summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric/functions.py
blob: db62f7cb57402250db45e9fd6f0d89e99a1ef0d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Functions that should behave the same as Numeric and need changing

import numpy as np
import numpy.core.multiarray as mu
import numpy.core.numeric as nn
from typeconv import convtypecode, convtypecode2

__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue',
           'cumsum', 'cumproduct', 'compress', 'fromfunction',
           'ones', 'empty', 'identity', 'zeros', 'array', 'asarray',
           'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace',
           'indices', 'where','sarray','cross_product', 'argmax', 'argmin',
           'average']

def take(a, indicies, axis=0):
    return np.take(a, indicies, axis)

def repeat(a, repeats, axis=0):
    return np.repeat(a, repeats, axis)

def sum(x, axis=0):
    return np.sum(x, axis)

def product(x, axis=0):
    return np.product(x, axis)

def sometrue(x, axis=0):
    return np.sometrue(x, axis)

def alltrue(x, axis=0):
    return np.alltrue(x, axis)

def cumsum(x, axis=0):
    return np.cumsum(x, axis)

def cumproduct(x, axis=0):
    return np.cumproduct(x, axis)

def argmax(x, axis=-1):
    return np.argmax(x, axis)

def argmin(x, axis=-1):
    return np.argmin(x, axis)

def compress(condition, m, axis=-1):
    return np.compress(condition, m, axis)

def fromfunction(args, dimensions):
    return np.fromfunction(args, dimensions, dtype=int)

def ones(shape, typecode='l', savespace=0, dtype=None):
    """ones(shape, dtype=int) returns an array of the given
    dimensions which is initialized to all ones.
    """
    dtype = convtypecode(typecode,dtype)
    a = mu.empty(shape, dtype)
    a.fill(1)
    return a

def zeros(shape, typecode='l', savespace=0, dtype=None):
    """zeros(shape, dtype=int) returns an array of the given
    dimensions which is initialized to all zeros
    """
    dtype = convtypecode(typecode,dtype)
    return mu.zeros(shape, dtype)

def identity(n,typecode='l', dtype=None):
    """identity(n) returns the identity 2-d array of shape n x n.
    """
    dtype = convtypecode(typecode, dtype)
    return nn.identity(n, dtype)

def empty(shape, typecode='l', dtype=None):
    dtype = convtypecode(typecode, dtype)
    return mu.empty(shape, dtype)

def array(sequence, typecode=None, copy=1, savespace=0, dtype=None):
    dtype = convtypecode2(typecode, dtype)
    return mu.array(sequence, dtype, copy=copy)

def sarray(a, typecode=None, copy=False, dtype=None):
    dtype = convtypecode2(typecode, dtype)
    return mu.array(a, dtype, copy)

def asarray(a, typecode=None, dtype=None):
    dtype = convtypecode2(typecode, dtype)
    return mu.array(a, dtype, copy=0)

def nonzero(a):
    res = np.nonzero(a)
    if len(res) == 1:
        return res[0]
    else:
        raise ValueError("Input argument must be 1d")

def reshape(a, shape):
    return np.reshape(a, shape)

def arange(start, stop=None, step=1, typecode=None, dtype=None):
    dtype = convtypecode2(typecode, dtype)
    return mu.arange(start, stop, step, dtype)

def fromstring(string, typecode='l', count=-1, dtype=None):
    dtype = convtypecode(typecode, dtype)
    return mu.fromstring(string, dtype, count=count)

def ravel(m):
    return np.ravel(m)

def trace(a, offset=0, axis1=0, axis2=1):
    return np.trace(a, offset=0, axis1=0, axis2=1)

def indices(dimensions, typecode=None, dtype=None):
    dtype = convtypecode(typecode, dtype)
    return np.indices(dimensions, dtype)

def where(condition, x, y):
    return np.where(condition, x, y)

def cross_product(a, b, axis1=-1, axis2=-1):
    return np.cross(a, b, axis1, axis2)

def average(a, axis=0, weights=None, returned=False):
    return np.average(a, axis, weights, returned)