summaryrefslogtreecommitdiff
path: root/numpy/random/_pcg64.pyx
blob: 605aae4bcb21907abffa4f96a20b13435814f7fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
cimport numpy as np

from libc.stdint cimport uint32_t, uint64_t
from ._common cimport uint64_to_double, wrap_int
from numpy.random cimport BitGenerator

__all__ = ['PCG64']

cdef extern from "src/pcg64/pcg64.h":
    # Use int as generic type, actual type read from pcg64.h and is platform dependent
    ctypedef int pcg64_random_t

    struct s_pcg64_state:
        pcg64_random_t *pcg_state
        int has_uint32
        uint32_t uinteger

    ctypedef s_pcg64_state pcg64_state

    uint64_t pcg64_next64(pcg64_state *state)  nogil
    uint32_t pcg64_next32(pcg64_state *state)  nogil
    void pcg64_jump(pcg64_state *state)
    void pcg64_advance(pcg64_state *state, uint64_t *step)
    void pcg64_set_seed(pcg64_state *state, uint64_t *seed, uint64_t *inc)
    void pcg64_get_state(pcg64_state *state, uint64_t *state_arr, int *has_uint32, uint32_t *uinteger)
    void pcg64_set_state(pcg64_state *state, uint64_t *state_arr, int has_uint32, uint32_t uinteger)

cdef uint64_t pcg64_uint64(void* st) nogil:
    return pcg64_next64(<pcg64_state *>st)

cdef uint32_t pcg64_uint32(void *st) nogil:
    return pcg64_next32(<pcg64_state *> st)

cdef double pcg64_double(void* st) nogil:
    return uint64_to_double(pcg64_next64(<pcg64_state *>st))


cdef class PCG64(BitGenerator):
    """
    PCG64(seed=None)

    BitGenerator for the PCG-64 pseudo-random number generator.

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.

    Notes
    -----
    PCG-64 is a 128-bit implementation of O'Neill's permutation congruential
    generator ([1]_, [2]_). PCG-64 has a period of :math:`2^{128}` and supports
    advancing an arbitrary number of steps as well as :math:`2^{127}` streams.
    The specific member of the PCG family that we use is PCG XSL RR 128/64
    as described in the paper ([2]_).

    ``PCG64`` provides a capsule containing function pointers that produce
    doubles, and unsigned 32 and 64- bit integers. These are not
    directly consumable in Python and must be consumed by a ``Generator``
    or similar object that supports low-level access.

    Supports the method :meth:`advance` to advance the RNG an arbitrary number of
    steps. The state of the PCG-64 RNG is represented by 2 128-bit unsigned
    integers.

    **State and Seeding**

    The ``PCG64`` state vector consists of 2 unsigned 128-bit values,
    which are represented externally as Python ints. One is the state of the
    PRNG, which is advanced by a linear congruential generator (LCG). The
    second is a fixed odd increment used in the LCG.

    The input seed is processed by `SeedSequence` to generate both values. The
    increment is not independently settable.

    **Parallel Features**

    The preferred way to use a BitGenerator in parallel applications is to use
    the `SeedSequence.spawn` method to obtain entropy values, and to use these
    to generate new BitGenerators:

    >>> from numpy.random import Generator, PCG64, SeedSequence
    >>> sg = SeedSequence(1234)
    >>> rg = [Generator(PCG64(s)) for s in sg.spawn(10)]

    **Compatibility Guarantee**

    ``PCG64`` makes a guarantee that a fixed seed and will always produce
    the same random integer stream.

    References
    ----------
    .. [1] `"PCG, A Family of Better Random Number Generators"
           <http://www.pcg-random.org/>`_
    .. [2] O'Neill, Melissa E. `"PCG: A Family of Simple Fast Space-Efficient
           Statistically Good Algorithms for Random Number Generation"
           <https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>`_
    """

    cdef pcg64_state rng_state
    cdef pcg64_random_t pcg64_random_state

    def __init__(self, seed=None):
        BitGenerator.__init__(self, seed)
        self.rng_state.pcg_state = &self.pcg64_random_state

        self._bitgen.state = <void *>&self.rng_state
        self._bitgen.next_uint64 = &pcg64_uint64
        self._bitgen.next_uint32 = &pcg64_uint32
        self._bitgen.next_double = &pcg64_double
        self._bitgen.next_raw = &pcg64_uint64
        # Seed the _bitgen
        val = self._seed_seq.generate_state(4, np.uint64)
        pcg64_set_seed(&self.rng_state,
                       <uint64_t *>np.PyArray_DATA(val),
                       (<uint64_t *>np.PyArray_DATA(val) + 2))
        self._reset_state_variables()

    cdef _reset_state_variables(self):
        self.rng_state.has_uint32 = 0
        self.rng_state.uinteger = 0

    cdef jump_inplace(self, jumps):
        """
        Jump state in-place
        Not part of public API

        Parameters
        ----------
        jumps : integer, positive
            Number of times to jump the state of the rng.

        Notes
        -----
        The step size is phi-1 when multiplied by 2**128 where phi is the
        golden ratio.
        """
        step = 0x9e3779b97f4a7c15f39cc0605cedc835
        self.advance(step * int(jumps))

    def jumped(self, jumps=1):
        """
        jumped(jumps=1)

        Returns a new bit generator with the state jumped.

        Jumps the state as-if jumps * 210306068529402873165736369884012333109
        random numbers have been generated.

        Parameters
        ----------
        jumps : integer, positive
            Number of times to jump the state of the bit generator returned

        Returns
        -------
        bit_generator : PCG64
            New instance of generator jumped iter times

        Notes
        -----
        The step size is phi-1 when multiplied by 2**128 where phi is the
        golden ratio.
        """
        cdef PCG64 bit_generator

        bit_generator = self.__class__()
        bit_generator.state = self.state
        bit_generator.jump_inplace(jumps)

        return bit_generator

    @property
    def state(self):
        """
        Get or set the PRNG state

        Returns
        -------
        state : dict
            Dictionary containing the information required to describe the
            state of the PRNG
        """
        cdef np.ndarray state_vec
        cdef int has_uint32
        cdef uint32_t uinteger

        # state_vec is state.high, state.low, inc.high, inc.low
        state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
        pcg64_get_state(&self.rng_state,
                        <uint64_t *>np.PyArray_DATA(state_vec),
                        &has_uint32, &uinteger)
        state = int(state_vec[0]) * 2**64 + int(state_vec[1])
        inc = int(state_vec[2]) * 2**64 + int(state_vec[3])
        return {'bit_generator': self.__class__.__name__,
                'state': {'state': state, 'inc': inc},
                'has_uint32': has_uint32,
                'uinteger': uinteger}

    @state.setter
    def state(self, value):
        cdef np.ndarray state_vec
        cdef int has_uint32
        cdef uint32_t uinteger
        if not isinstance(value, dict):
            raise TypeError('state must be a dict')
        bitgen = value.get('bit_generator', '')
        if bitgen != self.__class__.__name__:
            raise ValueError('state must be for a {0} '
                             'RNG'.format(self.__class__.__name__))
        state_vec = <np.ndarray>np.empty(4, dtype=np.uint64)
        state_vec[0] = value['state']['state'] // 2 ** 64
        state_vec[1] = value['state']['state'] % 2 ** 64
        state_vec[2] = value['state']['inc'] // 2 ** 64
        state_vec[3] = value['state']['inc'] % 2 ** 64
        has_uint32 = value['has_uint32']
        uinteger = value['uinteger']
        pcg64_set_state(&self.rng_state,
                        <uint64_t *>np.PyArray_DATA(state_vec),
                        has_uint32, uinteger)

    def advance(self, delta):
        """
        advance(delta)

        Advance the underlying RNG as-if delta draws have occurred.

        Parameters
        ----------
        delta : integer, positive
            Number of draws to advance the RNG. Must be less than the
            size state variable in the underlying RNG.

        Returns
        -------
        self : PCG64
            RNG advanced delta steps

        Notes
        -----
        Advancing a RNG updates the underlying RNG state as-if a given
        number of calls to the underlying RNG have been made. In general
        there is not a one-to-one relationship between the number output
        random values from a particular distribution and the number of
        draws from the core RNG.  This occurs for two reasons:

        * The random values are simulated using a rejection-based method
          and so, on average, more than one value from the underlying
          RNG is required to generate an single draw.
        * The number of bits required to generate a simulated value
          differs from the number of bits generated by the underlying
          RNG.  For example, two 16-bit integer values can be simulated
          from a single draw of a 32-bit RNG.

        Advancing the RNG state resets any pre-computed random numbers.
        This is required to ensure exact reproducibility.
        """
        delta = wrap_int(delta, 128)

        cdef np.ndarray d = np.empty(2, dtype=np.uint64)
        d[0] = delta // 2**64
        d[1] = delta % 2**64
        pcg64_advance(&self.rng_state, <uint64_t *>np.PyArray_DATA(d))
        self._reset_state_variables()
        return self