summaryrefslogtreecommitdiff
path: root/numpy/random/mt19937.pyx
blob: 306ce23e2c40f4c652deb61c79df49fbb1d345f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import operator

from libc.stdlib cimport malloc, free
from cpython.pycapsule cimport PyCapsule_New

try:
    from threading import Lock
except ImportError:
    from dummy_threading import Lock

import numpy as np
cimport numpy as np

from .common cimport *
from .distributions cimport brng_t
from .entropy import random_entropy

np.import_array()

cdef extern from "src/mt19937/mt19937.h":

    struct s_mt19937_state:
        uint32_t key[624]
        int pos

    ctypedef s_mt19937_state mt19937_state

    uint64_t mt19937_next64(mt19937_state *state)  nogil
    uint32_t mt19937_next32(mt19937_state *state)  nogil
    double mt19937_next_double(mt19937_state *state)  nogil
    void mt19937_init_by_array(mt19937_state *state, uint32_t *init_key, int key_length)
    void mt19937_seed(mt19937_state *state, uint32_t seed)
    void mt19937_jump(mt19937_state *state)

cdef uint64_t mt19937_uint64(void *st) nogil:
    return mt19937_next64(<mt19937_state *> st)

cdef uint32_t mt19937_uint32(void *st) nogil:
    return mt19937_next32(<mt19937_state *> st)

cdef double mt19937_double(void *st) nogil:
    return mt19937_next_double(<mt19937_state *> st)

cdef uint64_t mt19937_raw(void *st) nogil:
    return <uint64_t>mt19937_next32(<mt19937_state *> st)

cdef class MT19937:
    """
    MT19937(seed=None)

    Container for the Mersenne Twister pseudo-random number generator.

    Parameters
    ----------
    seed : {None, int, array_like}, optional
        Random seed used to initialize the pseudo-random number generator.  Can
        be any integer between 0 and 2**32 - 1 inclusive, an array (or other
        sequence) of such integers, or ``None`` (the default).  If `seed` is
        ``None``, then will attempt to read data from ``/dev/urandom``
        (or the Windows analog) if available or seed from the clock otherwise.

    Notes
    -----
    ``MT19937`` directly provides generators for doubles, and unsigned 32 and 64-
    bit integers [1]_ . These are not directly available and must be consumed
    via a ``RandomGenerator`` object.

    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator.

    **State and Seeding**

    The ``MT19937`` state vector consists of a 768 element array of
    32-bit unsigned integers plus a single integer value between 0 and 768
    indicating  the current position within the main array.

    ``MT19937`` is seeded using either a single 32-bit unsigned integer
    or a vector of 32-bit unsigned integers.  In either case, the input seed is
    used as an input (or inputs) for a hashing function, and the output of the
    hashing function is used as the initial state. Using a single 32-bit value
    for the seed can only initialize a small range of the possible initial
    state values.

    **Compatibility Guarantee**

    ``MT19937`` make a compatibility guarantee. A fixed seed and a fixed
    series of calls to ``MT19937`` methods will always produce the same
    results up to roundoff error except when the values were incorrect.
    Incorrect values will be fixed and the version in which the fix was
    made will be noted in the relevant docstring.

    **Parallel Features**

    ``MT19937`` can be used in parallel applications by
    calling the method ``jump`` which advances the state as-if :math:`2^{128}`
    random numbers have been generated ([1]_, [2]_). This allows the original sequence to
    be split so that distinct segments can be used in each worker process.  All
    generators should be initialized with the same seed to ensure that the
    segments come from the same sequence.

    >>> from numpy.random.randomgen.entropy import random_entropy
    >>> from numpy.random.randomgen import RandomGenerator, MT19937
    >>> seed = random_entropy()
    >>> rs = [RandomGenerator(MT19937(seed) for _ in range(10)]
    # Advance rs[i] by i jumps
    >>> for i in range(10):
            rs[i].jump(i)

    References
    ----------
    .. [1] Hiroshi Haramoto, Makoto Matsumoto, and Pierre L\'Ecuyer, "A Fast
        Jump Ahead Algorithm for Linear Recurrences in a Polynomial Space",
        Sequences and Their Applications - SETA, 290--298, 2008.
    .. [2] Hiroshi Haramoto, Makoto Matsumoto, Takuji Nishimura, François
        Panneton, Pierre L\'Ecuyer, "Efficient Jump Ahead for F2-Linear
        Random Number Generators", INFORMS JOURNAL ON COMPUTING, Vol. 20,
        No. 3, Summer 2008, pp. 385-390.

    """
    cdef mt19937_state *rng_state
    cdef brng_t *_brng
    cdef public object capsule
    cdef object _ctypes
    cdef object _cffi
    cdef object _generator
    cdef public object lock

    def __init__(self, seed=None):
        self.rng_state = <mt19937_state *>malloc(sizeof(mt19937_state))
        self._brng = <brng_t *>malloc(sizeof(brng_t))
        self.seed(seed)
        self.lock = Lock()

        self._brng.state = <void *>self.rng_state
        self._brng.next_uint64 = &mt19937_uint64
        self._brng.next_uint32 = &mt19937_uint32
        self._brng.next_double = &mt19937_double
        self._brng.next_raw = &mt19937_raw

        self._ctypes = None
        self._cffi = None
        self._generator = None

        cdef const char *name = "BasicRNG"
        self.capsule = PyCapsule_New(<void *>self._brng, name, NULL)

    def __dealloc__(self):
        free(self.rng_state)
        free(self._brng)

    # Pickling support:
    def __getstate__(self):
        return self.state

    def __setstate__(self, state):
        self.state = state

    def __reduce__(self):
        from ._pickle import __brng_ctor
        return (__brng_ctor,
                (self.state['brng'],),
                self.state)

    def random_raw(self, size=None, output=True):
        """
        random_raw(self, size=None)

        Return randoms as generated by the underlying BasicRNG

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        output : bool, optional
            Output values.  Used for performance testing since the generated
            values are not returned.

        Returns
        -------
        out : uint or ndarray
            Drawn samples.

        Notes
        -----
        This method directly exposes the the raw underlying pseudo-random
        number generator. All values are returned as unsigned 64-bit
        values irrespective of the number of bits produced by the PRNG.

        See the class docstring for the number of bits returned.
        """
        return random_raw(self._brng, self.lock, size, output)

    def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
        return benchmark(self._brng, self.lock, cnt, method)

    def seed(self, seed=None):
        """
        seed(seed=None)

        Seed the generator.

        Parameters
        ----------
        seed : {None, int, array_like}, optional
            Random seed initializing the pseudo-random number generator.
            Can be an integer in [0, 2**32-1], array of integers in
            [0, 2**32-1] or ``None`` (the default). If `seed` is ``None``,
            then ``MT19937`` will try to read entropy from ``/dev/urandom``
            (or the Windows analog) if available to produce a 32-bit
            seed. If unavailable, a 32-bit hash of the time and process
            ID is used.

        Raises
        ------
        ValueError
            If seed values are out of range for the PRNG.
        """
        cdef np.ndarray obj
        try:
            if seed is None:
                try:
                    seed = random_entropy(1)
                except RuntimeError:
                    seed = random_entropy(1, 'fallback')
                mt19937_seed(self.rng_state, seed[0])
            else:
                if hasattr(seed, 'squeeze'):
                    seed = seed.squeeze()
                idx = operator.index(seed)
                if idx > int(2**32 - 1) or idx < 0:
                    raise ValueError("Seed must be between 0 and 2**32 - 1")
                mt19937_seed(self.rng_state, seed)
        except TypeError:
            obj = np.asarray(seed)
            if obj.size == 0:
                raise ValueError("Seed must be non-empty")
            obj = obj.astype(np.int64, casting='safe')
            if obj.ndim != 1:
                raise ValueError("Seed array must be 1-d")
            if ((obj > int(2**32 - 1)) | (obj < 0)).any():
                raise ValueError("Seed must be between 0 and 2**32 - 1")
            obj = obj.astype(np.uint32, casting='unsafe', order='C')
            mt19937_init_by_array(self.rng_state, <uint32_t*> obj.data, np.PyArray_DIM(obj, 0))

    def jump(self, np.npy_intp iter=1):
        """
        jump(iter=1)

        Jumps the state as-if 2**128 random numbers have been generated.

        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the brng.

        Returns
        -------
        self : DSFMT
            PRNG jumped iter times
        """
        cdef np.npy_intp i
        for i in range(iter):
            mt19937_jump(self.rng_state)
        return self

    @property
    def state(self):
        """
        Get or set the PRNG state

        Returns
        -------
        state : dict
            Dictionary containing the information required to describe the
            state of the PRNG
        """
        key = np.zeros(624, dtype=np.uint32)
        for i in range(624):
            key[i] = self.rng_state.key[i]

        return {'brng': self.__class__.__name__,
                'state': {'key': key, 'pos': self.rng_state.pos}}

    @state.setter
    def state(self, value):
        if isinstance(value, tuple):
            if value[0] != 'MT19937' or len(value) not in (3, 5):
                raise ValueError('state is not a legacy MT19937 state')
            value ={'brng': 'MT19937',
                    'state': {'key': value[1], 'pos': value[2]}}

        if not isinstance(value, dict):
            raise TypeError('state must be a dict')
        brng = value.get('brng', '')
        if brng != self.__class__.__name__:
            raise ValueError('state must be for a {0} '
                             'PRNG'.format(self.__class__.__name__))
        key = value['state']['key']
        for i in range(624):
            self.rng_state.key[i] = key[i]
        self.rng_state.pos = value['state']['pos']

    @property
    def ctypes(self):
        """
        ctypes interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing ctypes wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * brng - pointer to the Basic RNG struct
        """
        if self._ctypes is None:
            self._ctypes = prepare_ctypes(self._brng)

        return self._ctypes

    @property
    def cffi(self):
        """
        CFFI interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing CFFI wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * brng - pointer to the Basic RNG struct
        """
        if self._cffi is not None:
            return self._cffi
        self._cffi = prepare_cffi(self._brng)
        return self._cffi

    @property
    def generator(self):
        """
        Return a RandomGenerator object

        Returns
        -------
        gen : numpy.random.randomgen.generator.RandomGenerator
            Random generator used this instance as the core PRNG
        """
        if self._generator is None:
            from .generator import RandomGenerator
            self._generator = RandomGenerator(self)
        return self._generator