1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
""" Test functions for linalg module
"""
import numpy as np
from numpy.testing import *
from numpy import array, single, double, csingle, cdouble, dot, identity
from numpy import multiply, atleast_2d, inf, asarray, matrix
from numpy import linalg
from numpy.linalg import matrix_power, norm, matrix_rank
def ifthen(a, b):
return not a or b
old_assert_almost_equal = assert_almost_equal
def imply(a, b):
return not a or b
def assert_almost_equal(a, b, **kw):
if asarray(a).dtype.type in (single, csingle):
decimal = 6
else:
decimal = 12
old_assert_almost_equal(a, b, decimal=decimal, **kw)
class LinalgTestCase:
def test_single(self):
a = array([[1.,2.], [3.,4.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_double(self):
a = array([[1.,2.], [3.,4.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_2(self):
a = array([[1.,2.], [3.,4.]], dtype=double)
b = array([[2., 1., 4.], [3., 4., 6.]], dtype=double)
self.do(a, b)
def test_csingle(self):
a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_cdouble(self):
a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_2(self):
a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble)
self.do(a, b)
def test_empty(self):
a = atleast_2d(array([], dtype = double))
b = atleast_2d(array([], dtype = double))
try:
self.do(a, b)
raise AssertionError("%s should fail with empty matrices", self.__name__[5:])
except linalg.LinAlgError, e:
pass
def test_nonarray(self):
a = [[1,2], [3,4]]
b = [2, 1]
self.do(a,b)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
a = array([[1.,2.], [3.,4.]])
b = matrix([2., 1.]).T
self.do(a, b)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
a = matrix([[1.,2.], [3.,4.]])
b = matrix([2., 1.]).T
self.do(a, b)
class LinalgNonsquareTestCase:
def test_single_nsq_1(self):
a = array([[1.,2.,3.], [3.,4.,6.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_single_nsq_2(self):
a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=single)
b = array([2., 1., 3.], dtype=single)
self.do(a, b)
def test_double_nsq_1(self):
a = array([[1.,2.,3.], [3.,4.,6.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_nsq_2(self):
a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=double)
b = array([2., 1., 3.], dtype=double)
self.do(a, b)
def test_csingle_nsq_1(self):
a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_csingle_nsq_2(self):
a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=csingle)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=csingle)
self.do(a, b)
def test_cdouble_nsq_1(self):
a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2(self):
a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_1_2(self):
a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2_2(self):
a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
class TestSolve(LinalgTestCase, TestCase):
def do(self, a, b):
x = linalg.solve(a, b)
assert_almost_equal(b, dot(a, x))
assert imply(isinstance(b, matrix), isinstance(x, matrix))
class TestInv(LinalgTestCase, TestCase):
def do(self, a, b):
a_inv = linalg.inv(a)
assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0]))
assert imply(isinstance(a, matrix), isinstance(a_inv, matrix))
class TestEigvals(LinalgTestCase, TestCase):
def do(self, a, b):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
class TestEig(LinalgTestCase, TestCase):
def do(self, a, b):
evalues, evectors = linalg.eig(a)
assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
assert imply(isinstance(a, matrix), isinstance(evectors, matrix))
class TestSVD(LinalgTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
assert_almost_equal(a, dot(multiply(u, s), vt))
assert imply(isinstance(a, matrix), isinstance(u, matrix))
assert imply(isinstance(a, matrix), isinstance(vt, matrix))
class TestCondSVD(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5)
class TestCond2(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)
class TestCondInf(TestCase):
def test(self):
A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
assert_almost_equal(linalg.cond(A,inf),3.)
class TestPinv(LinalgTestCase, TestCase):
def do(self, a, b):
a_ginv = linalg.pinv(a)
assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
assert imply(isinstance(a, matrix), isinstance(a_ginv, matrix))
class TestDet(LinalgTestCase, TestCase):
def do(self, a, b):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev))
if s != 0:
assert_almost_equal(np.abs(s), 1)
else:
assert_equal(ld, -inf)
def test_zero(self):
assert_equal(linalg.det([[0.0]]), 0.0)
assert_equal(type(linalg.det([[0.0]])), double)
assert_equal(linalg.det([[0.0j]]), 0.0)
assert_equal(type(linalg.det([[0.0j]])), cdouble)
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase):
def do(self, a, b):
arr = np.asarray(a)
m, n = arr.shape
u, s, vt = linalg.svd(a, 0)
x, residuals, rank, sv = linalg.lstsq(a, b)
if m <= n:
assert_almost_equal(b, dot(a, x))
assert_equal(rank, m)
else:
assert_equal(rank, n)
assert_almost_equal(sv, sv.__array_wrap__(s))
if rank == n and m > n:
expect_resids = (np.asarray(abs(np.dot(a, x) - b))**2).sum(axis=0)
expect_resids = np.asarray(expect_resids)
if len(np.asarray(b).shape) == 1:
expect_resids.shape = (1,)
assert_equal(residuals.shape, expect_resids.shape)
else:
expect_resids = type(x)([])
assert_almost_equal(residuals, expect_resids)
assert_(np.issubdtype(residuals.dtype, np.floating))
assert imply(isinstance(b, matrix), isinstance(x, matrix))
assert imply(isinstance(b, matrix), isinstance(residuals, matrix))
class TestMatrixPower(TestCase):
R90 = array([[0,1],[-1,0]])
Arb22 = array([[4,-7],[-2,10]])
noninv = array([[1,0],[0,0]])
arbfloat = array([[0.1,3.2],[1.2,0.7]])
large = identity(10)
t = large[1,:].copy()
large[1,:] = large[0,:]
large[0,:] = t
def test_large_power(self):
assert_equal(matrix_power(self.R90,2L**100+2**10+2**5+1),self.R90)
def test_large_power_trailing_zero(self):
assert_equal(matrix_power(self.R90,2L**100+2**10+2**5),identity(2))
def testip_zero(self):
def tz(M):
mz = matrix_power(M,0)
assert_equal(mz, identity(M.shape[0]))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_one(self):
def tz(M):
mz = matrix_power(M,1)
assert_equal(mz, M)
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_two(self):
def tz(M):
mz = matrix_power(M,2)
assert_equal(mz, dot(M,M))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_invert(self):
def tz(M):
mz = matrix_power(M,-1)
assert_almost_equal(identity(M.shape[0]), dot(mz,M))
for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
yield tz, M
def test_invert_noninvertible(self):
import numpy.linalg
self.assertRaises(numpy.linalg.linalg.LinAlgError,
lambda: matrix_power(self.noninv,-1))
class TestBoolPower(TestCase):
def test_square(self):
A = array([[True,False],[True,True]])
assert_equal(matrix_power(A,2),A)
class HermitianTestCase(object):
def test_single(self):
a = array([[1.,2.], [2.,1.]], dtype=single)
self.do(a)
def test_double(self):
a = array([[1.,2.], [2.,1.]], dtype=double)
self.do(a)
def test_csingle(self):
a = array([[1.,2+3j], [2-3j,1]], dtype=csingle)
self.do(a)
def test_cdouble(self):
a = array([[1.,2+3j], [2-3j,1]], dtype=cdouble)
self.do(a)
def test_empty(self):
a = atleast_2d(array([], dtype = double))
assert_raises(linalg.LinAlgError, self.do, a)
def test_nonarray(self):
a = [[1,2], [2,1]]
self.do(a)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
a = array([[1.,2.], [2.,1.]])
self.do(a)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
a = matrix([[1.,2.], [2.,1.]])
self.do(a)
class TestEigvalsh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a)
evalues, evectors = linalg.eig(a)
ev.sort()
evalues.sort()
assert_almost_equal(ev, evalues)
class TestEigh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
# their order isn't guaranteed.
ev, evc = linalg.eigh(a)
evalues, evectors = linalg.eig(a)
ev.sort()
evalues.sort()
assert_almost_equal(ev, evalues)
class _TestNorm(TestCase):
dt = None
dec = None
def test_empty(self):
assert_equal(norm([]), 0.0)
assert_equal(norm(array([], dtype=self.dt)), 0.0)
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
def test_vector(self):
a = [1.0,2.0,3.0,4.0]
b = [-1.0,-2.0,-3.0,-4.0]
c = [-1.0, 2.0,-3.0, 4.0]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,inf), 4.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-inf), 1.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,1), 10.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-1), 12.0/25,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,2), 30**0.5,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-2), ((205./144)**-0.5),
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,0), 4, decimal=self.dec)
for v in (a, b, c,):
_test(v)
for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
array(c, dtype=self.dt)):
_test(v)
def test_matrix(self):
A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
assert_almost_equal(norm(A), 84**0.5)
assert_almost_equal(norm(A,'fro'), 84**0.5)
assert_almost_equal(norm(A,inf), 12.0)
assert_almost_equal(norm(A,-inf), 4.0)
assert_almost_equal(norm(A,1), 10.0)
assert_almost_equal(norm(A,-1), 6.0)
assert_almost_equal(norm(A,2), 9.1231056256176615)
assert_almost_equal(norm(A,-2), 0.87689437438234041)
self.assertRaises(ValueError, norm, A, 'nofro')
self.assertRaises(ValueError, norm, A, -3)
self.assertRaises(ValueError, norm, A, 0)
class TestNormDouble(_TestNorm):
dt = np.double
dec= 12
class TestNormSingle(_TestNorm):
dt = np.float32
dec = 6
def test_matrix_rank():
# Full rank matrix
yield assert_equal, 4, matrix_rank(np.eye(4))
# rank deficient matrix
I=np.eye(4); I[-1,-1] = 0.
yield assert_equal, matrix_rank(I), 3
# All zeros - zero rank
yield assert_equal, matrix_rank(np.zeros((4,4))), 0
# 1 dimension - rank 1 unless all 0
yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
yield assert_equal, matrix_rank(np.zeros((4,))), 0
# accepts array-like
yield assert_equal, matrix_rank([1]), 1
# greater than 2 dimensions raises error
yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2))
# works on scalar
yield assert_equal, matrix_rank(1), 1
if __name__ == "__main__":
run_module_suite()
|