summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
blob: 10d05f07f93d1b34ce445821f6aa9a6641a80aac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
"""Lite version of scipy.linalg.

Notes
-----
This module is a lite version of the linalg.py module in SciPy which
contains high-level Python interface to the LAPACK library.  The lite
version only accesses the following LAPACK functions: dgesv, zgesv,
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
"""

__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv',
           'inv', 'cholesky',
           'eigvals',
           'eigvalsh', 'pinv',
           'det', 'svd',
           'eig', 'eigh','lstsq', 'norm',
           'qr',
           'cond',
           'LinAlgError'
           ]

from numpy.core import array, asarray, zeros, empty, transpose, \
        intc, single, double, csingle, cdouble, inexact, complexfloating, \
        newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \
        maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
        isfinite, size
from numpy.lib import triu
from numpy.linalg import lapack_lite
from numpy.core.defmatrix import matrix_power, matrix

fortran_int = intc

# Error object
class LinAlgError(Exception):
    pass

def _makearray(a):
    new = asarray(a)
    wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
    return new, wrap

def isComplexType(t):
    return issubclass(t, complexfloating)

_real_types_map = {single : single,
                   double : double,
                   csingle : single,
                   cdouble : double}

_complex_types_map = {single : csingle,
                      double : cdouble,
                      csingle : csingle,
                      cdouble : cdouble}

def _realType(t, default=double):
    return _real_types_map.get(t, default)

def _complexType(t, default=cdouble):
    return _complex_types_map.get(t, default)

def _linalgRealType(t):
    """Cast the type t to either double or cdouble."""
    return double

_complex_types_map = {single : csingle,
                      double : cdouble,
                      csingle : csingle,
                      cdouble : cdouble}

def _commonType(*arrays):
    # in lite version, use higher precision (always double or cdouble)
    result_type = single
    is_complex = False
    for a in arrays:
        if issubclass(a.dtype.type, inexact):
            if isComplexType(a.dtype.type):
                is_complex = True
            rt = _realType(a.dtype.type, default=None)
            if rt is None:
                # unsupported inexact scalar
                raise TypeError("array type %s is unsupported in linalg" %
                        (a.dtype.name,))
        else:
            rt = double
        if rt is double:
            result_type = double
    if is_complex:
        t = cdouble
        result_type = _complex_types_map[result_type]
    else:
        t = double
    return t, result_type

def _castCopyAndTranspose(type, *arrays):
    if len(arrays) == 1:
        return transpose(arrays[0]).astype(type)
    else:
        return [transpose(a).astype(type) for a in arrays]

# _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose.
# It assumes the input is 2D (as all the calls in here are).

_fastCT = fastCopyAndTranspose

def _fastCopyAndTranspose(type, *arrays):
    cast_arrays = ()
    for a in arrays:
        if a.dtype.type is type:
            cast_arrays = cast_arrays + (_fastCT(a),)
        else:
            cast_arrays = cast_arrays + (_fastCT(a.astype(type)),)
    if len(cast_arrays) == 1:
        return cast_arrays[0]
    else:
        return cast_arrays

def _assertRank2(*arrays):
    for a in arrays:
        if len(a.shape) != 2:
            raise LinAlgError, '%d-dimensional array given. Array must be \
            two-dimensional' % len(a.shape)

def _assertSquareness(*arrays):
    for a in arrays:
        if max(a.shape) != min(a.shape):
            raise LinAlgError, 'Array must be square'

def _assertFinite(*arrays):
    for a in arrays:
        if not (isfinite(a).all()):
            raise LinAlgError, "Array must not contain infs or NaNs"

def _assertNonEmpty(*arrays):
    for a in arrays:
        if size(a) == 0:
            raise LinAlgError("Arrays cannot be empty")


# Linear equations

def tensorsolve(a, b, axes=None):
    """Solve the tensor equation a x = b for x

    It is assumed that all indices of x are summed over in the product,
    together with the rightmost indices of a, similarly as in
    tensordot(a, x, axes=len(b.shape)).

    Parameters
    ----------
    a : array-like, shape b.shape+Q
        Coefficient tensor. Shape Q of the rightmost indices of a must
        be such that a is 'square', ie., prod(Q) == prod(b.shape).
    b : array-like, any shape
        Right-hand tensor.
    axes : tuple of integers
        Axes in a to reorder to the right, before inversion.
        If None (default), no reordering is done.

    Returns
    -------
    x : array, shape Q

    Examples
    --------
    >>> from numpy import *
    >>> a = eye(2*3*4)
    >>> a.shape = (2*3,4,  2,3,4)
    >>> b = random.randn(2*3,4)
    >>> x = linalg.tensorsolve(a, b)
    >>> x.shape
    (2, 3, 4)
    >>> allclose(tensordot(a, x, axes=3), b)
    True

    """
    a = asarray(a)
    b = asarray(b)
    an = a.ndim

    if axes is not None:
        allaxes = range(0, an)
        for k in axes:
            allaxes.remove(k)
            allaxes.insert(an, k)
        a = a.transpose(allaxes)

    oldshape = a.shape[-(an-b.ndim):]
    prod = 1
    for k in oldshape:
        prod *= k

    a = a.reshape(-1, prod)
    b = b.ravel()
    res = wrap(solve(a, b))
    res.shape = oldshape
    return res

def solve(a, b):
    """Solve the equation a x = b

    Parameters
    ----------
    a : array-like, shape (M, M)
    b : array-like, shape (M,)

    Returns
    -------
    x : array, shape (M,)

    Raises LinAlgError if a is singular or not square

    """
    a, _ = _makearray(a)
    b, wrap = _makearray(b)
    one_eq = len(b.shape) == 1
    if one_eq:
        b = b[:, newaxis]
    _assertRank2(a, b)
    _assertSquareness(a)
    n_eq = a.shape[0]
    n_rhs = b.shape[1]
    if n_eq != b.shape[0]:
        raise LinAlgError, 'Incompatible dimensions'
    t, result_t = _commonType(a, b)
#    lapack_routine = _findLapackRoutine('gesv', t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgesv
    else:
        lapack_routine = lapack_lite.dgesv
    a, b = _fastCopyAndTranspose(t, a, b)
    pivots = zeros(n_eq, fortran_int)
    results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Singular matrix'
    if one_eq:
        return wrap(b.ravel().astype(result_t))
    else:
        return wrap(b.transpose().astype(result_t))


def tensorinv(a, ind=2):
    """Find the 'inverse' of a N-d array

    The result is an inverse corresponding to the operation
    tensordot(a, b, ind), ie.,

        x == tensordot(tensordot(tensorinv(a), a, ind), x, ind)
          == tensordot(tensordot(a, tensorinv(a), ind), x, ind)

    for all x (up to floating-point accuracy).

    Parameters
    ----------
    a : array-like
        Tensor to 'invert'. Its shape must 'square', ie.,
        prod(a.shape[:ind]) == prod(a.shape[ind:])
    ind : integer > 0
        How many of the first indices are involved in the inverse sum.

    Returns
    -------
    b : array, shape a.shape[:ind]+a.shape[ind:]

    Raises LinAlgError if a is singular or not square

    Examples
    --------
    >>> from numpy import *
    >>> a = eye(4*6)
    >>> a.shape = (4,6,8,3)
    >>> ainv = linalg.tensorinv(a, ind=2)
    >>> ainv.shape
    (8, 3, 4, 6)
    >>> b = random.randn(4,6)
    >>> allclose(tensordot(ainv, b), linalg.tensorsolve(a, b))
    True

    >>> a = eye(4*6)
    >>> a.shape = (24,8,3)
    >>> ainv = linalg.tensorinv(a, ind=1)
    >>> ainv.shape
    (8, 3, 24)
    >>> b = random.randn(24)
    >>> allclose(tensordot(ainv, b, 1), linalg.tensorsolve(a, b))
    True
    """
    a = asarray(a)
    oldshape = a.shape
    prod = 1
    if ind > 0:
        invshape = oldshape[ind:] + oldshape[:ind]
        for k in oldshape[ind:]:
            prod *= k
    else:
        raise ValueError, "Invalid ind argument."
    a = a.reshape(prod, -1)
    ia = inv(a)
    return ia.reshape(*invshape)


# Matrix inversion

def inv(a):
    """Compute the inverse of a matrix.

    Parameters
    ----------
    a : array-like, shape (M, M)
        Matrix to be inverted

    Returns
    -------
    ainv : array-like, shape (M, M)
        Inverse of the matrix a

    Raises LinAlgError if a is singular or not square

    Examples
    --------
    >>> from numpy import array, inv, dot
    >>> a = array([[1., 2.], [3., 4.]])
    >>> inv(a)
    array([[-2. ,  1. ],
           [ 1.5, -0.5]])
    >>> dot(a, inv(a))
    array([[ 1.,  0.],
           [ 0.,  1.]])

    """
    a, wrap = _makearray(a)
    return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))


# Cholesky decomposition

def cholesky(a):
    """Compute the Cholesky decomposition of a matrix.

    Returns the Cholesky decomposition, :lm:`A = L L^*` of a Hermitian
    positive-definite matrix :lm:`A`.

    Parameters
    ----------
    a : array-like, shape (M, M)
        Matrix to be decomposed

    Returns
    -------
    L : array-like, shape (M, M)
        Lower-triangular Cholesky factor of A

    Raises LinAlgError if decomposition fails

    Examples
    --------
    >>> from numpy import array, linalg
    >>> a = array([[1,-2j],[2j,5]])
    >>> L = linalg.cholesky(a)
    >>> L
    array([[ 1.+0.j,  0.+0.j],
           [ 0.+2.j,  1.+0.j]])
    >>> dot(L, L.T.conj())
    array([[ 1.+0.j,  0.-2.j],
           [ 0.+2.j,  5.+0.j]])

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    m = a.shape[0]
    n = a.shape[1]
    if isComplexType(t):
        lapack_routine = lapack_lite.zpotrf
    else:
        lapack_routine = lapack_lite.dpotrf
    results = lapack_routine('L', n, a, m, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Matrix is not positive definite - \
        Cholesky decomposition cannot be computed'
    s = triu(a, k=0).transpose()
    if (s.dtype != result_t):
        s = s.astype(result_t)
    return wrap(s)

# QR decompostion

def qr(a, mode='full'):
    """Compute QR decomposition of a matrix.

    Calculate the decomposition :lm:`A = Q R` where Q is orthonormal
    and R upper triangular.

    Parameters
    ----------
    a : array-like, shape (M, N)
        Matrix to be decomposed
    mode : {'full', 'r', 'economic'}
        Determines what information is to be returned. 'full' is the default.
        Economic mode is slightly faster if only R is needed.

    Returns
    -------
    mode = 'full'
    Q : double or complex array, shape (M, K)
    R : double or complex array, shape (K, N)
        Size K = min(M, N)

    mode = 'r'
    R : double or complex array, shape (K, N)

    mode = 'economic'
    A2 : double or complex array, shape (M, N)
        The diagonal and the upper triangle of A2 contains R,
        while the rest of the matrix is undefined.

    If a is a matrix, so are all the return values.

    Raises LinAlgError if decomposition fails

    Notes
    -----
    This is an interface to the LAPACK routines dgeqrf, zgeqrf,
    dorgqr, and zungqr.

    Examples
    --------
    >>> from numpy import *
    >>> a = random.randn(9, 6)
    >>> q, r = linalg.qr(a)
    >>> allclose(a, dot(q, r))
    True
    >>> r2 = linalg.qr(a, mode='r')
    >>> r3 = linalg.qr(a, mode='economic')
    >>> allclose(r, r2)
    True
    >>> allclose(r, triu(r3[:6,:6], k=0))
    True

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    m, n = a.shape
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    mn = min(m, n)
    tau = zeros((mn,), t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgeqrf
        routine_name = 'zgeqrf'
    else:
        lapack_routine = lapack_lite.dgeqrf
        routine_name = 'dgeqrf'

    # calculate optimal size of work data 'work'
    lwork = 1
    work = zeros((lwork,), t)
    results = lapack_routine(m, n, a, m, tau, work, -1, 0)
    if results['info'] != 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    # do qr decomposition
    lwork = int(abs(work[0]))
    work = zeros((lwork,), t)
    results = lapack_routine(m, n, a, m, tau, work, lwork, 0)

    if results['info'] != 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    #  economic mode. Isn't actually economic.
    if mode[0] == 'e':
        if t != result_t :
            a = a.astype(result_t)
        return a.T

    #  generate r
    r = _fastCopyAndTranspose(result_t, a[:,:mn])
    for i in range(mn):
        r[i,:i].fill(0.0)

    #  'r'-mode, that is, calculate only r
    if mode[0] == 'r':
        return r

    #  from here on: build orthonormal matrix q from a

    if isComplexType(t):
        lapack_routine = lapack_lite.zungqr
        routine_name = 'zungqr'
    else:
        lapack_routine = lapack_lite.dorgqr
        routine_name = 'dorgqr'

    # determine optimal lwork
    lwork = 1
    work = zeros((lwork,), t)
    results = lapack_routine(m, mn, mn, a, m, tau, work, -1, 0)
    if results['info'] != 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    # compute q
    lwork = int(abs(work[0]))
    work = zeros((lwork,), t)
    results = lapack_routine(m, mn, mn, a, m, tau, work, lwork, 0)
    if results['info'] != 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    q = _fastCopyAndTranspose(result_t, a[:mn,:])

    return wrap(q), wrap(r)


# Eigenvalues


def eigvals(a):
    """Compute the eigenvalues of a general matrix.

    Parameters
    ----------
    a : array-like, shape (M, M)
        A complex or real matrix whose eigenvalues and eigenvectors
        will be computed.

    Returns
    -------
    w : double or complex array, shape (M,)
        The eigenvalues, each repeated according to its multiplicity.
        They are not necessarily ordered, nor are they necessarily
        real for real matrices.

    If a is a matrix, so is w.

    Raises LinAlgError if eigenvalue computation does not converge

    See Also
    --------
    eig : eigenvalues and right eigenvectors of general arrays
    eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
    eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.

    Notes
    -----
    This is a simple interface to the LAPACK routines dgeev and zgeev
    that sets the flags to return only the eigenvalues of general real
    and complex arrays respectively.

    The number w is an eigenvalue of a if there exists a vector v
    satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
    the characteristic equation det(a - w[i]*I) = 0, where det is the
    determinant and I is the identity matrix.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        rwork = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, w,
                                 dummy, 1, dummy, 1, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, w,
                                 dummy, 1, dummy, 1, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, wr, wi,
                                 dummy, 1, dummy, 1, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, wr, wi,
                                 dummy, 1, dummy, 1, work, lwork, 0)
        if all(wi == 0.):
            w = wr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            result_t = _complexType(result_t)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    return w.astype(result_t)


def eigvalsh(a, UPLO='L'):
    """Compute the eigenvalues of a Hermitean or real symmetric matrix.

    Parameters
    ----------
    a : array-like, shape (M, M)
        A complex or real matrix whose eigenvalues and eigenvectors
        will be computed.
    UPLO : {'L', 'U'}
        Specifies whether the pertinent array data is taken from the upper
        or lower triangular part of a. Possible values are 'L', and 'U' for
        upper and lower respectively. Default is 'L'.

    Returns
    -------
    w : double array, shape (M,)
        The eigenvalues, each repeated according to its multiplicity.
        They are not necessarily ordered.

    Raises LinAlgError if eigenvalue computation does not converge

    See Also
    --------
    eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.
    eigvals : eigenvalues of general real or complex arrays.
    eig : eigenvalues and eigenvectors of general real or complex arrays.

    Notes
    -----
    This is a simple interface to the LAPACK routines dsyevd and
    zheevd that sets the flags to return only the eigenvalues of real
    symmetric and complex Hermetian arrays respectively.

    The number w is an eigenvalue of a if there exists a vector v
    satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
    the characteristic equation det(a - w[i]*I) = 0, where det is the
    determinant and I is the identity matrix.

    """
    a, wrap = _makearray(a) 
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    liwork = 5*n+3
    iwork = zeros((liwork,), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zheevd
        w = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        lrwork = 1
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
                                 rwork, -1, iwork, liwork,  0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        lrwork = int(rwork[0])
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
                                rwork, lrwork, iwork, liwork,  0)
    else:
        lapack_routine = lapack_lite.dsyevd
        w = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
                                 iwork, liwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
                                 iwork, liwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    return w.astype(result_t)

def _convertarray(a):
    t, result_t = _commonType(a)
    a = _fastCT(a.astype(t))
    return a, t, result_t


# Eigenvectors


def eig(a):
    """Compute eigenvalues and right eigenvectors of a general matrix.

    Parameters
    ----------
    a : array-like, shape (M, M)
        A complex or real 2-d array whose eigenvalues and eigenvectors
        will be computed.

    Returns
    -------
    w : double or complex array, shape (M,)
        The eigenvalues, each repeated according to its multiplicity.
        The eigenvalues are not necessarily ordered, nor are they
        necessarily real for real matrices.
    v : double or complex array, shape (M, M)
        The normalized eigenvector corresponding to the eigenvalue w[i] is
        the column v[:,i].

    If a is a matrix, so are all the return values.

    Raises LinAlgError if eigenvalue computation does not converge

    See Also
    --------
    eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
    eig : eigenvalues and right eigenvectors for non-symmetric arrays
    eigvals : eigenvalues of non-symmetric array.

    Notes
    -----
    This is a simple interface to the LAPACK routines dgeev and zgeev
    that compute the eigenvalues and eigenvectors of general real and
    complex arrays respectively.

    The number w is an eigenvalue of a if there exists a vector v
    satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
    the characteristic equation det(a - w[i]*I) = 0, where det is the
    determinant and I is the identity matrix. The arrays a, w, and v
    satisfy the equation dot(a,v[i]) = w[i]*v[:,i].

    The array v of eigenvectors may not be of maximum rank, that is, some
    of the columns may be dependent, although roundoff error may obscure
    that fact. If the eigenvalues are all different, then theoretically the
    eigenvectors are independent. Likewise, the matrix of eigenvectors is
    unitary if the matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a).

    The left and right eigenvectors are not necessarily the (Hermitian)
    transposes of each other.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    a, t, result_t = _convertarray(a) # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        v = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        rwork = zeros((2*n,), real_t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        vr = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)      # indices of complex e-vals
            for i in range(len(ind)/2):
                v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
                v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
            result_t = _complexType(result_t)

    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)


def eigh(a, UPLO='L'):
    """Compute eigenvalues for a Hermitian or real symmetric matrix.

    Parameters
    ----------
    a : array-like, shape (M, M)
        A complex Hermitian or symmetric real matrix whose eigenvalues
        and eigenvectors will be computed.
    UPLO : {'L', 'U'}
        Specifies whether the pertinent array date is taken from the upper
        or lower triangular part of a. Possible values are 'L', and 'U'.
        Default is 'L'.

    Returns
    -------
    w : double array, shape (M,)
        The eigenvalues. The eigenvalues are not necessarily ordered.
    v : double or complex double array, shape (M, M)
        The normalized eigenvector corresponding to the eigenvalue w[i] is
        the column v[:,i].

    If a is a matrix, then so are the return values.

    Raises LinAlgError if eigenvalue computation does not converge

    See Also
    --------
    eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
    eig : eigenvalues and right eigenvectors for non-symmetric arrays
    eigvals : eigenvalues of non-symmetric array.

    Notes
    -----
    A simple interface to the LAPACK routines dsyevd and zheevd that compute
    the eigenvalues and eigenvectors of real symmetric and complex Hermitian
    arrays respectively.

    The number w is an eigenvalue of a if there exists a vector v
    satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
    the characteristic equation det(a - w[i]*I) = 0, where det is the
    determinant and I is the identity matrix. The eigenvalues of real
    symmetric or complex Hermitean matrices are always real. The array v
    of eigenvectors is unitary and a, w, and v satisfy the equation
    dot(a,v[i]) = w[i]*v[:,i].
    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    liwork = 5*n+3
    iwork = zeros((liwork,), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zheevd
        w = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        lrwork = 1
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
                                 rwork, -1, iwork, liwork,  0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        lrwork = int(rwork[0])
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
                                 rwork, lrwork, iwork, liwork,  0)
    else:
        lapack_routine = lapack_lite.dsyevd
        w = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
                iwork, liwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
                iwork, liwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    at = a.transpose().astype(result_t)
    return w.astype(_realType(result_t)), wrap(at)


# Singular value decomposition

def svd(a, full_matrices=1, compute_uv=1):
    """Singular Value Decomposition.

    Factorizes the matrix a into two unitary matrices U and Vh and
    an 1d-array s of singular values (real, non-negative) such that
    a == U S Vh  if S is an suitably shaped matrix of zeros whose
    main diagonal is s.

    Parameters
    ----------
    a : array-like, shape (M, N)
        Matrix to decompose
    full_matrices : boolean
        If true,  U, Vh are shaped  (M,M), (N,N)
        If false, the shapes are    (M,K), (K,N) where K = min(M,N)
    compute_uv : boolean
        Whether to compute U and Vh in addition to s

    Returns
    -------
    U:  array, shape (M,M) or (M,K) depending on full_matrices
    s:  array, shape (K,)
        The singular values, sorted so that s[i] >= s[i+1]
        K = min(M, N)
    Vh: array, shape (N,N) or (K,N) depending on full_matrices

    If a is a matrix, so are all the return values.

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape, Vh.shape, s.shape
    ((9, 9), (6, 6), (6,))

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, Vh.shape, s.shape
    ((9, 6), (6, 6), (6,))
    >>> S = diag(s)
    >>> allclose(a, dot(U, dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> allclose(s, s2)
    True
    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertNonEmpty(a)
    m, n = a.shape
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    s = zeros((min(n, m),), real_t)
    if compute_uv:
        if full_matrices:
            nu = m
            nvt = n
            option = 'A'
        else:
            nu = min(n, m)
            nvt = min(n, m)
            option = 'S'
        u = zeros((nu, m), t)
        vt = zeros((n, nvt), t)
    else:
        option = 'N'
        nu = 1
        nvt = 1
        u = empty((1, 1), t)
        vt = empty((1, 1), t)

    iwork = zeros((8*min(m, n),), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgesdd
        rwork = zeros((5*min(m, n)*min(m, n) + 5*min(m, n),), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, -1, rwork, iwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, lwork, rwork, iwork, 0)
    else:
        lapack_routine = lapack_lite.dgesdd
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, -1, iwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, lwork, iwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'SVD did not converge'
    s = s.astype(_realType(result_t))
    if compute_uv:
        u = u.transpose().astype(result_t)
        vt = vt.transpose().astype(result_t)
        return wrap(u), s, wrap(vt)
    else:
        return s

def cond(x, p=None):
    """Compute the condition number of a matrix.

    The condition number of x is the norm of x times the norm
    of the inverse of x.  The norm can be the usual L2
    (root-of-sum-of-squares) norm or a number of other matrix norms.

    Parameters
    ----------
    x : array-like, shape (M, N)
        The matrix whose condition number is sought.
    p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}
        Order of the norm:

        p      norm for matrices
        =====  ============================
        None   2-norm, computed directly using the SVD
        'fro'  Frobenius norm
        inf    max(sum(abs(x), axis=1))
        -inf   min(sum(abs(x), axis=1))
        1      max(sum(abs(x), axis=0))
        -1     min(sum(abs(x), axis=0))
        2      2-norm (largest sing. value)
        -2     smallest singular value
        =====  ============================

    Returns
    -------
    c : float
        The condition number of the matrix. May be infinite.
    """
    x = asarray(x) # in case we have a matrix
    if p is None:
        s = svd(x,compute_uv=False)
        return s[0]/s[-1]
    else:
        return norm(x,p)*norm(inv(x),p)

# Generalized inverse

def pinv(a, rcond=1e-15 ):
    """Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate a generalized inverse of a matrix using its
    singular-value decomposition and including all 'large' singular
    values.

    Parameters
    ----------
    a : array-like, shape (M, N)
        Matrix to be pseudo-inverted
    rcond : float
        Cutoff for 'small' singular values.
        Singular values smaller than rcond*largest_singular_value are
        considered zero.

    Returns
    -------
    B : array, shape (N, M)
        If a is a matrix, then so is B.

    Raises LinAlgError if SVD computation does not converge

    Examples
    --------
    >>> from numpy import *
    >>> a = random.randn(9, 6)
    >>> B = linalg.pinv(a)
    >>> allclose(a, dot(a, dot(B, a)))
    True
    >>> allclose(B, dot(B, dot(a, B)))
    True

    """
    a, wrap = _makearray(a)
    _assertNonEmpty(a)
    a = a.conjugate()
    u, s, vt = svd(a, 0)
    m = u.shape[0]
    n = vt.shape[1]
    cutoff = rcond*maximum.reduce(s)
    for i in range(min(n, m)):
        if s[i] > cutoff:
            s[i] = 1./s[i]
        else:
            s[i] = 0.;
    res = dot(transpose(vt), multiply(s[:, newaxis],transpose(u)))
    return wrap(res)

# Determinant

def det(a):
    """Compute the determinant of a matrix

    Parameters
    ----------
    a : array-like, shape (M, M)

    Returns
    -------
    det : float or complex
        Determinant of a

    Notes
    -----
    The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
    """
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n,), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n+1)) % 2
    return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)


# Linear Least Squares

def lstsq(a, b, rcond=-1):
    """Compute least-squares solution to equation :m:`a x = b`

    Compute a vector x such that the 2-norm :m:`|b - a x|` is minimised.

    Parameters
    ----------
    a : array-like, shape (M, N)
    b : array-like, shape (M,) or (M, K)
    rcond : float
        Cutoff for 'small' singular values.
        Singular values smaller than rcond*largest_singular_value are
        considered zero.

    Raises LinAlgError if computation does not converge

    Returns
    -------
    x : array, shape (N,) or (N, K) depending on shape of b
        Least-squares solution
    residues : array, shape () or (1,) or (K,)
        Sums of residues, squared 2-norm for each column in :m:`b - a x`
        If rank of matrix a is < N or > M this is an empty array.
        If b was 1-d, this is an (1,) shape array, otherwise the shape is (K,)
    rank : integer
        Rank of matrix a
    s : array, shape (min(M,N),)
        Singular values of a

    If b is a matrix, then all results except the rank are also returned as
    matrices.

    """
    import math
    a, _ = _makearray(a)
    b, wrap = _makearray(b)
    is_1d = len(b.shape) == 1
    if is_1d:
        b = b[:, newaxis]
    _assertRank2(a, b)
    m  = a.shape[0]
    n  = a.shape[1]
    n_rhs = b.shape[1]
    ldb = max(n, m)
    if m != b.shape[0]:
        raise LinAlgError, 'Incompatible dimensions'
    t, result_t = _commonType(a, b)
    real_t = _linalgRealType(t)
    bstar = zeros((ldb, n_rhs), t)
    bstar[:b.shape[0],:n_rhs] = b.copy()
    a, bstar = _fastCopyAndTranspose(t, a, bstar)
    s = zeros((min(m, n),), real_t)
    nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 )
    iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgelsd
        lwork = 1
        rwork = zeros((lwork,), real_t)
        work = zeros((lwork,), t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, -1, rwork, iwork, 0)
        lwork = int(abs(work[0]))
        rwork = zeros((lwork,), real_t)
        a_real = zeros((m, n), real_t)
        bstar_real = zeros((ldb, n_rhs,), real_t)
        results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m,
                                     bstar_real, ldb, s, rcond,
                                     0, rwork, -1, iwork, 0)
        lrwork = int(rwork[0])
        work = zeros((lwork,), t)
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, lwork, rwork, iwork, 0)
    else:
        lapack_routine = lapack_lite.dgelsd
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, -1, iwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, lwork, iwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'SVD did not converge in Linear Least Squares'
    resids = array([], t)
    if is_1d:
        x = array(ravel(bstar)[:n], dtype=result_t, copy=True)
        if results['rank'] == n and m > n:
            resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_t)
    else:
        x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True)
        if results['rank'] == n and m > n:
            resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype(result_t)
    st = s[:min(n, m)].copy().astype(_realType(result_t))
    return wrap(x), wrap(resids), results['rank'], st

def norm(x, ord=None):
    """Matrix or vector norm.

    Parameters
    ----------
    x : array-like, shape (M,) or (M, N)
    ord : number, or {None, 1, -1, 2, -2, inf, -inf, 'fro'}
        Order of the norm:

        ord    norm for matrices             norm for vectors
        =====  ============================  ==========================
        None   Frobenius norm                2-norm
        'fro'  Frobenius norm                -
        inf    max(sum(abs(x), axis=1))      max(abs(x))
        -inf   min(sum(abs(x), axis=1))      min(abs(x))
        1      max(sum(abs(x), axis=0))      as below
        -1     min(sum(abs(x), axis=0))      as below
        2      2-norm (largest sing. value)  as below
        -2     smallest singular value       as below
        other  -                             sum(abs(x)**ord)**(1./ord)
        =====  ============================  ==========================

    Returns
    -------
    n : float
        Norm of the matrix or vector

    Notes
    -----
    For values ord < 0, the result is, strictly speaking, not a
    mathematical 'norm', but it may still be useful for numerical
    purposes.

    """
    x = asarray(x)
    nd = len(x.shape)
    if ord is None: # check the default case first and handle it immediately
        return sqrt(add.reduce((x.conj() * x).ravel().real))

    if nd == 1:
        if ord == Inf:
            return abs(x).max()
        elif ord == -Inf:
            return abs(x).min()
        elif ord == 1:
            return abs(x).sum() # special case for speedup
        elif ord == 2:
            return sqrt(((x.conj()*x).real).sum()) # special case for speedup
        else:
            return ((abs(x)**ord).sum())**(1.0/ord)
    elif nd == 2:
        if ord == 2:
            return svd(x, compute_uv=0).max()
        elif ord == -2:
            return svd(x, compute_uv=0).min()
        elif ord == 1:
            return abs(x).sum(axis=0).max()
        elif ord == Inf:
            return abs(x).sum(axis=1).max()
        elif ord == -1:
            return abs(x).sum(axis=0).min()
        elif ord == -Inf:
            return abs(x).sum(axis=1).min()
        elif ord in ['fro','f']:
            return sqrt(add.reduce((x.conj() * x).real.ravel()))
        else:
            raise ValueError, "Invalid norm order for matrices."
    else:
        raise ValueError, "Improper number of dimensions to norm."