiply3
- multiply3_add
- multiply_add
- multiply_add2
- multiply4
- multiply4_add
================
Error Handling
================
Unlike the numpy.linalg module, this module does not use exceptions to notify
errors in the execution of the kernels. As these functions are thougth to be
used in a vector way it didn't seem appropriate to raise exceptions on failure
of an element. So instead, when an error computing an element occurs its
associated result will be set to an invalid value (all NaNs).
Exceptions can occur if the arguments fail to map properly to the underlying
gufunc (due to signature mismatch, for example).
================================
Notes about the implementation
================================
Where possible, the wrapper functions map directly into a gufunc implementing
the computation.
That's not always the case, as due to limitations of the gufunc interface some
functions cannot be mapped straight into a kernel.
Two cases come to mind:
- An uniform parameter is needed to configure the way the computation is
performed (like UPLO in the functions working on symmetric/hermitian matrices)
- svd, where it was impossible to map the function to a gufunc signature.
In the case of uniform parameters like UPLO, there are two separate entry points
in the C module that imply either 'U' or 'L'. The wrapper just selects the
kernel to use by checking the appropriate keyword parameter. This way a
function interface similar to numpy.linalg can be kept.
In the case of SVD not only there were problems with the support of keyword
arguments. There was the added problem of the signature system not being able
to cope with the needs of this functions. Just for the singular values a
a signature like (m,n)->(min(m,n)) was needed. This has been worked around by
implementing different kernels for the cases where min(m,n) == m and where
min(m,n) == n. The wrapper code automatically selects the appropriate one.
"""
from __future__ import division, absolute_import, print_function
__all__ = ['inner1d', 'dotc1d', 'innerwt', 'matrix_multiply', 'det', 'slogdet',
'inv', 'cholesky', 'quadratic_form', 'add3', 'multiply3',
'multiply3_add', 'multiply_add', 'multiply_add2', 'multiply4',
'multiply4_add', 'eig', 'eigvals', 'eigh', 'eigvalsh', 'solve',
'svd', 'chosolve', 'poinv']
import numpy as np
from . import _umath_linalg as _impl
def inner1d(a, b, **kwargs):
"""
Compute the dot product of vectors over the inner dimension, with
broadcasting.
Parameters
----------
a : (..., N) array
Input array
b : (..., N) array
Input array
Returns
-------
inner : (...) array
dot product over the inner dimension.
Notes
-----
Numpy broadcasting rules apply when matching dimensions.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
For single and double types this is equivalent to dotc1d.
Maps to Blas functions sdot, ddot, cdotu and zdotu.
See Also
--------
dotc1d : dot product conjugating first vector.
innerwt : weighted (i.e. triple) inner product.
Examples
--------
>>> a = np.arange(1,5).reshape(2,2)
>>> b = np.arange(1,8,2).reshape(2,2)
>>> res = inner1d(a,b)
>>> res.shape
(2,)
>>> print res
[ 7. 43.]
"""
return _impl.inner1d(a, b, **kwargs)
def dotc1d(a, b, **kwargs):
"""
Compute the dot product of vectors over the inner dimension, conjugating
the first vector, with broadcasting
Parameters
----------
a : (..., N) array
Input array
b : (..., N) array
Input array
Returns
-------
dotc : (...) array
dot product conjugating the first vector over the inner
dimension.
Notes
-----
Numpy broadcasting rules apply when matching dimensions.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
For single and double types this is equivalent to inner1d.
Maps to Blas functions sdot, ddot, cdotc and zdotc.
See Also
--------
inner1d : dot product
innerwt : weighted (i.e. triple) inner product.
Examples
--------
>>> a = np.arange(1,5).reshape(2,2)
>>> b = np.arange(1,8,2).reshape(2,2)
>>> res = inner1d(a,b)
>>> res.shape
(2,)
>>> print res
[ 7. 43.]
"""
return _impl.dotc1d(a, b, **kwargs)
def innerwt(a, b, c, **kwargs):
"""
Compute the weighted (i.e. triple) inner product, with
broadcasting.
Parameters
----------
a, b, c : (..., N) array
Input arrays
Returns
-------
inner : (...) array
The weighted (i.e. triple) inner product.
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
inner1d : inner product.
dotc1d : dot product conjugating first vector.
Examples
--------
>>> a = np.arange(1,5).reshape(2,2)
>>> b = np.arange(1,8,2).reshape(2,2)
>>> c = np.arange(0.25,1.20,0.25).reshape(2,2)
>>> res = innerwt(a,b,c)
>>> res.shape
(2,)
>>> res
array([ 3.25, 39.25])
"""
return _impl.innerwt(a, b, c, **kwargs)
def matrix_multiply(a,b,**kwargs):
"""
Compute matrix multiplication, with broadcasting
Parameters
----------
a : (..., M, N) array
Input array.
b : (..., N, P) array
Input array.
Returns
-------
r : (..., M, P) array matrix multiplication of a and b over any number of
outer dimensions
Notes
-----
Numpy broadcasting rules apply.
Matrix multiplication is computed using BLAS _gemm functions.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
Examples
--------
>>> a = np.arange(1,17).reshape(2,2,4)
>>> b = np.arange(1,25).reshape(2,4,3)
>>> res = matrix_multiply(a,b)
>>> res.shape
(2, 2, 3)
>>> res
array([[[ 70., 80., 90.],
[ 158., 184., 210.]],
<BLANKLINE>
[[ 750., 792., 834.],
[ 1030., 1088., 1146.]]])
"""
return _impl.matrix_multiply(a,b,**kwargs)
def det(a, **kwargs):
"""
Compute the determinant of arrays, with broadcasting.
Parameters
----------
a : (NDIMS, M, M) array
Input array. Its inner dimensions must be those of a square 2-D array.
Returns
-------
det : (NDIMS) array
Determinants of `a`
See Also
--------
slogdet : Another representation for the determinant, more suitable
for large matrices where underflow/overflow may occur
Notes
-----
Numpy broadcasting rules apply.
The determinants are computed via LU factorization using the LAPACK
routine _getrf.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
Examples
--------
The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
>>> a = np.array([[1, 2], [3, 4]])
>>> np.allclose(-2.0, det(a))
True
>>> a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]] ])
>>> np.allclose(-2.0, det(a))
True
"""
return _impl.det(a, **kwargs)
def slogdet(a, **kwargs):
"""
Compute the sign and (natural) logarithm of the determinant of an array,
with broadcasting.
If an array has a very small or very large determinant, then a call to
`det` may overflow or underflow. This routine is more robust against such
issues, because it computes the logarithm of the determinant rather than
the determinant itself
Parameters
----------
a : (..., M, M) array
Input array. Its inner dimensions must be those of a square 2-D array.
Returns
-------
sign : (...) array
An array of numbers representing the sign of the determinants. For real
matrices, this is 1, 0, or -1. For complex matrices, this is a complex
number with absolute value 1 (i.e., it is on the unit circle), or else
0.
logdet : (...) array
The natural log of the absolute value of the determinant. This is always
a real type.
If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf.
In all cases, the determinant is equal to ``sign * np.exp(logdet)``.
See Also
--------
det
Notes
-----
Numpy broadcasting rules apply.
The determinants are computed via LU factorization using the LAPACK
routine _getrf.
Implemented for types single, double, csingle and cdouble. Numpy conversion
rules apply. For complex versions `logdet` will be of the associated real
type (single for csingle, double for cdouble).
Examples
--------
The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logdet) = slogdet(a)
>>> sign.shape
()
>>> logdet.shape
()
>>> np.allclose(-2.0, sign * np.exp(logdet))
True
>>> a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]] ])
>>> (sign, logdet) = slogdet(a)
>>> sign.shape
(2,)
>>> logdet.shape
(2,)
>>> np.allclose(-2.0, sign * np.exp(logdet))
True
"""
return _impl.slogdet(a, **kwargs)
def inv(a, **kwargs):
"""
Compute the (multiplicative) inverse of matrices, with broadcasting.
Given a square matrix `a`, return the matrix `ainv` satisfying
``matrix_multiply(a, ainv) = matrix_multiply(ainv, a) = Identity matrix``
Parameters
----------
a : (..., M, M) array
Matrices to be inverted
Returns
-------
ainv : (..., M, M) array
(Multiplicative) inverse of the `a` matrices.
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy conversion
rules apply.
Singular matrices and thus, not invertible, result in an array of NaNs.
See Also
--------
poinv : compute the multiplicative inverse of hermitian/symmetric matrices,
using cholesky decomposition.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> ainv = inv(a)
>>> np.allclose(matrix_multiply(a, ainv), np.eye(2))
True
>>> np.allclose(matrix_multiply(ainv, a), np.eye(2))
True
"""
return _impl.inv(a, **kwargs)
def cholesky(a, UPLO='L', **kwargs):
"""
Compute the cholesky decomposition of `a`, with broadcasting
The Cholesky decomposition (or Cholesky triangle) is a decomposition of a
Hermitian, positive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose.
A = LL*
where L* is the positive-definite matrix.
Parameters
----------
a : (..., M, M) array
Matrices for which compute the cholesky decomposition
Returns
-------
l : (..., M, M) array
Matrices for each element where each entry is the lower triangular
matrix with strictly positive diagonal entries such that a = ll* for
all outer dimensions
See Also
--------
chosolve : solve a system using cholesky decomposition
poinv : compute the inverse of a matrix using cholesky decomposition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy conversion
rules apply.
Decomposition is performed using LAPACK routine _potrf.
For elements where the LAPACK routine fails, the result will be set to NaNs.
If an element of the source array is not a positive-definite matrix the
result for that element is undefined.
Examples
--------
>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[ 1.+0.j, 0.-2.j],
[ 0.+2.j, 5.+0.j]])
>>> L = cholesky(A)
>>> L
array([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
"""
if 'L' == UPLO:
gufunc = _impl.cholesky_lo
else:
gufunc = _impl.cholesky_up
return gufunc(a, **kwargs)
def eig(a, **kwargs):
"""
Compute the eigenvalues and right eigenvectors of square arrays,
with broadcasting
Parameters
----------
a : (..., M, M) array
Matrices for which the eigenvalues and right eigenvectors will
be computed
Returns
-------
w : (..., M) array
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting
array will be always be of complex type. When `a` is real
the resulting eigenvalues will be real (0 imaginary part) or
occur in conjugate pairs
v : (..., M, M) array
The normalized (unit "length") eigenvectors, such that the
column ``v[:,i]`` is the eigenvector corresponding to the
eigenvalue ``w[i]``.
See Also
--------
eigvals : eigenvalues of general arrays.
eigh : eigenvalues and right eigenvectors of symmetric/hermitian
arrays.
eigvalsh : eigenvalues of symmetric/hermitian arrays.
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
Eigenvalues and eigenvectors for single and double versions will
always be typed csingle and cdouble, even if all the results are
real (imaginary part will be 0).
This is implemented using the _geev LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Examples
--------
First, a utility function to check if eigvals/eigvectors are correct.
This checks the definition of eigenvectors. For each eigenvector v
with associated eigenvalue w of a matrix M the following equality must
hold: Mv == wv
>>> def check_eigen(M, w, v):
... '''vectorial check of Mv==wv'''
... lhs = matrix_multiply(M, v)
... rhs = w*v
... return np.allclose(lhs, rhs)
(Almost) Trivial example with real e-values and e-vectors. Note
the complex types of the results
>>> M = np.diag((1,2,3)).astype(float)
>>> w, v = eig(M)
>>> check_eigen(M, w, v)
True
Real matrix possessing complex e-values and e-vectors; note that the
e-values are complex conjugates of each other.
>>> M = np.array([[1, -1], [1, 1]])
>>> w, v = eig(M)
>>> check_eigen(M, w, v)
True
Complex-valued matrix with real e-values (but complex-valued e-vectors);
note that a.conj().T = a, i.e., a is Hermitian.
>>> M = np.array([[1, 1j], [-1j, 1]])
>>> w, v = eig(M)
>>> check_eigen(M, w, v)
True
"""
return _impl.eig(a, **kwargs)
def eigvals(a, **kwargs):
"""
Compute the eigenvalues of general matrices, with broadcasting.
Main difference between `eigvals` and `eig`: the eigenvectors aren't
returned.
Parameters
----------
a : (..., M, M) array
Matrices whose eigenvalues will be computed
Returns
-------
w : (..., M) array
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting
array will be always be of complex type. When `a` is real
the resulting eigenvalues will be real (0 imaginary part) or
occur in conjugate pairs
See Also
--------
eig : eigenvalues and right eigenvectors of general arrays.
eigh : eigenvalues and right eigenvectors of symmetric/hermitian
arrays.
eigvalsh : eigenvalues of symmetric/hermitian arrays.
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
Eigenvalues for single and double versions will always be typed
csingle and cdouble, even if all the results are real (imaginary
part will be 0).
This is implemented using the _geev LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Examples
--------
Eigenvalues for a diagonal matrix are its diagonal elements
>>> D = np.diag((-1,1))
>>> eigvals(D)
array([-1.+0.j, 1.+0.j])
Multiplying on the left by an orthogonal matrix, `Q`, and on the
right by `Q.T` (the transpose of `Q` preserves the eigenvalues of
the original matrix
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
>>> A = matrix_multiply(Q, D)
>>> A = matrix_multiply(A, Q.T)
>>> eigvals(A)
array([-1.+0.j, 1.+0.j])
"""
return _impl.eigvals(a, **kwargs)
def quadratic_form(u,Q,v, **kwargs):
"""
Compute the quadratic form uQv, with broadcasting
Parameters
----------
u : (..., M) array
The u vectors of the quadratic form uQv
Q : (..., M, N) array
The Q matrices of the quadratic form uQv
v : (..., N) array
The v vectors of the quadratic form uQv
Returns
-------
qf : (...) array
The result of the quadratic forms
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
This is similar to PDL inner2
Examples
--------
The result in absence of broadcasting is just as np.dot(np.dot(u,Q),v)
or np.dot(u, np.dot(Q,v))
>>> u = np.array([2., 3.])
>>> Q = np.array([[1.,1.], [0.,1.]])
>>> v = np.array([1.,2.])
>>> quadratic_form(u,Q,v)
12.0
>>> np.dot(np.dot(u,Q),v)
12.0
>>> np.dot(u, np.dot(Q,v))
12.0
"""
return _impl.quadratic_form(u, Q, v, **kwargs)
def add3(a, b, c, **kwargs):
"""
Element-wise addition of 3 arrays: a + b + c.
Parameters
----------
a, b, c : (...) array
arrays with the addends
Returns
-------
add3 : (...) array
resulting element-wise addition.
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 30.0, 30)
>>> add3(a[0::3], a[1::3], a[2::3])
array([ 6., 15., 24., 33., 42., 51., 60., 69., 78., 87.])
"""
return _impl.add3(a, b, c, **kwargs)
def multiply3(a, b, c, **kwargs):
"""
Element-wise multiplication of 3 arrays: a*b*c.
Parameters
----------
a, b, c : (...) array
arrays with the factors
Returns
-------
m3 : (...) array
resulting element-wise product
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply3(a, 1.01, a)
array([ 1.01, 4.04, 9.09, 16.16, 25.25, 36.36, 49.49,
64.64, 81.81, 101. ])
"""
return _impl.multiply3(a, b, c, **kwargs)
def multiply3_add(a, b, c, d, **kwargs):
"""
Element-wise multiplication of 3 arrays adding an element
of the a 4th array to the result: a*b*c + d
Parameters
----------
a, b, c : (...) array
arrays with the factors
d : (...) array
array with the addend
Returns
-------
m3a : (...) array
resulting element-wise addition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply3_add(a, 1.01, a, 42e-4)
array([ 1.0142, 4.0442, 9.0942, 16.1642, 25.2542, 36.3642,
49.4942, 64.6442, 81.8142, 101.0042])
"""
return _impl.multiply3_add(a, b, c, d, **kwargs)
def multiply_add(a, b, c, **kwargs):
"""
Element-wise addition of 3 arrays
Parameters
----------
a, b, c : (...) array
arrays with the addends
Returns
-------
add3 : (...) array
resulting element-wise addition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply_add(a, a, 42e-4)
array([ 1.0042, 4.0042, 9.0042, 16.0042, 25.0042, 36.0042,
49.0042, 64.0042, 81.0042, 100.0042])
"""
return _impl.multiply_add(a, b, c, **kwargs)
def multiply_add2(a, b, c, d, **kwargs):
"""
Element-wise addition of 3 arrays
Parameters
----------
a, b, c : (...) array
arrays with the addends
Returns
-------
add3 : (...) array
resulting element-wise addition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply_add2(a, a, a, 42e-4)
array([ 2.0042, 6.0042, 12.0042, 20.0042, 30.0042, 42.0042,
56.0042, 72.0042, 90.0042, 110.0042])
"""
return _impl.multiply_add2(a, b, c, d, **kwargs)
def multiply4(a, b, c, d, **kwargs):
"""
Element-wise addition of 3 arrays
Parameters
----------
a, b, c : (...) array
arrays with the addends
Returns
-------
add3 : (...) array
resulting element-wise addition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply4(a, a, a[::-1], 1.0001)
array([ 10.001 , 36.0036, 72.0072, 112.0112, 150.015 , 180.018 ,
196.0196, 192.0192, 162.0162, 100.01 ])
"""
return _impl.multiply4(a, b, c, d, **kwargs)
def multiply4_add(a, b, c, d, e, **kwargs):
"""
Element-wise addition of 3 arrays
Parameters
----------
a, b, c : (...) array
arrays with the addends
Returns
-------
add3 : (...) array
resulting element-wise addition
Notes
-----
Numpy broadcasting rules apply.
Implemented for types single, double, csingle and cdouble. Numpy
conversion rules apply.
See Also
--------
add3 : element-wise three-was addition
multiply3 : element-wise three-way multiplication.
multiply3_add : element-wise three-way multiplication and addition.
multiply_add : element-wise multiply-add.
multiply_add2 : element-wise multiplication with two additions.
multiply4 : element-wise four-way multiplication
multiply4_add : element-wise four-way multiplication and addition,
Examples
--------
>>> a = np.linspace(1.0, 10.0, 10)
>>> multiply4_add(a, a, a[::-1], 1.01, 42e-4)
array([ 10.1042, 36.3642, 72.7242, 113.1242, 151.5042, 181.8042,
197.9642, 193.9242, 163.6242, 101.0042])
"""
return _impl.multiply4_add(a, b, c, d, e,**kwargs)
def eigh(A, UPLO='L', **kw_args):
"""
Computes the eigenvalues and eigenvectors for the square matrices
in the inner dimensions of A, being those matrices
symmetric/hermitian.
Parameters
----------
A : (..., M, M) array
Hermitian/Symmetric matrices whose eigenvalues and
eigenvectors are to be computed.
UPLO : {'L', 'U'}, optional
Specifies whether the calculation is done with the lower
triangular part of the elements in `A` ('L', default) or
the upper triangular part ('U').
Returns
-------
w : (..., M) array
The eigenvalues, not necessarily ordered.
v : (..., M, M) array
The inner dimensions contain matrices with the normalized
eigenvectors as columns. The column-numbers are coherent with
the associated eigenvalue.
Notes
-----
Numpy broadcasting rules apply.
The eigenvalues/eigenvectors are computed using LAPACK routines _ssyevd,
_heevd
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
Unlike eig, the results for single and double will always be single
and doubles. It is not possible for symmetrical real matrices to result
in complex eigenvalues/eigenvectors
See Also
--------
eigvalsh : eigenvalues of symmetric/hermitian arrays.
eig : eigenvalues and right eigenvectors for general matrices.
eigvals : eigenvalues for general matrices.
Examples
--------
First, a utility function to check if eigvals/eigvectors are correct.
This checks the definition of eigenvectors. For each eigenvector v
with associated eigenvalue w of a matrix M the following equality must
hold: Mv == wv
>>> def check_eigen(M, w, v):
... '''vectorial check of Mv==wv'''
... lhs = matrix_multiply(M, v)
... rhs = w*v
... return np.allclose(lhs, rhs)
A simple example that computes eigenvectors and eigenvalues of
a hermitian matrix and checks that A*v = v*w for both pairs of
eignvalues(w) and eigenvectors(v)
>>> M = np.array([[1, -2j], [2j, 1]])
>>> w, v = eigh(M)
>>> check_eigen(M, w, v)
True
"""
if 'L' == UPLO:
gufunc = _impl.eigh_lo
else:
gufunc = _impl.eigh_up
return gufunc(A, **kw_args)
def eigvalsh(A, UPLO='L', **kw_args):
"""
Computes the eigenvalues for the square matrices in the inner
dimensions of A, being those matrices symmetric/hermitian.
Parameters
----------
A : (..., M, M) array
Hermitian/Symmetric matrices whose eigenvalues and
eigenvectors are to be computed.
UPLO : {'L', 'U'}, optional
Specifies whether the calculation is done with the lower
triangular part of the elements in `A` ('L', default) or
the upper triangular part ('U').
Returns
-------
w : (..., M) array
The eigenvalues, not necessarily ordered.
Notes
-----
Numpy broadcasting rules apply.
The eigenvalues are computed using LAPACK routines _ssyevd, _heevd
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
Unlike eigvals, the results for single and double will always be single
and doubles. It is not possible for symmetrical real matrices to result
in complex eigenvalues.
See Also
--------
eigh : eigenvalues of symmetric/hermitian arrays.
eig : eigenvalues and right eigenvectors for general matrices.
eigvals : eigenvalues for general matrices.
Examples
--------
eigvalsh results should be the same as the eigenvalues returned by eigh
>>> a = np.array([[1, -2j], [2j, 5]])
>>> w, v = eigh(a)
>>> np.allclose(w, eigvalsh(a))
True
eigvalsh on an identity matrix is all ones
>>> eigvalsh(np.eye(6))
array([ 1., 1., 1., 1., 1., 1.])
"""
if ('L' == UPLO):
gufunc = _impl.eigvalsh_lo
else:
gufunc = _impl.eigvalsh_up
return gufunc(A,**kw_args)
def solve(A,B,**kw_args):
"""
Solve the linear matrix equations on the inner dimensions.
Computes the "exact" solution, `x`. of the well-determined,
i.e., full rank, linear matrix equations `ax = b`.
Parameters
----------
A : (..., M, M) array
Coefficient matrices.
B : (..., M, N) array
Ordinate or "dependent variable" values.
Returns
-------
X : (..., M, N) array
Solutions to the system A X = B for all the outer dimensions
Notes
-----
Numpy broadcasting rules apply.
The solutions are computed using LAPACK routine _gesv
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
See Also
--------
chosolve : solve a system using cholesky decomposition (for equations
having symmetric/hermitian coefficient matrices)
Examples
--------
Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:
>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = solve(a, b)
>>> x
array([ 2., 3.])
Check that the solution is correct:
>>> np.allclose(np.dot(a, x), b)
True
"""
if len(B.shape) == (len(A.shape) - 1):
gufunc = _impl.solve1
else:
gufunc = _impl.solve
return gufunc(A,B,**kw_args)
def svd(a, full_matrices=1, compute_uv=1 ,**kw_args):
"""
Singular Value Decomposition on the inner dimensions.
Factors the matrices in `a` as ``u * np.diag(s) * v``, where `u`
and `v` are unitary and `s` is a 1-d array of `a`'s singular
values.
Parameters
----------
a : (..., M, N) array
The array of matrices to decompose.
full_matrices : bool, optional
If True (default), `u` and `v` have the shapes (`M`, `M`) and
(`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`)
and (`K`, `N`), respectively, where `K` = min(`M`, `N`).
compute_uv : bool, optional
Whether or not to compute `u` and `v` in addition to `s`. True
by default.
Returns
-------
u : { (..., M, M), (..., M, K) } array
Unitary matrices. The actual shape depends on the value of
``full_matrices``. Only returned when ``compute_uv`` is True.
s : (..., K) array
The singular values for every matrix, sorted in descending order.
v : { (..., N, N), (..., K, N) } array
Unitary matrices. The actual shape depends on the value of
``full_matrices``. Only returned when ``compute_uv`` is True.
Notes
-----
Numpy broadcasting rules apply.
Singular Value Decomposition is performed using LAPACK routine _gesdd
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for types single, double, csingle and cdouble. Numpy conversion
rules apply.
Examples
--------
>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
Reconstruction based on full SVD:
>>> U, s, V = svd(a, full_matrices=True)
>>> U.shape, V.shape, s.shape
((9, 9), (6, 6), (6,))
>>> S = np.zeros((9, 6), dtype=complex)
>>> S[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True
Reconstruction based on reduced SVD:
>>> U, s, V = svd(a, full_matrices=False)
>>> U.shape, V.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True
"""
m = a.shape[-2]
n = a.shape[-1]
if 1 == compute_uv:
if 1 == full_matrices:
if m < n:
gufunc = _impl.svd_m_f
else:
gufunc = _impl.svd_n_f
else:
if m < n:
gufunc = _impl.svd_m_s
else:
gufunc = _impl.svd_n_s
else:
if m < n:
gufunc = _impl.svd_m
else:
gufunc = _impl.svd_n
return gufunc(a, **kw_args)
def chosolve(A, B, UPLO='L', **kw_args):
"""
Solve the linear matrix equations on the inner dimensions, using
cholesky decomposition.
Computes the "exact" solution, `x`. of the well-determined,
i.e., full rank, linear matrix equations `ax = b`, where a is
a symmetric/hermitian positive-definite matrix.
Parameters
----------
A : (..., M, M) array
Coefficient symmetric/hermitian positive-definite matrices.
B : (..., M, N) array
Ordinate or "dependent variable" values.
UPLO : {'L', 'U'}, optional
Specifies whether the calculation is done with the lower
triangular part of the elements in `A` ('L', default) or
the upper triangular part ('U').
Returns
-------
X : (..., M, N) array
Solutions to the system A X = B for all elements in the outer
dimensions
Notes
-----
Numpy broadcasting rules apply.
The solutions are computed using LAPACK routines _potrf, _potrs
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for single, double, csingle and cdouble. Numpy conversion
rules apply.
See Also
--------
solve : solve a system using cholesky decomposition (for equations
having symmetric/hermitian coefficient matrices)
Examples
--------
Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:
(note the matrix is symmetric in this system)
>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = solve(a, b)
>>> x
array([ 2., 3.])
Check that the solution is correct:
>>> np.allclose(np.dot(a, x), b)
True
"""
if len(B.shape) == (len(A.shape) - 1):
if 'L' == UPLO:
gufunc = _impl.chosolve1_lo
else:
gufunc = _impl.chosolve1_up
else:
if 'L' == UPLO:
gufunc = _impl.chosolve_lo
else:
gufunc = _impl.chosolve_up
return gufunc(A, B, **kw_args)
def poinv(A, UPLO='L', **kw_args):
"""
Compute the (multiplicative) inverse of symmetric/hermitian positive
definite matrices, with broadcasting.
Given a square symmetic/hermitian positive-definite matrix `a`, return
the matrix `ainv` satisfying ``matrix_multiply(a, ainv) =
matrix_multiply(ainv, a) = Identity matrix``.
Parameters
----------
a : (..., M, M) array
Symmetric/hermitian postive definite matrices to be inverted.
Returns
-------
ainv : (..., M, M) array
(Multiplicative) inverse of the `a` matrices.
Notes
-----
Numpy broadcasting rules apply.
The inverse is computed using LAPACK routines _potrf, _potri
For elements where the LAPACK routine fails, the result will be set
to NaNs.
Implemented for types single, double, csingle and cdouble. Numpy conversion
rules apply.
See Also
--------
inv : compute the multiplicative inverse of general matrices.
Examples
--------
>>> a = np.array([[5, 3], [3, 5]])
>>> ainv = poinv(a)
>>> np.allclose(matrix_multiply(a, ainv), np.eye(2))
True
>>> np.allclose(matrix_multiply(ainv, a), np.eye(2))
True
"""
if 'L' == UPLO:
gufunc = _impl.poinv_lo
else:
gufunc = _impl.poinv_up
return gufunc(A, **kw_args);
if __name__ == "__main__":
import doctest
doctest.testmod()
|