summaryrefslogtreecommitdiff
path: root/numpy/polynomial/polyutils.py
blob: db1cb284185a321d2df7092fd85e696a9d43e13d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""
Utility classes and functions for the polynomial modules.

This module provides: error and warning objects; a polynomial base class;
and some routines used in both the `polynomial` and `chebyshev` modules.

Error objects
-------------

.. autosummary::
   :toctree: generated/

   PolyError            base class for this sub-package's errors.
   PolyDomainError      raised when domains are mismatched.

Warning objects
---------------

.. autosummary::
   :toctree: generated/

   RankWarning  raised in least-squares fit for rank-deficient matrix.

Base class
----------

.. autosummary::
   :toctree: generated/

   PolyBase Obsolete base class for the polynomial classes. Do not use.

Functions
---------

.. autosummary::
   :toctree: generated/

   as_series    convert list of array_likes into 1-D arrays of common type.
   trimseq      remove trailing zeros.
   trimcoef     remove small trailing coefficients.
   getdomain    return the domain appropriate for a given set of abscissae.
   mapdomain    maps points between domains.
   mapparms     parameters of the linear map between domains.

"""
from __future__ import division, absolute_import, print_function

import numpy as np

__all__ = [
    'RankWarning', 'PolyError', 'PolyDomainError', 'as_series', 'trimseq',
    'trimcoef', 'getdomain', 'mapdomain', 'mapparms', 'PolyBase']

#
# Warnings and Exceptions
#

class RankWarning(UserWarning):
    """Issued by chebfit when the design matrix is rank deficient."""
    pass

class PolyError(Exception):
    """Base class for errors in this module."""
    pass

class PolyDomainError(PolyError):
    """Issued by the generic Poly class when two domains don't match.

    This is raised when an binary operation is passed Poly objects with
    different domains.

    """
    pass

#
# Base class for all polynomial types
#

class PolyBase(object):
    """
    Base class for all polynomial types.

    Deprecated in numpy 1.9.0, use the abstract
    ABCPolyBase class instead. Note that the latter
    requires a number of virtual functions to be
    implemented.

    """
    pass

#
# Helper functions to convert inputs to 1-D arrays
#
def trimseq(seq):
    """Remove small Poly series coefficients.

    Parameters
    ----------
    seq : sequence
        Sequence of Poly series coefficients. This routine fails for
        empty sequences.

    Returns
    -------
    series : sequence
        Subsequence with trailing zeros removed. If the resulting sequence
        would be empty, return the first element. The returned sequence may
        or may not be a view.

    Notes
    -----
    Do not lose the type info if the sequence contains unknown objects.

    """
    if len(seq) == 0:
        return seq
    else:
        for i in range(len(seq) - 1, -1, -1):
            if seq[i] != 0:
                break
        return seq[:i+1]


def as_series(alist, trim=True):
    """
    Return argument as a list of 1-d arrays.

    The returned list contains array(s) of dtype double, complex double, or
    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
    raises a Value Error if it is not first reshaped into either a 1-d or 2-d
    array.

    Parameters
    ----------
    alist : array_like
        A 1- or 2-d array_like
    trim : boolean, optional
        When True, trailing zeros are removed from the inputs.
        When False, the inputs are passed through intact.

    Returns
    -------
    [a1, a2,...] : list of 1-D arrays
        A copy of the input data as a list of 1-d arrays.

    Raises
    ------
    ValueError
        Raised when `as_series` cannot convert its input to 1-d arrays, or at
        least one of the resulting arrays is empty.

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> a = np.arange(4)
    >>> pu.as_series(a)
    [array([0.]), array([1.]), array([2.]), array([3.])]
    >>> b = np.arange(6).reshape((2,3))
    >>> pu.as_series(b)
    [array([0., 1., 2.]), array([3., 4., 5.])]

    >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
    [array([1.]), array([0., 1., 2.]), array([0., 1.])]

    >>> pu.as_series([2, [1.1, 0.]])
    [array([2.]), array([1.1])]

    >>> pu.as_series([2, [1.1, 0.]], trim=False)
    [array([2.]), array([1.1, 0. ])]

    """
    arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
    if min([a.size for a in arrays]) == 0:
        raise ValueError("Coefficient array is empty")
    if any([a.ndim != 1 for a in arrays]):
        raise ValueError("Coefficient array is not 1-d")
    if trim:
        arrays = [trimseq(a) for a in arrays]

    if any([a.dtype == np.dtype(object) for a in arrays]):
        ret = []
        for a in arrays:
            if a.dtype != np.dtype(object):
                tmp = np.empty(len(a), dtype=np.dtype(object))
                tmp[:] = a[:]
                ret.append(tmp)
            else:
                ret.append(a.copy())
    else:
        try:
            dtype = np.common_type(*arrays)
        except Exception:
            raise ValueError("Coefficient arrays have no common type")
        ret = [np.array(a, copy=1, dtype=dtype) for a in arrays]
    return ret


def trimcoef(c, tol=0):
    """
    Remove "small" "trailing" coefficients from a polynomial.

    "Small" means "small in absolute value" and is controlled by the
    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
    both the 3-rd and 4-th order coefficients would be "trimmed."

    Parameters
    ----------
    c : array_like
        1-d array of coefficients, ordered from lowest order to highest.
    tol : number, optional
        Trailing (i.e., highest order) elements with absolute value less
        than or equal to `tol` (default value is zero) are removed.

    Returns
    -------
    trimmed : ndarray
        1-d array with trailing zeros removed.  If the resulting series
        would be empty, a series containing a single zero is returned.

    Raises
    ------
    ValueError
        If `tol` < 0

    See Also
    --------
    trimseq

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> pu.trimcoef((0,0,3,0,5,0,0))
    array([0.,  0.,  3.,  0.,  5.])
    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
    array([0.])
    >>> i = complex(0,1) # works for complex
    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
    array([0.0003+0.j   , 0.001 -0.001j])

    """
    if tol < 0:
        raise ValueError("tol must be non-negative")

    [c] = as_series([c])
    [ind] = np.nonzero(np.abs(c) > tol)
    if len(ind) == 0:
        return c[:1]*0
    else:
        return c[:ind[-1] + 1].copy()

def getdomain(x):
    """
    Return a domain suitable for given abscissae.

    Find a domain suitable for a polynomial or Chebyshev series
    defined at the values supplied.

    Parameters
    ----------
    x : array_like
        1-d array of abscissae whose domain will be determined.

    Returns
    -------
    domain : ndarray
        1-d array containing two values.  If the inputs are complex, then
        the two returned points are the lower left and upper right corners
        of the smallest rectangle (aligned with the axes) in the complex
        plane containing the points `x`. If the inputs are real, then the
        two points are the ends of the smallest interval containing the
        points `x`.

    See Also
    --------
    mapparms, mapdomain

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> points = np.arange(4)**2 - 5; points
    array([-5, -4, -1,  4])
    >>> pu.getdomain(points)
    array([-5.,  4.])
    >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
    >>> pu.getdomain(c)
    array([-1.-1.j,  1.+1.j])

    """
    [x] = as_series([x], trim=False)
    if x.dtype.char in np.typecodes['Complex']:
        rmin, rmax = x.real.min(), x.real.max()
        imin, imax = x.imag.min(), x.imag.max()
        return np.array((complex(rmin, imin), complex(rmax, imax)))
    else:
        return np.array((x.min(), x.max()))

def mapparms(old, new):
    """
    Linear map parameters between domains.

    Return the parameters of the linear map ``offset + scale*x`` that maps
    `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.

    Parameters
    ----------
    old, new : array_like
        Domains. Each domain must (successfully) convert to a 1-d array
        containing precisely two values.

    Returns
    -------
    offset, scale : scalars
        The map ``L(x) = offset + scale*x`` maps the first domain to the
        second.

    See Also
    --------
    getdomain, mapdomain

    Notes
    -----
    Also works for complex numbers, and thus can be used to calculate the
    parameters required to map any line in the complex plane to any other
    line therein.

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> pu.mapparms((-1,1),(-1,1))
    (0.0, 1.0)
    >>> pu.mapparms((1,-1),(-1,1))
    (-0.0, -1.0)
    >>> i = complex(0,1)
    >>> pu.mapparms((-i,-1),(1,i))
    ((1+1j), (1-0j))

    """
    oldlen = old[1] - old[0]
    newlen = new[1] - new[0]
    off = (old[1]*new[0] - old[0]*new[1])/oldlen
    scl = newlen/oldlen
    return off, scl

def mapdomain(x, old, new):
    """
    Apply linear map to input points.

    The linear map ``offset + scale*x`` that maps the domain `old` to
    the domain `new` is applied to the points `x`.

    Parameters
    ----------
    x : array_like
        Points to be mapped. If `x` is a subtype of ndarray the subtype
        will be preserved.
    old, new : array_like
        The two domains that determine the map.  Each must (successfully)
        convert to 1-d arrays containing precisely two values.

    Returns
    -------
    x_out : ndarray
        Array of points of the same shape as `x`, after application of the
        linear map between the two domains.

    See Also
    --------
    getdomain, mapparms

    Notes
    -----
    Effectively, this implements:

    .. math ::
        x\\_out = new[0] + m(x - old[0])

    where

    .. math ::
        m = \\frac{new[1]-new[0]}{old[1]-old[0]}

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> old_domain = (-1,1)
    >>> new_domain = (0,2*np.pi)
    >>> x = np.linspace(-1,1,6); x
    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ])
    >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
    array([ 0.        ,  1.25663706,  2.51327412,  3.76991118,  5.02654825, # may vary
            6.28318531])
    >>> x - pu.mapdomain(x_out, new_domain, old_domain)
    array([0., 0., 0., 0., 0., 0.])

    Also works for complex numbers (and thus can be used to map any line in
    the complex plane to any other line therein).

    >>> i = complex(0,1)
    >>> old = (-1 - i, 1 + i)
    >>> new = (-1 + i, 1 - i)
    >>> z = np.linspace(old[0], old[1], 6); z
    array([-1. -1.j , -0.6-0.6j, -0.2-0.2j,  0.2+0.2j,  0.6+0.6j,  1. +1.j ])
    >>> new_z = pu.mapdomain(z, old, new); new_z
    array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j,  0.2-0.2j,  0.6-0.6j,  1.0-1.j ]) # may vary

    """
    x = np.asanyarray(x)
    off, scl = mapparms(old, new)
    return off + scl*x


def _vander2d(vander_f, x, y, deg):
    """
    Helper function used to implement the ``<type>vander2d`` functions.

    Parameters
    ----------
    vander_f : function(array_like, int) -> ndarray
        The 1d vander function, such as ``polyvander``
    x, y, deg :
        See the ``<type>vander2d`` functions for more detail
    """
    ideg = [int(d) for d in deg]
    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
    if is_valid != [1, 1]:
        raise ValueError("degrees must be non-negative integers")
    degx, degy = ideg
    x, y = np.array((x, y), copy=0) + 0.0

    vx = vander_f(x, degx)
    vy = vander_f(y, degy)
    v = vx[..., None]*vy[..., None,:]
    return v.reshape(v.shape[:-2] + (-1,))


def _vander3d(vander_f, x, y, z, deg):
    """
    Helper function used to implement the ``<type>vander3d`` functions.

    Parameters
    ----------
    vander_f : function(array_like, int) -> ndarray
        The 1d vander function, such as ``polyvander``
    x, y, z, deg :
        See the ``<type>vander3d`` functions for more detail
    """
    ideg = [int(d) for d in deg]
    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
    if is_valid != [1, 1, 1]:
        raise ValueError("degrees must be non-negative integers")
    degx, degy, degz = ideg
    x, y, z = np.array((x, y, z), copy=0) + 0.0

    vx = vander_f(x, degx)
    vy = vander_f(y, degy)
    vz = vander_f(z, degz)
    v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
    return v.reshape(v.shape[:-3] + (-1,))


def _fromroots(line_f, mul_f, roots):
    """
    Helper function used to implement the ``<type>fromroots`` functions.

    Parameters
    ----------
    line_f : function(float, float) -> ndarray
        The ``<type>line`` function, such as ``polyline``
    mul_f : function(array_like, array_like) -> ndarray
        The ``<type>mul`` function, such as ``polymul``
    roots :
        See the ``<type>fromroots`` functions for more detail
    """
    if len(roots) == 0:
        return np.ones(1)
    else:
        [roots] = as_series([roots], trim=False)
        roots.sort()
        p = [line_f(-r, 1) for r in roots]
        n = len(p)
        while n > 1:
            m, r = divmod(n, 2)
            tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
            if r:
                tmp[0] = mul_f(tmp[0], p[-1])
            p = tmp
            n = m
        return p[0]


def _valnd(val_f, c, *args):
    """
    Helper function used to implement the ``<type>val<n>d`` functions.

    Parameters
    ----------
    val_f : function(array_like, array_like, tensor: bool) -> array_like
        The ``<type>val`` function, such as ``polyval``
    c, args :
        See the ``<type>val<n>d`` functions for more detail
    """
    try:
        args = tuple(np.array(args, copy=False))
    except Exception:
        # preserve the old error message
        if len(args) == 2:
            raise ValueError('x, y, z are incompatible')
        elif len(args) == 3:
            raise ValueError('x, y are incompatible')
        else:
            raise ValueError('ordinates are incompatible')

    it = iter(args)
    x0 = next(it)

    # use tensor on only the first
    c = val_f(x0, c)
    for xi in it:
        c = val_f(xi, c, tensor=False)
    return c


def _gridnd(val_f, c, *args):
    """
    Helper function used to implement the ``<type>grid<n>d`` functions.

    Parameters
    ----------
    val_f : function(array_like, array_like, tensor: bool) -> array_like
        The ``<type>val`` function, such as ``polyval``
    c, args :
        See the ``<type>grid<n>d`` functions for more detail
    """
    for xi in args:
        c = val_f(xi, c)
    return c