1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
from __future__ import division, absolute_import, print_function
# missing Numarray defined names (in from numarray import *)
__all__ = ['asarray', 'ones', 'zeros', 'array', 'where']
__all__ += ['vdot', 'dot', 'matrixmultiply', 'ravel', 'indices',
'arange', 'concatenate', 'all', 'allclose', 'alltrue', 'and_',
'any', 'argmax', 'argmin', 'argsort', 'around', 'array_equal',
'array_equiv', 'arrayrange', 'array_str', 'array_repr',
'array2list', 'average', 'choose', 'CLIP', 'RAISE', 'WRAP',
'clip', 'compress', 'copy', 'copy_reg',
'diagonal', 'divide_remainder', 'e', 'explicit_type', 'pi',
'flush_caches', 'fromfile', 'os', 'sys', 'STRICT',
'SLOPPY', 'WARN', 'EarlyEOFError', 'SizeMismatchError',
'SizeMismatchWarning', 'FileSeekWarning', 'fromstring',
'fromfunction', 'fromlist', 'getShape', 'getTypeObject',
'identity', 'info', 'innerproduct', 'inputarray',
'isBigEndian', 'kroneckerproduct', 'lexsort', 'math',
'operator', 'outerproduct', 'put', 'putmask', 'rank',
'repeat', 'reshape', 'resize', 'round', 'searchsorted',
'shape', 'size', 'sometrue', 'sort', 'swapaxes', 'take',
'tcode', 'tname', 'tensormultiply', 'trace', 'transpose',
'types', 'value', 'cumsum', 'cumproduct', 'nonzero', 'newobj',
'togglebyteorder'
]
import copy
import types
import os
import sys
import math
import operator
import numpy as np
from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\
allclose, any, argsort, array_equal, array_equiv,\
array_str, array_repr, CLIP, RAISE, WRAP, clip, concatenate, \
diagonal, e, pi, inner as innerproduct, nonzero, \
outer as outerproduct, kron as kroneckerproduct, lexsort, putmask, rank, \
resize, searchsorted, shape, size, sort, swapaxes, trace, transpose
from numpy.compat import long
from .numerictypes import typefrom
if sys.version_info[0] >= 3:
import copyreg as copy_reg
else:
import copy_reg
isBigEndian = sys.byteorder != 'little'
value = tcode = 'f'
tname = 'Float32'
# If dtype is not None, then it is used
# If type is not None, then it is used
# If typecode is not None then it is used
# If use_default is True, then the default
# data-type is returned if all are None
def type2dtype(typecode, type, dtype, use_default=True):
if dtype is None:
if type is None:
if use_default or typecode is not None:
dtype = np.dtype(typecode)
else:
dtype = np.dtype(type)
if use_default and dtype is None:
dtype = np.dtype('int')
return dtype
def fromfunction(shape, dimensions, type=None, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, 1)
return np.fromfunction(shape, dimensions, dtype=dtype)
def ones(shape, type=None, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, 1)
return np.ones(shape, dtype)
def zeros(shape, type=None, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, 1)
return np.zeros(shape, dtype)
def where(condition, x=None, y=None, out=None):
if x is None and y is None:
arr = np.where(condition)
else:
arr = np.where(condition, x, y)
if out is not None:
out[...] = arr
return out
return arr
def indices(shape, type=None):
return np.indices(shape, type)
def arange(a1, a2=None, stride=1, type=None, shape=None,
typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, 0)
return np.arange(a1, a2, stride, dtype)
arrayrange = arange
def alltrue(x, axis=0):
return np.alltrue(x, axis)
def and_(a, b):
"""Same as a & b
"""
return a & b
def divide_remainder(a, b):
a, b = asarray(a), asarray(b)
return (a/b,a%b)
def around(array, digits=0, output=None):
ret = np.around(array, digits, output)
if output is None:
return ret
return
def array2list(arr):
return arr.tolist()
def choose(selector, population, outarr=None, clipmode=RAISE):
a = np.asarray(selector)
ret = a.choose(population, out=outarr, mode=clipmode)
if outarr is None:
return ret
return
def compress(condition, a, axis=0):
return np.compress(condition, a, axis)
# only returns a view
def explicit_type(a):
x = a.view()
return x
# stub
def flush_caches():
pass
class EarlyEOFError(Exception):
"Raised in fromfile() if EOF unexpectedly occurs."
pass
class SizeMismatchError(Exception):
"Raised in fromfile() if file size does not match shape."
pass
class SizeMismatchWarning(Warning):
"Issued in fromfile() if file size does not match shape."
pass
class FileSeekWarning(Warning):
"Issued in fromfile() if there is unused data and seek() fails"
pass
STRICT, SLOPPY, WARN = list(range(3))
_BLOCKSIZE=1024
# taken and adapted directly from numarray
def fromfile(infile, type=None, shape=None, sizing=STRICT,
typecode=None, dtype=None):
if isinstance(infile, (str, unicode)):
infile = open(infile, 'rb')
dtype = type2dtype(typecode, type, dtype, True)
if shape is None:
shape = (-1,)
if not isinstance(shape, tuple):
shape = (shape,)
if (list(shape).count(-1)>1):
raise ValueError("At most one unspecified dimension in shape")
if -1 not in shape:
if sizing != STRICT:
raise ValueError("sizing must be STRICT if size complete")
arr = np.empty(shape, dtype)
bytesleft=arr.nbytes
bytesread=0
while(bytesleft > _BLOCKSIZE):
data = infile.read(_BLOCKSIZE)
if len(data) != _BLOCKSIZE:
raise EarlyEOFError("Unexpected EOF reading data for size complete array")
arr.data[bytesread:bytesread+_BLOCKSIZE]=data
bytesread += _BLOCKSIZE
bytesleft -= _BLOCKSIZE
if bytesleft > 0:
data = infile.read(bytesleft)
if len(data) != bytesleft:
raise EarlyEOFError("Unexpected EOF reading data for size complete array")
arr.data[bytesread:bytesread+bytesleft]=data
return arr
##shape is incompletely specified
##read until EOF
##implementation 1: naively use memory blocks
##problematic because memory allocation can be double what is
##necessary (!)
##the most common case, namely reading in data from an unchanging
##file whose size may be determined before allocation, should be
##quick -- only one allocation will be needed.
recsize = int(dtype.itemsize * np.product([i for i in shape if i != -1]))
blocksize = max(_BLOCKSIZE//recsize, 1)*recsize
##try to estimate file size
try:
curpos=infile.tell()
infile.seek(0,2)
endpos=infile.tell()
infile.seek(curpos)
except (AttributeError, IOError):
initsize=blocksize
else:
initsize=max(1,(endpos-curpos)//recsize)*recsize
buf = np.newbuffer(initsize)
bytesread=0
while True:
data=infile.read(blocksize)
if len(data) != blocksize: ##eof
break
##do we have space?
if len(buf) < bytesread+blocksize:
buf=_resizebuf(buf,len(buf)+blocksize)
## or rather a=resizebuf(a,2*len(a)) ?
assert len(buf) >= bytesread+blocksize
buf[bytesread:bytesread+blocksize]=data
bytesread += blocksize
if len(data) % recsize != 0:
if sizing == STRICT:
raise SizeMismatchError("Filesize does not match specified shape")
if sizing == WARN:
_warnings.warn("Filesize does not match specified shape",
SizeMismatchWarning)
try:
infile.seek(-(len(data) % recsize),1)
except AttributeError:
_warnings.warn("Could not rewind (no seek support)",
FileSeekWarning)
except IOError:
_warnings.warn("Could not rewind (IOError in seek)",
FileSeekWarning)
datasize = (len(data)//recsize) * recsize
if len(buf) != bytesread+datasize:
buf=_resizebuf(buf,bytesread+datasize)
buf[bytesread:bytesread+datasize]=data[:datasize]
##deduce shape from len(buf)
shape = list(shape)
uidx = shape.index(-1)
shape[uidx]=len(buf) // recsize
a = np.ndarray(shape=shape, dtype=type, buffer=buf)
if a.dtype.char == '?':
np.not_equal(a, 0, a)
return a
# this function is referenced in the code above but not defined. adding
# it back. - phensley
def _resizebuf(buf,newsize):
"Return a copy of BUF of size NEWSIZE."
newbuf = np.newbuffer(newsize)
if newsize > len(buf):
newbuf[:len(buf)]=buf
else:
newbuf[:]=buf[:len(newbuf)]
return newbuf
def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, True)
if shape is None:
count = -1
else:
count = np.product(shape)
res = np.fromstring(datastring, dtype=dtype, count=count)
if shape is not None:
res.shape = shape
return res
# check_overflow is ignored
def fromlist(seq, type=None, shape=None, check_overflow=0, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, False)
return np.array(seq, dtype)
def array(sequence=None, typecode=None, copy=1, savespace=0,
type=None, shape=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, 0)
if sequence is None:
if shape is None:
return None
if dtype is None:
dtype = 'l'
return np.empty(shape, dtype)
if isinstance(sequence, file):
return fromfile(sequence, dtype=dtype, shape=shape)
if isinstance(sequence, str):
return fromstring(sequence, dtype=dtype, shape=shape)
if isinstance(sequence, buffer):
arr = np.frombuffer(sequence, dtype=dtype)
else:
arr = np.array(sequence, dtype, copy=copy)
if shape is not None:
arr.shape = shape
return arr
def asarray(seq, type=None, typecode=None, dtype=None):
if isinstance(seq, np.ndarray) and type is None and \
typecode is None and dtype is None:
return seq
return array(seq, type=type, typecode=typecode, copy=0, dtype=dtype)
inputarray = asarray
def getTypeObject(sequence, type):
if type is not None:
return type
try:
return typefrom(np.array(sequence))
except:
raise TypeError("Can't determine a reasonable type from sequence")
def getShape(shape, *args):
try:
if shape is () and not args:
return ()
if len(args) > 0:
shape = (shape, ) + args
else:
shape = tuple(shape)
dummy = np.array(shape)
if not issubclass(dummy.dtype.type, np.integer):
raise TypeError
if len(dummy) > np.MAXDIMS:
raise TypeError
except:
raise TypeError("Shape must be a sequence of integers")
return shape
def identity(n, type=None, typecode=None, dtype=None):
dtype = type2dtype(typecode, type, dtype, True)
return np.identity(n, dtype)
def info(obj, output=sys.stdout, numpy=0):
if numpy:
bp = lambda x: x
else:
bp = lambda x: int(x)
cls = getattr(obj, '__class__', type(obj))
if numpy:
nm = getattr(cls, '__name__', cls)
else:
nm = cls
print("class: ", nm, file=output)
print("shape: ", obj.shape, file=output)
strides = obj.strides
print("strides: ", strides, file=output)
if not numpy:
print("byteoffset: 0", file=output)
if len(strides) > 0:
bs = obj.strides[0]
else:
bs = obj.itemsize
print("bytestride: ", bs, file=output)
print("itemsize: ", obj.itemsize, file=output)
print("aligned: ", bp(obj.flags.aligned), file=output)
print("contiguous: ", bp(obj.flags.contiguous), file=output)
if numpy:
print("fortran: ", obj.flags.fortran, file=output)
if not numpy:
print("buffer: ", repr(obj.data), file=output)
if not numpy:
extra = " (DEBUG ONLY)"
tic = "'"
else:
extra = ""
tic = ""
print("data pointer: %s%s" % (hex(obj.ctypes._as_parameter_.value), extra), file=output)
print("byteorder: ", end=' ', file=output)
endian = obj.dtype.byteorder
if endian in ['|','=']:
print("%s%s%s" % (tic, sys.byteorder, tic), file=output)
byteswap = False
elif endian == '>':
print("%sbig%s" % (tic, tic), file=output)
byteswap = sys.byteorder != "big"
else:
print("%slittle%s" % (tic, tic), file=output)
byteswap = sys.byteorder != "little"
print("byteswap: ", bp(byteswap), file=output)
if not numpy:
print("type: ", typefrom(obj).name, file=output)
else:
print("type: %s" % obj.dtype, file=output)
#clipmode is ignored if axis is not 0 and array is not 1d
def put(array, indices, values, axis=0, clipmode=RAISE):
if not isinstance(array, np.ndarray):
raise TypeError("put only works on subclass of ndarray")
work = asarray(array)
if axis == 0:
if array.ndim == 1:
work.put(indices, values, clipmode)
else:
work[indices] = values
elif isinstance(axis, (int, long, np.integer)):
work = work.swapaxes(0, axis)
work[indices] = values
work = work.swapaxes(0, axis)
else:
def_axes = list(range(work.ndim))
for x in axis:
def_axes.remove(x)
axis = list(axis)+def_axes
work = work.transpose(axis)
work[indices] = values
work = work.transpose(axis)
def repeat(array, repeats, axis=0):
return np.repeat(array, repeats, axis)
def reshape(array, shape, *args):
if len(args) > 0:
shape = (shape,) + args
return np.reshape(array, shape)
import warnings as _warnings
def round(*args, **keys):
_warnings.warn("round() is deprecated. Switch to around()",
DeprecationWarning)
return around(*args, **keys)
def sometrue(array, axis=0):
return np.sometrue(array, axis)
#clipmode is ignored if axis is not an integer
def take(array, indices, axis=0, outarr=None, clipmode=RAISE):
array = np.asarray(array)
if isinstance(axis, (int, long, np.integer)):
res = array.take(indices, axis, outarr, clipmode)
if outarr is None:
return res
return
else:
def_axes = list(range(array.ndim))
for x in axis:
def_axes.remove(x)
axis = list(axis) + def_axes
work = array.transpose(axis)
res = work[indices]
if outarr is None:
return res
outarr[...] = res
return
def tensormultiply(a1, a2):
a1, a2 = np.asarray(a1), np.asarray(a2)
if (a1.shape[-1] != a2.shape[0]):
raise ValueError("Unmatched dimensions")
shape = a1.shape[:-1] + a2.shape[1:]
return np.reshape(dot(np.reshape(a1, (-1, a1.shape[-1])),
np.reshape(a2, (a2.shape[0],-1))),
shape)
def cumsum(a1, axis=0, out=None, type=None, dim=0):
return np.asarray(a1).cumsum(axis,dtype=type,out=out)
def cumproduct(a1, axis=0, out=None, type=None, dim=0):
return np.asarray(a1).cumprod(axis,dtype=type,out=out)
def argmax(x, axis=-1):
return np.argmax(x, axis)
def argmin(x, axis=-1):
return np.argmin(x, axis)
def newobj(self, type):
if type is None:
return np.empty_like(self)
else:
return np.empty(self.shape, type)
def togglebyteorder(self):
self.dtype=self.dtype.newbyteorder()
def average(a, axis=0, weights=None, returned=0):
return np.average(a, axis, weights, returned)
|