1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
"""
Generic statistics functions, with support to MA.
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $
:version: $Id: morestats.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
import numpy
from numpy import bool_, float_, int_, ndarray, \
sqrt,\
arange, empty,\
r_
from numpy import array as narray
import numpy.core.numeric as numeric
from numpy.core.numeric import concatenate
import numpy.ma as MA
from numpy.ma.core import masked, nomask, MaskedArray, masked_array
from numpy.ma.extras import apply_along_axis, dot, median
from numpy.ma.mstats import trim_both, trimmed_stde, mquantiles, stde_median
from scipy.stats.distributions import norm, beta, t, binom
from scipy.stats.morestats import find_repeats
__all__ = ['hdquantiles', 'hdmedian', 'hdquantiles_sd',
'trimmed_mean_ci', 'mjci', 'rank_data']
#####--------------------------------------------------------------------------
#---- --- Quantiles ---
#####--------------------------------------------------------------------------
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
"""Computes quantile estimates with the Harrell-Davis method, where the estimates
are calculated as a weighted linear combination of order statistics.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean
Whether to return the variance of the estimate.
Returns
-------
A (p,) array of quantiles (if ``var`` is False), or a (2,p) array of quantiles
and variances (if ``var`` is True), where ``p`` is the number of quantiles.
Notes
-----
The function is restricted to 2D arrays.
"""
def _hd_1D(data,prob,var):
"Computes the HD quantiles for a 1D array. Returns nan for invalid data."
xsorted = numpy.squeeze(numpy.sort(data.compressed().view(ndarray)))
# Don't use length here, in case we have a numpy scalar
n = xsorted.size
#.........
hd = empty((2,len(prob)), float_)
if n < 2:
hd.flat = numpy.nan
if var:
return hd
return hd[0]
#.........
v = arange(n+1) / float(n)
betacdf = beta.cdf
for (i,p) in enumerate(prob):
_w = betacdf(v, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
hd_mean = dot(w, xsorted)
hd[0,i] = hd_mean
#
hd[1,i] = dot(w, (xsorted-hd_mean)**2)
#
hd[0, prob == 0] = xsorted[0]
hd[0, prob == 1] = xsorted[-1]
if var:
hd[1, prob == 0] = hd[1, prob == 1] = numpy.nan
return hd
return hd[0]
# Initialization & checks ---------
data = masked_array(data, copy=False, dtype=float_)
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None) or (data.ndim == 1):
result = _hd_1D(data, p, var)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_hd_1D, axis, data, p, var)
#
return masked_array(result, mask=numpy.isnan(result))
#..............................................................................
def hdmedian(data, axis=-1, var=False):
"""Returns the Harrell-Davis estimate of the median along the given axis.
Parameters
----------
data: ndarray
Data array.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean
Whether to return the variance of the estimate.
"""
result = hdquantiles(data,[0.5], axis=axis, var=var)
return result.squeeze()
#..............................................................................
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""Computes the standard error of the Harrell-Davis quantile estimates by jackknife.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
Notes
-----
The function is restricted to 2D arrays.
"""
def _hdsd_1D(data,prob):
"Computes the std error for 1D arrays."
xsorted = numpy.sort(data.compressed())
n = len(xsorted)
#.........
hdsd = empty(len(prob), float_)
if n < 2:
hdsd.flat = numpy.nan
#.........
vv = arange(n) / float(n-1)
betacdf = beta.cdf
#
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = numpy.fromiter([dot(w,xsorted[r_[range(0,k),
range(k+1,n)].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = numpy.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * sqrt(numpy.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks ---------
data = masked_array(data, copy=False, dtype=float_)
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data.compressed(), p)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_hdsd_1D, axis, data, p)
#
return masked_array(result, mask=numpy.isnan(result)).ravel()
#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####--------------------------------------------------------------------------
def trimmed_mean_ci(data, proportiontocut=0.2, alpha=0.05, axis=None):
"""Returns the selected confidence interval of the trimmed mean along the
given axis.
Parameters
----------
data : sequence
Input data. The data is transformed to a masked array
proportiontocut : float
Proportion of the data to cut from each side of the data .
As a result, (2*proportiontocut*n) values are actually trimmed.
alpha : float
Confidence level of the intervals.
axis : int
Axis along which to cut. If None, uses a flattened version of the input.
"""
data = masked_array(data, copy=False)
trimmed = trim_both(data, proportiontocut=proportiontocut, axis=axis)
tmean = trimmed.mean(axis)
tstde = trimmed_stde(data, proportiontocut=proportiontocut, axis=axis)
df = trimmed.count(axis) - 1
tppf = t.ppf(1-alpha/2.,df)
return numpy.array((tmean - tppf*tstde, tmean+tppf*tstde))
#..............................................................................
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
Parameters
-----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
"""
def _mjci_1D(data, p):
data = data.compressed()
sorted = numpy.sort(data)
n = data.size
prob = (numpy.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
#
mj = empty(len(prob), float_)
x = arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
(m1,m2) = (m-1, n-m)
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = numpy.dot(W,sorted)
C2 = numpy.dot(W,sorted**2)
mj[i] = sqrt(C2 - C1**2)
return mj
#
data = masked_array(data, copy=False)
assert data.ndim <= 2, "Array should be 2D at most !"
p = numpy.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return apply_along_axis(_mjci_1D, axis, data, p)
#..............................................................................
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
"""Computes the alpha confidence interval for the selected quantiles of the
data, with Maritz-Jarrett estimators.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened array.
"""
alpha = min(alpha, 1-alpha)
z = norm.ppf(1-alpha/2.)
xq = mquantiles(data, prob, alphap=0, betap=0, axis=axis)
smj = mjci(data, prob, axis=axis)
return (xq - z * smj, xq + z * smj)
#.............................................................................
def median_cihs(data, alpha=0.05, axis=None):
"""Computes the alpha-level confidence interval for the median of the data,
following the Hettmasperger-Sheather method.
Parameters
----------
data : sequence
Input data. Masked values are discarded. The input should be 1D only, or
axis should be set to None.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened array.
"""
def _cihs_1D(data, alpha):
data = numpy.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = masked_array(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data.compressed(), p, var)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = apply_along_axis(_cihs_1D, axis, data, alpha)
#
return result
#..............................................................................
def compare_medians_ms(group_1, group_2, axis=None):
"""Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the standard
error of the medians.
Parameters
----------
group_1 : {sequence}
First dataset.
group_2 : {sequence}
Second dataset.
axis : {integer}
Axis along which the medians are estimated. If None, the arrays are flattened.
Returns
-------
A (p,) array of comparison values.
"""
(med_1, med_2) = (median(group_1, axis=axis), median(group_2, axis=axis))
(std_1, std_2) = (stde_median(group_1, axis=axis),
stde_median(group_2, axis=axis))
W = abs(med_1 - med_2) / sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
#####--------------------------------------------------------------------------
#---- --- Ranking ---
#####--------------------------------------------------------------------------
#..............................................................................
def rank_data(data, axis=None, use_missing=False):
"""Returns the rank (also known as order statistics) of each data point
along the given axis.
If some values are tied, their rank is averaged.
If some values are masked, their rank is set to 0 if use_missing is False,
or set to the average rank of the unmasked values if use_missing is True.
Parameters
----------
data : sequence
Input data. The data is transformed to a masked array
axis : integer
Axis along which to perform the ranking.
If None, the array is first flattened. An exception is raised if
the axis is specified for arrays with a dimension larger than 2
use_missing : boolean
Whether the masked values have a rank of 0 (False) or equal to the
average rank of the unmasked values (True).
"""
#
def _rank1d(data, use_missing=False):
n = data.count()
rk = numpy.empty(data.size, dtype=float_)
idx = data.argsort()
rk[idx[:n]] = numpy.arange(1,n+1)
#
if use_missing:
rk[idx[n:]] = (n+1)/2.
else:
rk[idx[n:]] = 0
#
repeats = find_repeats(data)
for r in repeats[0]:
condition = (data==r).filled(False)
rk[condition] = rk[condition].mean()
return rk
#
data = masked_array(data, copy=False)
if axis is None:
if data.ndim > 1:
return _rank1d(data.ravel(), use_missing).reshape(data.shape)
else:
return _rank1d(data, use_missing)
else:
return apply_along_axis(_rank1d, axis, data, use_missing)
###############################################################################
if __name__ == '__main__':
if 0:
from numpy.ma.testutils import assert_almost_equal
data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014,
0.887764025,0.239407086,0.349638551,0.972791145,0.149789972,
0.936947700,0.132359948,0.046041972,0.641675031,0.945530547,
0.224218684,0.771450991,0.820257774,0.336458052,0.589113496,
0.509736129,0.696838829,0.491323573,0.622767425,0.775189248,
0.641461450,0.118455200,0.773029450,0.319280007,0.752229111,
0.047841438,0.466295911,0.583850781,0.840581845,0.550086491,
0.466470062,0.504765074,0.226855960,0.362641207,0.891620942,
0.127898691,0.490094097,0.044882048,0.041441695,0.317976349,
0.504135618,0.567353033,0.434617473,0.636243375,0.231803616,
0.230154113,0.160011327,0.819464108,0.854706985,0.438809221,
0.487427267,0.786907310,0.408367937,0.405534192,0.250444460,
0.995309248,0.144389588,0.739947527,0.953543606,0.680051621,
0.388382017,0.863530727,0.006514031,0.118007779,0.924024803,
0.384236354,0.893687694,0.626534881,0.473051932,0.750134705,
0.241843555,0.432947602,0.689538104,0.136934797,0.150206859,
0.474335206,0.907775349,0.525869295,0.189184225,0.854284286,
0.831089744,0.251637345,0.587038213,0.254475554,0.237781276,
0.827928620,0.480283781,0.594514455,0.213641488,0.024194386,
0.536668589,0.699497811,0.892804071,0.093835427,0.731107772]
#
assert_almost_equal(hdquantiles(data,[0., 1.]),
[0.006514031, 0.995309248])
hdq = hdquantiles(data,[0.25, 0.5, 0.75])
assert_almost_equal(hdq, [0.253210762, 0.512847491, 0.762232442,])
hdq = hdquantiles_sd(data,[0.25, 0.5, 0.75])
assert_almost_equal(hdq, [0.03786954, 0.03805389, 0.03800152,], 4)
#
data = numpy.array(data).reshape(10,10)
hdq = hdquantiles(data,[0.25,0.5,0.75],axis=0)
|