1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
import numpy as np
cimport numpy as np
from libc.stdint cimport uint32_t, uint64_t
from ._common cimport uint64_to_double, wrap_int
from numpy.random cimport BitGenerator
__all__ = ['PCG64']
cdef extern from "src/pcg64/pcg64.h":
# Use int as generic type, actual type read from pcg64.h and is platform dependent
ctypedef int pcg64_random_t
struct s_pcg64_state:
pcg64_random_t *pcg_state
int has_uint32
uint32_t uinteger
ctypedef s_pcg64_state pcg64_state
uint64_t pcg64_next64(pcg64_state *state) nogil
uint32_t pcg64_next32(pcg64_state *state) nogil
void pcg64_jump(pcg64_state *state)
void pcg64_advance(pcg64_state *state, uint64_t *step)
void pcg64_set_seed(pcg64_state *state, uint64_t *seed, uint64_t *inc)
void pcg64_get_state(pcg64_state *state, uint64_t *state_arr, int *has_uint32, uint32_t *uinteger)
void pcg64_set_state(pcg64_state *state, uint64_t *state_arr, int has_uint32, uint32_t uinteger)
uint64_t pcg64_cm_next64(pcg64_state *state) noexcept nogil
uint32_t pcg64_cm_next32(pcg64_state *state) noexcept nogil
void pcg64_cm_advance(pcg64_state *state, uint64_t *step)
cdef uint64_t pcg64_uint64(void* st) noexcept nogil:
return pcg64_next64(<pcg64_state *>st)
cdef uint32_t pcg64_uint32(void *st) noexcept nogil:
return pcg64_next32(<pcg64_state *> st)
cdef double pcg64_double(void* st) noexcept nogil:
return uint64_to_double(pcg64_next64(<pcg64_state *>st))
cdef uint64_t pcg64_cm_uint64(void* st) noexcept nogil:
return pcg64_cm_next64(<pcg64_state *>st)
cdef uint32_t pcg64_cm_uint32(void *st) noexcept nogil:
return pcg64_cm_next32(<pcg64_state *> st)
cdef double pcg64_cm_double(void* st) noexcept nogil:
return uint64_to_double(pcg64_cm_next64(<pcg64_state *>st))
cdef class PCG64(BitGenerator):
"""
PCG64(seed=None)
BitGenerator for the PCG-64 pseudo-random number generator.
Parameters
----------
seed : {None, int, array_like[ints], SeedSequence}, optional
A seed to initialize the `BitGenerator`. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an ``int`` or
``array_like[ints]`` is passed, then it will be passed to
`SeedSequence` to derive the initial `BitGenerator` state. One may also
pass in a `SeedSequence` instance.
Notes
-----
PCG-64 is a 128-bit implementation of O'Neill's permutation congruential
generator ([1]_, [2]_). PCG-64 has a period of :math:`2^{128}` and supports
advancing an arbitrary number of steps as well as :math:`2^{127}` streams.
The specific member of the PCG family that we use is PCG XSL RR 128/64
as described in the paper ([2]_).
``PCG64`` provides a capsule containing function pointers that produce
doubles, and unsigned 32 and 64- bit integers. These are not
directly consumable in Python and must be consumed by a ``Generator``
or similar object that supports low-level access.
Supports the method :meth:`advance` to advance the RNG an arbitrary number of
steps. The state of the PCG-64 RNG is represented by 2 128-bit unsigned
integers.
**State and Seeding**
The ``PCG64`` state vector consists of 2 unsigned 128-bit values,
which are represented externally as Python ints. One is the state of the
PRNG, which is advanced by a linear congruential generator (LCG). The
second is a fixed odd increment used in the LCG.
The input seed is processed by `SeedSequence` to generate both values. The
increment is not independently settable.
**Parallel Features**
The preferred way to use a BitGenerator in parallel applications is to use
the `SeedSequence.spawn` method to obtain entropy values, and to use these
to generate new BitGenerators:
>>> from numpy.random import Generator, PCG64, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(PCG64(s)) for s in sg.spawn(10)]
**Compatibility Guarantee**
``PCG64`` makes a guarantee that a fixed seed will always produce
the same random integer stream.
References
----------
.. [1] `"PCG, A Family of Better Random Number Generators"
<http://www.pcg-random.org/>`_
.. [2] O'Neill, Melissa E. `"PCG: A Family of Simple Fast Space-Efficient
Statistically Good Algorithms for Random Number Generation"
<https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>`_
"""
cdef pcg64_state rng_state
cdef pcg64_random_t pcg64_random_state
def __init__(self, seed=None):
BitGenerator.__init__(self, seed)
self.rng_state.pcg_state = &self.pcg64_random_state
self._bitgen.state = <void *>&self.rng_state
self._bitgen.next_uint64 = &pcg64_uint64
self._bitgen.next_uint32 = &pcg64_uint32
self._bitgen.next_double = &pcg64_double
self._bitgen.next_raw = &pcg64_uint64
# Seed the _bitgen
val = self._seed_seq.generate_state(4, np.uint64)
pcg64_set_seed(&self.rng_state,
<uint64_t *>np.PyArray_DATA(val),
(<uint64_t *>np.PyArray_DATA(val) + 2))
self._reset_state_variables()
cdef _reset_state_variables(self):
self.rng_state.has_uint32 = 0
self.rng_state.uinteger = 0
cdef jump_inplace(self, jumps):
"""
Jump state in-place
Not part of public API
Parameters
----------
jumps : integer, positive
Number of times to jump the state of the rng.
Notes
-----
The step size is phi-1 when multiplied by 2**128 where phi is the
golden ratio.
"""
step = 0x9e3779b97f4a7c15f39cc0605cedc835
self.advance(step * int(jumps))
def jumped(self, jumps=1):
"""
jumped(jumps=1)
Returns a new bit generator with the state jumped.
Jumps the state as-if jumps * 210306068529402873165736369884012333109
random numbers have been generated.
Parameters
----------
jumps : integer, positive
Number of times to jump the state of the bit generator returned
Returns
-------
bit_generator : PCG64
New instance of generator jumped iter times
Notes
-----
The step size is phi-1 when multiplied by 2**128 where phi is the
golden ratio.
"""
cdef PCG64 bit_generator
bit_generator = self.__class__()
bit_generator.state = self.state
bit_generator.jump_inplace(jumps)
return bit_generator
@property
def state(self):
"""
Get or set the PRNG state
Returns
-------
state : dict
Dictionary containing the information required to describe the
state of the PRNG
"""
cdef np.ndarray state_vec
cdef int has_uint32
cdef uint32_t uinteger
# state_vec is state.high, state.low, inc.high, inc.low
state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
pcg64_get_state(&self.rng_state,
<uint64_t *>np.PyArray_DATA(state_vec),
&has_uint32, &uinteger)
state = int(state_vec[0]) * 2**64 + int(state_vec[1])
inc = int(state_vec[2]) * 2**64 + int(state_vec[3])
return {'bit_generator': self.__class__.__name__,
'state': {'state': state, 'inc': inc},
'has_uint32': has_uint32,
'uinteger': uinteger}
@state.setter
def state(self, value):
cdef np.ndarray state_vec
cdef int has_uint32
cdef uint32_t uinteger
if not isinstance(value, dict):
raise TypeError('state must be a dict')
bitgen = value.get('bit_generator', '')
if bitgen != self.__class__.__name__:
raise ValueError('state must be for a {0} '
'RNG'.format(self.__class__.__name__))
state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
state_vec[0] = value['state']['state'] // 2 ** 64
state_vec[1] = value['state']['state'] % 2 ** 64
state_vec[2] = value['state']['inc'] // 2 ** 64
state_vec[3] = value['state']['inc'] % 2 ** 64
has_uint32 = value['has_uint32']
uinteger = value['uinteger']
pcg64_set_state(&self.rng_state,
<uint64_t *>np.PyArray_DATA(state_vec),
has_uint32, uinteger)
def advance(self, delta):
"""
advance(delta)
Advance the underlying RNG as-if delta draws have occurred.
Parameters
----------
delta : integer, positive
Number of draws to advance the RNG. Must be less than the
size state variable in the underlying RNG.
Returns
-------
self : PCG64
RNG advanced delta steps
Notes
-----
Advancing a RNG updates the underlying RNG state as-if a given
number of calls to the underlying RNG have been made. In general
there is not a one-to-one relationship between the number output
random values from a particular distribution and the number of
draws from the core RNG. This occurs for two reasons:
* The random values are simulated using a rejection-based method
and so, on average, more than one value from the underlying
RNG is required to generate an single draw.
* The number of bits required to generate a simulated value
differs from the number of bits generated by the underlying
RNG. For example, two 16-bit integer values can be simulated
from a single draw of a 32-bit RNG.
Advancing the RNG state resets any pre-computed random numbers.
This is required to ensure exact reproducibility.
"""
delta = wrap_int(delta, 128)
cdef np.ndarray d = np.empty(2, dtype=np.uint64)
d[0] = delta // 2**64
d[1] = delta % 2**64
pcg64_advance(&self.rng_state, <uint64_t *>np.PyArray_DATA(d))
self._reset_state_variables()
return self
cdef class PCG64DXSM(BitGenerator):
"""
PCG64DXSM(seed=None)
BitGenerator for the PCG-64 DXSM pseudo-random number generator.
Parameters
----------
seed : {None, int, array_like[ints], SeedSequence}, optional
A seed to initialize the `BitGenerator`. If None, then fresh,
unpredictable entropy will be pulled from the OS. If an ``int`` or
``array_like[ints]`` is passed, then it will be passed to
`SeedSequence` to derive the initial `BitGenerator` state. One may also
pass in a `SeedSequence` instance.
Notes
-----
PCG-64 DXSM is a 128-bit implementation of O'Neill's permutation congruential
generator ([1]_, [2]_). PCG-64 DXSM has a period of :math:`2^{128}` and supports
advancing an arbitrary number of steps as well as :math:`2^{127}` streams.
The specific member of the PCG family that we use is PCG CM DXSM 128/64. It
differs from ``PCG64`` in that it uses the stronger DXSM output function,
a 64-bit "cheap multiplier" in the LCG, and outputs from the state before
advancing it rather than advance-then-output.
``PCG64DXSM`` provides a capsule containing function pointers that produce
doubles, and unsigned 32 and 64- bit integers. These are not
directly consumable in Python and must be consumed by a ``Generator``
or similar object that supports low-level access.
Supports the method :meth:`advance` to advance the RNG an arbitrary number of
steps. The state of the PCG-64 DXSM RNG is represented by 2 128-bit unsigned
integers.
**State and Seeding**
The ``PCG64DXSM`` state vector consists of 2 unsigned 128-bit values,
which are represented externally as Python ints. One is the state of the
PRNG, which is advanced by a linear congruential generator (LCG). The
second is a fixed odd increment used in the LCG.
The input seed is processed by `SeedSequence` to generate both values. The
increment is not independently settable.
**Parallel Features**
The preferred way to use a BitGenerator in parallel applications is to use
the `SeedSequence.spawn` method to obtain entropy values, and to use these
to generate new BitGenerators:
>>> from numpy.random import Generator, PCG64DXSM, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(PCG64DXSM(s)) for s in sg.spawn(10)]
**Compatibility Guarantee**
``PCG64DXSM`` makes a guarantee that a fixed seed will always produce
the same random integer stream.
References
----------
.. [1] `"PCG, A Family of Better Random Number Generators"
<http://www.pcg-random.org/>`_
.. [2] O'Neill, Melissa E. `"PCG: A Family of Simple Fast Space-Efficient
Statistically Good Algorithms for Random Number Generation"
<https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>`_
"""
cdef pcg64_state rng_state
cdef pcg64_random_t pcg64_random_state
def __init__(self, seed=None):
BitGenerator.__init__(self, seed)
self.rng_state.pcg_state = &self.pcg64_random_state
self._bitgen.state = <void *>&self.rng_state
self._bitgen.next_uint64 = &pcg64_cm_uint64
self._bitgen.next_uint32 = &pcg64_cm_uint32
self._bitgen.next_double = &pcg64_cm_double
self._bitgen.next_raw = &pcg64_cm_uint64
# Seed the _bitgen
val = self._seed_seq.generate_state(4, np.uint64)
pcg64_set_seed(&self.rng_state,
<uint64_t *>np.PyArray_DATA(val),
(<uint64_t *>np.PyArray_DATA(val) + 2))
self._reset_state_variables()
cdef _reset_state_variables(self):
self.rng_state.has_uint32 = 0
self.rng_state.uinteger = 0
cdef jump_inplace(self, jumps):
"""
Jump state in-place
Not part of public API
Parameters
----------
jumps : integer, positive
Number of times to jump the state of the rng.
Notes
-----
The step size is phi-1 when multiplied by 2**128 where phi is the
golden ratio.
"""
step = 0x9e3779b97f4a7c15f39cc0605cedc835
self.advance(step * int(jumps))
def jumped(self, jumps=1):
"""
jumped(jumps=1)
Returns a new bit generator with the state jumped.
Jumps the state as-if jumps * 210306068529402873165736369884012333109
random numbers have been generated.
Parameters
----------
jumps : integer, positive
Number of times to jump the state of the bit generator returned
Returns
-------
bit_generator : PCG64DXSM
New instance of generator jumped iter times
Notes
-----
The step size is phi-1 when multiplied by 2**128 where phi is the
golden ratio.
"""
cdef PCG64DXSM bit_generator
bit_generator = self.__class__()
bit_generator.state = self.state
bit_generator.jump_inplace(jumps)
return bit_generator
@property
def state(self):
"""
Get or set the PRNG state
Returns
-------
state : dict
Dictionary containing the information required to describe the
state of the PRNG
"""
cdef np.ndarray state_vec
cdef int has_uint32
cdef uint32_t uinteger
# state_vec is state.high, state.low, inc.high, inc.low
state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
pcg64_get_state(&self.rng_state,
<uint64_t *>np.PyArray_DATA(state_vec),
&has_uint32, &uinteger)
state = int(state_vec[0]) * 2**64 + int(state_vec[1])
inc = int(state_vec[2]) * 2**64 + int(state_vec[3])
return {'bit_generator': self.__class__.__name__,
'state': {'state': state, 'inc': inc},
'has_uint32': has_uint32,
'uinteger': uinteger}
@state.setter
def state(self, value):
cdef np.ndarray state_vec
cdef int has_uint32
cdef uint32_t uinteger
if not isinstance(value, dict):
raise TypeError('state must be a dict')
bitgen = value.get('bit_generator', '')
if bitgen != self.__class__.__name__:
raise ValueError('state must be for a {0} '
'RNG'.format(self.__class__.__name__))
state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
state_vec[0] = value['state']['state'] // 2 ** 64
state_vec[1] = value['state']['state'] % 2 ** 64
state_vec[2] = value['state']['inc'] // 2 ** 64
state_vec[3] = value['state']['inc'] % 2 ** 64
has_uint32 = value['has_uint32']
uinteger = value['uinteger']
pcg64_set_state(&self.rng_state,
<uint64_t *>np.PyArray_DATA(state_vec),
has_uint32, uinteger)
def advance(self, delta):
"""
advance(delta)
Advance the underlying RNG as-if delta draws have occurred.
Parameters
----------
delta : integer, positive
Number of draws to advance the RNG. Must be less than the
size state variable in the underlying RNG.
Returns
-------
self : PCG64
RNG advanced delta steps
Notes
-----
Advancing a RNG updates the underlying RNG state as-if a given
number of calls to the underlying RNG have been made. In general
there is not a one-to-one relationship between the number output
random values from a particular distribution and the number of
draws from the core RNG. This occurs for two reasons:
* The random values are simulated using a rejection-based method
and so, on average, more than one value from the underlying
RNG is required to generate an single draw.
* The number of bits required to generate a simulated value
differs from the number of bits generated by the underlying
RNG. For example, two 16-bit integer values can be simulated
from a single draw of a 32-bit RNG.
Advancing the RNG state resets any pre-computed random numbers.
This is required to ensure exact reproducibility.
"""
delta = wrap_int(delta, 128)
cdef np.ndarray d = np.empty(2, dtype=np.uint64)
d[0] = delta // 2**64
d[1] = delta % 2**64
pcg64_cm_advance(&self.rng_state, <uint64_t *>np.PyArray_DATA(d))
self._reset_state_variables()
return self
|