1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
|
"""
Objects for dealing with Chebyshev series.
This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a `Chebyshev` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
Constants
---------
- `chebdomain` -- Chebyshev series default domain, [-1,1].
- `chebzero` -- (Coefficients of the) Chebyshev series that evaluates
identically to 0.
- `chebone` -- (Coefficients of the) Chebyshev series that evaluates
identically to 1.
- `chebx` -- (Coefficients of the) Chebyshev series for the identity map,
``f(x) = x``.
Arithmetic
----------
- `chebadd` -- add two Chebyshev series.
- `chebsub` -- subtract one Chebyshev series from another.
- `chebmul` -- multiply two Chebyshev series.
- `chebdiv` -- divide one Chebyshev series by another.
- `chebval` -- evaluate a Chebyshev series at given points.
Calculus
--------
- `chebder` -- differentiate a Chebyshev series.
- `chebint` -- integrate a Chebyshev series.
Misc Functions
--------------
- `chebfromroots` -- create a Chebyshev series with specified roots.
- `chebroots` -- find the roots of a Chebyshev series.
- `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials.
- `chebfit` -- least-squares fit returning a Chebyshev series.
- `chebtrim` -- trim leading coefficients from a Chebyshev series.
- `chebline` -- Chebyshev series of given straight line.
- `cheb2poly` -- convert a Chebyshev series to a polynomial.
- `poly2cheb` -- convert a polynomial to a Chebyshev series.
Classes
-------
- `Chebyshev` -- A Chebyshev series class.
See also
--------
`numpy.polynomial`
Notes
-----
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:
.. math ::
T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
where
.. math :: x = \\frac{z + z^{-1}}{2}.
These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series. In this module, this sort of Laurent series
is referred to as a "z-series."
References
----------
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
(preprint: http://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
"""
from __future__ import division
__all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline',
'chebadd', 'chebsub', 'chebmul', 'chebdiv', 'chebval', 'chebder',
'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots', 'chebvander',
'chebfit', 'chebtrim', 'chebroots', 'Chebyshev']
import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate
chebtrim = pu.trimcoef
#
# A collection of functions for manipulating z-series. These are private
# functions and do minimal error checking.
#
def _cseries_to_zseries(cs) :
"""Covert Chebyshev series to z-series.
Covert a Chebyshev series to the equivalent z-series. The result is
never an empty array. The dtype of the return is the same as that of
the input. No checks are run on the arguments as this routine is for
internal use.
Parameters
----------
cs : 1-d ndarray
Chebyshev coefficients, ordered from low to high
Returns
-------
zs : 1-d ndarray
Odd length symmetric z-series, ordered from low to high.
"""
n = cs.size
zs = np.zeros(2*n-1, dtype=cs.dtype)
zs[n-1:] = cs/2
return zs + zs[::-1]
def _zseries_to_cseries(zs) :
"""Covert z-series to a Chebyshev series.
Covert a z series to the equivalent Chebyshev series. The result is
never an empty array. The dtype of the return is the same as that of
the input. No checks are run on the arguments as this routine is for
internal use.
Parameters
----------
zs : 1-d ndarray
Odd length symmetric z-series, ordered from low to high.
Returns
-------
cs : 1-d ndarray
Chebyshev coefficients, ordered from low to high.
"""
n = (zs.size + 1)//2
cs = zs[n-1:].copy()
cs[1:n] *= 2
return cs
def _zseries_mul(z1, z2) :
"""Multiply two z-series.
Multiply two z-series to produce a z-series.
Parameters
----------
z1, z2 : 1-d ndarray
The arrays must be 1-d but this is not checked.
Returns
-------
product : 1-d ndarray
The product z-series.
Notes
-----
This is simply convolution. If symmetic/anti-symmetric z-series are
denoted by S/A then the following rules apply:
S*S, A*A -> S
S*A, A*S -> A
"""
return np.convolve(z1, z2)
def _zseries_div(z1, z2) :
"""Divide the first z-series by the second.
Divide `z1` by `z2` and return the quotient and remainder as z-series.
Warning: this implementation only applies when both z1 and z2 have the
same symmetry, which is sufficient for present purposes.
Parameters
----------
z1, z2 : 1-d ndarray
The arrays must be 1-d and have the same symmetry, but this is not
checked.
Returns
-------
(quotient, remainder) : 1-d ndarrays
Quotient and remainder as z-series.
Notes
-----
This is not the same as polynomial division on account of the desired form
of the remainder. If symmetic/anti-symmetric z-series are denoted by S/A
then the following rules apply:
S/S -> S,S
A/A -> S,A
The restriction to types of the same symmetry could be fixed but seems like
uneeded generality. There is no natural form for the remainder in the case
where there is no symmetry.
"""
z1 = z1.copy()
z2 = z2.copy()
len1 = len(z1)
len2 = len(z2)
if len2 == 1 :
z1 /= z2
return z1, z1[:1]*0
elif len1 < len2 :
return z1[:1]*0, z1
else :
dlen = len1 - len2
scl = z2[0]
z2 /= scl
quo = np.empty(dlen + 1, dtype=z1.dtype)
i = 0
j = dlen
while i < j :
r = z1[i]
quo[i] = z1[i]
quo[dlen - i] = r
tmp = r*z2
z1[i:i+len2] -= tmp
z1[j:j+len2] -= tmp
i += 1
j -= 1
r = z1[i]
quo[i] = r
tmp = r*z2
z1[i:i+len2] -= tmp
quo /= scl
rem = z1[i+1:i-1+len2].copy()
return quo, rem
def _zseries_der(zs) :
"""Differentiate a z-series.
The derivative is with respect to x, not z. This is achieved using the
chain rule and the value of dx/dz given in the module notes.
Parameters
----------
zs : z-series
The z-series to differentiate.
Returns
-------
derivative : z-series
The derivative
Notes
-----
The zseries for x (ns) has been multiplied by two in order to avoid
using floats that are incompatible with Decimal and likely other
specialized scalar types. This scaling has been compensated by
multiplying the value of zs by two also so that the two cancels in the
division.
"""
n = len(zs)//2
ns = np.array([-1, 0, 1], dtype=zs.dtype)
zs *= np.arange(-n, n+1)*2
d, r = _zseries_div(zs, ns)
return d
def _zseries_int(zs) :
"""Integrate a z-series.
The integral is with respect to x, not z. This is achieved by a change
of variable using dx/dz given in the module notes.
Parameters
----------
zs : z-series
The z-series to integrate
Returns
-------
integral : z-series
The indefinite integral
Notes
-----
The zseries for x (ns) has been multiplied by two in order to avoid
using floats that are incompatible with Decimal and likely other
specialized scalar types. This scaling has been compensated by
dividing the resulting zs by two.
"""
n = 1 + len(zs)//2
ns = np.array([-1, 0, 1], dtype=zs.dtype)
zs = _zseries_mul(zs, ns)
div = np.arange(-n, n+1)*2
zs[:n] /= div[:n]
zs[n+1:] /= div[n+1:]
zs[n] = 0
return zs
#
# Chebyshev series functions
#
def poly2cheb(pol) :
"""
poly2cheb(pol)
Convert a polynomial to a Chebyshev series.
Convert an array representing the coefficients of a polynomial (relative
to the "standard" basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Chebyshev series, ordered
from lowest to highest degree.
Parameters
----------
pol : array_like
1-d array containing the polynomial coefficients
Returns
-------
cs : ndarray
1-d array containing the coefficients of the equivalent Chebyshev
series.
See Also
--------
cheb2poly
Notes
-----
Note that a consequence of the input needing to be array_like and that
the output is an ndarray, is that if one is going to use this function
to convert a Polynomial instance, P, to a Chebyshev instance, T, the
usage is ``T = Chebyshev(poly2cheb(P.coef))``; see Examples below.
Examples
--------
>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
Polynomial([ 0., 1., 2., 3.], [-1., 1.])
>>> c = P.Chebyshev(P.poly2cheb(p.coef))
>>> c
Chebyshev([ 1. , 3.25, 1. , 0.75], [-1., 1.])
"""
[pol] = pu.as_series([pol])
pol = pol[::-1]
zs = pol[:1].copy()
x = np.array([.5, 0, .5], dtype=pol.dtype)
for i in range(1, len(pol)) :
zs = _zseries_mul(zs, x)
zs[i] += pol[i]
return _zseries_to_cseries(zs)
def cheb2poly(cs) :
"""
cheb2poly(cs)
Convert a Chebyshev series to a polynomial.
Convert an array representing the coefficients of a Chebyshev series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.
Parameters
----------
cs : array_like
1-d array containing the Chebyshev series coefficients, ordered
from lowest order term to highest.
Returns
-------
pol : ndarray
1-d array containing the coefficients of the equivalent polynomial
(relative to the "standard" basis) ordered from lowest order term
to highest.
See Also
--------
poly2cheb
Notes
-----
Note that a consequence of the input needing to be array_like and that
the output is an ndarray, is that if one is going to use this function
to convert a Chebyshev instance, T, to a Polynomial instance, P, the
usage is ``P = Polynomial(cheb2poly(T.coef))``; see Examples below.
Examples
--------
>>> from numpy import polynomial as P
>>> c = P.Chebyshev(np.arange(4))
>>> c
Chebyshev([ 0., 1., 2., 3.], [-1., 1.])
>>> p = P.Polynomial(P.cheb2poly(c.coef))
>>> p
Polynomial([ -2., -8., 4., 12.], [-1., 1.])
"""
[cs] = pu.as_series([cs])
pol = np.zeros(len(cs), dtype=cs.dtype)
quo = _cseries_to_zseries(cs)
x = np.array([.5, 0, .5], dtype=pol.dtype)
for i in range(0, len(cs) - 1) :
quo, rem = _zseries_div(quo, x)
pol[i] = rem[0]
pol[-1] = quo[0]
return pol
#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#
# Chebyshev default domain.
chebdomain = np.array([-1,1])
# Chebyshev coefficients representing zero.
chebzero = np.array([0])
# Chebyshev coefficients representing one.
chebone = np.array([1])
# Chebyshev coefficients representing the identity x.
chebx = np.array([0,1])
def chebline(off, scl) :
"""
Chebyshev series whose graph is a straight line.
Parameters
----------
off, scl : scalars
The specified line is given by ``off + scl*x``.
Returns
-------
y : ndarray
This module's representation of the Chebyshev series for
``off + scl*x``.
See Also
--------
polyline
Examples
--------
>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0
"""
if scl != 0 :
return np.array([off,scl])
else :
return np.array([off])
def chebfromroots(roots) :
"""
Generate a Chebyshev series with the given roots.
Return the array of coefficients for the C-series whose roots (a.k.a.
"zeros") are given by *roots*. The returned array of coefficients is
ordered from lowest order "term" to highest, and zeros of multiplicity
greater than one must be included in *roots* a number of times equal
to their multiplicity (e.g., if `2` is a root of multiplicity three,
then [2,2,2] must be in *roots*).
Parameters
----------
roots : array_like
Sequence containing the roots.
Returns
-------
out : ndarray
1-d array of the C-series' coefficients, ordered from low to
high. If all roots are real, ``out.dtype`` is a float type;
otherwise, ``out.dtype`` is a complex type, even if all the
coefficients in the result are real (see Examples below).
See Also
--------
polyfromroots
Notes
-----
What is returned are the :math:`c_i` such that:
.. math::
\\sum_{i=0}^{n} c_i*T_i(x) = \\prod_{i=0}^{n} (x - roots[i])
where ``n == len(roots)`` and :math:`T_i(x)` is the `i`-th Chebyshev
(basis) polynomial over the domain `[-1,1]`. Note that, unlike
`polyfromroots`, due to the nature of the C-series basis set, the
above identity *does not* imply :math:`c_n = 1` identically (see
Examples).
Examples
--------
>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([ 0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])
"""
if len(roots) == 0 :
return np.ones(1)
else :
[roots] = pu.as_series([roots], trim=False)
prd = np.array([1], dtype=roots.dtype)
for r in roots :
fac = np.array([.5, -r, .5], dtype=roots.dtype)
prd = _zseries_mul(fac, prd)
return _zseries_to_cseries(prd)
def chebadd(c1, c2):
"""
Add one Chebyshev series to another.
Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the Chebyshev series of their sum.
See Also
--------
chebsub, chebmul, chebdiv, chebpow
Notes
-----
Unlike multiplication, division, etc., the sum of two Chebyshev series
is a Chebyshev series (without having to "reproject" the result onto
the basis set) so addition, just like that of "standard" polynomials,
is simply "component-wise."
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([ 4., 4., 4.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] += c2
ret = c1
else :
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def chebsub(c1, c2):
"""
Subtract one Chebyshev series from another.
Returns the difference of two Chebyshev series `c1` - `c2`. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Chebyshev series coefficients representing their difference.
See Also
--------
chebadd, chebmul, chebdiv, chebpow
Notes
-----
Unlike multiplication, division, etc., the difference of two Chebyshev
series is a Chebyshev series (without having to "reproject" the result
onto the basis set) so subtraction, just like that of "standard"
polynomials, is simply "component-wise."
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([ 2., 0., -2.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] -= c2
ret = c1
else :
c2 = -c2
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def chebmul(c1, c2):
"""
Multiply one Chebyshev series by another.
Returns the product of two Chebyshev series `c1` * `c2`. The arguments
are sequences of coefficients, from lowest order "term" to highest,
e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Chebyshev series coefficients representing their product.
See Also
--------
chebadd, chebsub, chebdiv, chebpow
Notes
-----
In general, the (polynomial) product of two C-series results in terms
that are not in the Chebyshev polynomial basis set. Thus, to express
the product as a C-series, it is typically necessary to "re-project"
the product onto said basis set, which typically produces
"un-intuitive" (but correct) results; see Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([ 6.5, 12. , 12. , 4. , 1.5])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
z1 = _cseries_to_zseries(c1)
z2 = _cseries_to_zseries(c2)
prd = _zseries_mul(z1, z2)
ret = _zseries_to_cseries(prd)
return pu.trimseq(ret)
def chebdiv(c1, c2):
"""
Divide one Chebyshev series by another.
Returns the quotient-with-remainder of two Chebyshev series
`c1` / `c2`. The arguments are sequences of coefficients from lowest
order "term" to highest, e.g., [1,2,3] represents the series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
[quo, rem] : ndarrays
Of Chebyshev series coefficients representing the quotient and
remainder.
See Also
--------
chebadd, chebsub, chebmul, chebpow
Notes
-----
In general, the (polynomial) division of one C-series by another
results in quotient and remainder terms that are not in the Chebyshev
polynomial basis set. Thus, to express these results as C-series, it
is typically necessary to "re-project" the results onto said basis
set, which typically produces "un-intuitive" (but correct) results;
see Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([ 3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([ 0., 2.]), array([-2., -4.]))
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if c2[-1] == 0 :
raise ZeroDivisionError()
lc1 = len(c1)
lc2 = len(c2)
if lc1 < lc2 :
return c1[:1]*0, c1
elif lc2 == 1 :
return c1/c2[-1], c1[:1]*0
else :
z1 = _cseries_to_zseries(c1)
z2 = _cseries_to_zseries(c2)
quo, rem = _zseries_div(z1, z2)
quo = pu.trimseq(_zseries_to_cseries(quo))
rem = pu.trimseq(_zseries_to_cseries(rem))
return quo, rem
def chebpow(cs, pow, maxpower=16) :
"""Raise a Chebyshev series to a power.
Returns the Chebyshev series `cs` raised to the power `pow`. The
arguement `cs` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
Parameters
----------
cs : array_like
1d array of chebyshev series coefficients ordered from low to
high.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
to umanageable size. Default is 16
Returns
-------
coef : ndarray
Chebyshev series of power.
See Also
--------
chebadd, chebsub, chebmul, chebdiv
Examples
--------
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
power = int(pow)
if power != pow or power < 0 :
raise ValueError("Power must be a non-negative integer.")
elif maxpower is not None and power > maxpower :
raise ValueError("Power is too large")
elif power == 0 :
return np.array([1], dtype=cs.dtype)
elif power == 1 :
return cs
else :
# This can be made more efficient by using powers of two
# in the usual way.
zs = _cseries_to_zseries(cs)
prd = zs
for i in range(2, power + 1) :
prd = np.convolve(prd, zs)
return _zseries_to_cseries(prd)
def chebder(cs, m=1, scl=1) :
"""
Differentiate a Chebyshev series.
Returns the series `cs` differentiated `m` times. At each iteration the
result is multiplied by `scl` (the scaling factor is for use in a linear
change of variable). The argument `cs` is the sequence of coefficients
from lowest order "term" to highest, e.g., [1,2,3] represents the series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
cs: array_like
1-d array of Chebyshev series coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by `scl`. The end result is
multiplication by ``scl**m``. This is for use in a linear change of
variable. (Default: 1)
Returns
-------
der : ndarray
Chebyshev series of the derivative.
See Also
--------
chebint
Notes
-----
In general, the result of differentiating a C-series needs to be
"re-projected" onto the C-series basis set. Thus, typically, the
result of this function is "un-intuitive," albeit correct; see Examples
section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> cs = (1,2,3,4)
>>> C.chebder(cs)
array([ 14., 12., 24.])
>>> C.chebder(cs,3)
array([ 96.])
>>> C.chebder(cs,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(cs,2,-1)
array([ 12., 96.])
"""
cnt = int(m)
if cnt != m:
raise ValueError, "The order of derivation must be integer"
if cnt < 0 :
raise ValueError, "The order of derivation must be non-negative"
if not np.isscalar(scl) :
raise ValueError, "The scl parameter must be a scalar"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
elif cnt >= len(cs):
return cs[:1]*0
else :
zs = _cseries_to_zseries(cs)
for i in range(cnt):
zs = _zseries_der(zs)*scl
return _zseries_to_cseries(zs)
def chebint(cs, m=1, k=[], lbnd=0, scl=1):
"""
Integrate a Chebyshev series.
Returns, as a C-series, the input C-series `cs`, integrated `m` times
from `lbnd` to `x`. At each iteration the resulting series is
**multiplied** by `scl` and an integration constant, `k`, is added.
The scaling factor is for use in a linear change of variable. ("Buyer
beware": note that, depending on what one is doing, one may want `scl`
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument `cs` is a sequence of
coefficients, from lowest order C-series "term" to highest, e.g.,
[1,2,3] represents the series :math:`T_0(x) + 2T_1(x) + 3T_2(x)`.
Parameters
----------
cs : array_like
1-d array of C-series coefficients, ordered from low to high.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If ``k == []`` (the default),
all constants are set to zero. If ``m == 1``, a single scalar can
be given instead of a list.
lbnd : scalar, optional
The lower bound of the integral. (Default: 0)
scl : scalar, optional
Following each integration the result is *multiplied* by `scl`
before the integration constant is added. (Default: 1)
Returns
-------
S : ndarray
C-series coefficients of the integral.
Raises
------
ValueError
If ``m < 1``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or
``np.isscalar(scl) == False``.
See Also
--------
chebder
Notes
-----
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
:math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a`
- perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs
to be "re-projected" onto the C-series basis set. Thus, typically,
the result of this function is "un-intuitive," albeit correct; see
Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> cs = (1,2,3)
>>> C.chebint(cs)
array([ 0.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,3)
array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
0.00625 ])
>>> C.chebint(cs, k=3)
array([ 3.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,lbnd=-2)
array([ 8.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,scl=-2)
array([-1., 1., -1., -1.])
"""
cnt = int(m)
if np.isscalar(k) :
k = [k]
if cnt != m:
raise ValueError, "The order of integration must be integer"
if cnt < 0 :
raise ValueError, "The order of integration must be non-negative"
if len(k) > cnt :
raise ValueError, "Too many integration constants"
if not np.isscalar(lbnd) :
raise ValueError, "The lbnd parameter must be a scalar"
if not np.isscalar(scl) :
raise ValueError, "The scl parameter must be a scalar"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
else:
k = list(k) + [0]*(cnt - len(k))
for i in range(cnt) :
zs = _cseries_to_zseries(cs)*scl
zs = _zseries_int(zs)
cs = _zseries_to_cseries(zs)
cs[0] += k[i] - chebval(lbnd, cs)
return cs
def chebval(x, cs):
"""Evaluate a Chebyshev series.
If `cs` is of length `n`, this function returns :
``p(x) = cs[0]*T_0(x) + cs[1]*T_1(x) + ... + cs[n-1]*T_{n-1}(x)``
If x is a sequence or array then p(x) will have the same shape as x.
If r is a ring_like object that supports multiplication and addition
by the values in `cs`, then an object of the same type is returned.
Parameters
----------
x : array_like, ring_like
Array of numbers or objects that support multiplication and
addition with themselves and with the elements of `cs`.
cs : array_like
1-d array of Chebyshev coefficients ordered from low to high.
Returns
-------
values : ndarray, ring_like
If the return is an ndarray then it has the same shape as `x`.
See Also
--------
chebfit
Examples
--------
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
Examples
--------
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if isinstance(x, tuple) or isinstance(x, list) :
x = np.asarray(x)
if len(cs) == 1 :
c0 = cs[0]
c1 = 0
elif len(cs) == 2 :
c0 = cs[0]
c1 = cs[1]
else :
x2 = 2*x
c0 = cs[-2]
c1 = cs[-1]
for i in range(3, len(cs) + 1) :
tmp = c0
c0 = cs[-i] - c1
c1 = tmp + c1*x2
return c0 + c1*x
def chebvander(x, deg) :
"""Vandermonde matrix of given degree.
Returns the Vandermonde matrix of degree `deg` and sample points `x`.
This isn't a true Vandermonde matrix because `x` can be an arbitrary
ndarray and the Chebyshev polynomials aren't powers. If ``V`` is the
returned matrix and `x` is a 2d array, then the elements of ``V`` are
``V[i,j,k] = T_k(x[i,j])``, where ``T_k`` is the Chebyshev polynomial
of degree ``k``.
Parameters
----------
x : array_like
Array of points. The values are converted to double or complex
doubles.
deg : integer
Degree of the resulting matrix.
Returns
-------
vander : Vandermonde matrix.
The shape of the returned matrix is ``x.shape + (deg+1,)``. The last
index is the degree.
"""
x = np.asarray(x) + 0.0
order = int(deg) + 1
v = np.ones((order,) + x.shape, dtype=x.dtype)
if order > 1 :
x2 = 2*x
v[1] = x
for i in range(2, order) :
v[i] = v[i-1]*x2 - v[i-2]
return np.rollaxis(v, 0, v.ndim)
def chebfit(x, y, deg, rcond=None, full=False, w=None):
"""
Least squares fit of Chebyshev series to data.
Fit a Chebyshev series ``p(x) = p[0] * T_{0}(x) + ... + p[deg] *
T_{deg}(x)`` of degree `deg` to points `(x, y)`. Returns a vector of
coefficients `p` that minimises the squared error.
Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
Degree of the fitting polynomial
rcond : float, optional
Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.
full : bool, optional
Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
Weights. If not None, the contribution of each point
``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
weights are chosen so that the errors of the products ``w[i]*y[i]``
all have the same variance. The default value is None.
.. versionadded:: 1.5.0
Returns
-------
coef : ndarray, shape (M,) or (M, K)
Chebyshev coefficients ordered from low to high. If `y` was 2-D,
the coefficients for the data in column k of `y` are in column
`k`.
[residuals, rank, singular_values, rcond] : present when `full` = True
Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde matrix and its singular values, and the
specified value of `rcond`. For more details, see `linalg.lstsq`.
Warns
-----
RankWarning
The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if `full` = False. The
warnings can be turned off by
>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)
See Also
--------
chebval : Evaluates a Chebyshev series.
chebvander : Vandermonde matrix of Chebyshev series.
polyfit : least squares fit using polynomials.
linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.
Notes
-----
The solution are the coefficients ``c[i]`` of the Chebyshev series
``T(x)`` that minimizes the squared error
``E = \\sum_j |y_j - T(x_j)|^2``.
This problem is solved by setting up as the overdetermined matrix
equation
``V(x)*c = y``,
where ``V`` is the Vandermonde matrix of `x`, the elements of ``c`` are
the coefficients to be solved for, and the elements of `y` are the
observed values. This equation is then solved using the singular value
decomposition of ``V``.
If some of the singular values of ``V`` are so small that they are
neglected, then a `RankWarning` will be issued. This means that the
coeficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The `rcond` parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Chebyshev series are usually better conditioned than fits
using power series, but much can depend on the distribution of the
sample points and the smoothness of the data. If the quality of the fit
is inadequate splines may be a good alternative.
References
----------
.. [1] Wikipedia, "Curve fitting",
http://en.wikipedia.org/wiki/Curve_fitting
Examples
--------
"""
order = int(deg) + 1
x = np.asarray(x) + 0.0
y = np.asarray(y) + 0.0
# check arguments.
if deg < 0 :
raise ValueError, "expected deg >= 0"
if x.ndim != 1:
raise TypeError, "expected 1D vector for x"
if x.size == 0:
raise TypeError, "expected non-empty vector for x"
if y.ndim < 1 or y.ndim > 2 :
raise TypeError, "expected 1D or 2D array for y"
if len(x) != len(y):
raise TypeError, "expected x and y to have same length"
# set up the least squares matrices
lhs = chebvander(x, deg)
rhs = y
if w is not None:
w = np.asarray(w) + 0.0
if w.ndim != 1:
raise TypeError, "expected 1D vector for w"
if len(x) != len(w):
raise TypeError, "expected x and w to have same length"
# apply weights
if rhs.ndim == 2:
lhs *= w[:, np.newaxis]
rhs *= w[:, np.newaxis]
else:
lhs *= w[:, np.newaxis]
rhs *= w
# set rcond
if rcond is None :
rcond = len(x)*np.finfo(x.dtype).eps
# scale the design matrix and solve the least squares equation
scl = np.sqrt((lhs*lhs).sum(0))
c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond)
c = (c.T/scl).T
# warn on rank reduction
if rank != order and not full:
msg = "The fit may be poorly conditioned"
warnings.warn(msg, pu.RankWarning)
if full :
return c, [resids, rank, s, rcond]
else :
return c
def chebroots(cs):
"""
Compute the roots of a Chebyshev series.
Return the roots (a.k.a "zeros") of the C-series represented by `cs`,
which is the sequence of the C-series' coefficients from lowest order
"term" to highest, e.g., [1,2,3] represents the C-series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
cs : array_like
1-d array of C-series coefficients ordered from low to high.
Returns
-------
out : ndarray
Array of the roots. If all the roots are real, then so is the
dtype of ``out``; otherwise, ``out``'s dtype is complex.
See Also
--------
polyroots
Notes
-----
Algorithm(s) used:
Remember: because the C-series basis set is different from the
"standard" basis set, the results of this function *may* not be what
one is expecting.
Examples
--------
>>> import numpy.polynomial as P
>>> import numpy.polynomial.chebyshev as C
>>> P.polyroots((-1,1,-1,1)) # x^3 - x^2 + x - 1 has two complex roots
array([ -4.99600361e-16-1.j, -4.99600361e-16+1.j, 1.00000e+00+0.j])
>>> C.chebroots((-1,1,-1,1)) # T3 - T2 + T1 - T0 has only real roots
array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00])
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if len(cs) <= 1 :
return np.array([], dtype=cs.dtype)
if len(cs) == 2 :
return np.array([-cs[0]/cs[1]])
n = len(cs) - 1
cmat = np.zeros((n,n), dtype=cs.dtype)
cmat.flat[1::n+1] = .5
cmat.flat[n::n+1] = .5
cmat[1, 0] = 1
cmat[:,-1] -= cs[:-1]*(.5/cs[-1])
roots = la.eigvals(cmat)
roots.sort()
return roots
#
# Chebyshev series class
#
exec polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')
|