summaryrefslogtreecommitdiff
path: root/numpy/random/pcg32.pyx
blob: 407e5057e67d9595fc53588e2c893c17087e2e0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
try:
    from threading import Lock
except ImportError:
    from dummy_threading import Lock

from cpython.pycapsule cimport PyCapsule_New

import numpy as np
cimport numpy as np

from .common cimport *
from .distributions cimport bitgen_t
from .entropy import random_entropy

__all__ = ['PCG32']

np.import_array()

cdef extern from "src/pcg32/pcg32.h":

    cdef struct pcg_state_setseq_64:
        uint64_t state
        uint64_t inc

    ctypedef pcg_state_setseq_64 pcg32_random_t

    struct s_pcg32_state:
        pcg32_random_t *pcg_state

    ctypedef s_pcg32_state pcg32_state

    uint64_t pcg32_next64(pcg32_state *state)  nogil
    uint32_t pcg32_next32(pcg32_state *state)  nogil
    double pcg32_next_double(pcg32_state *state)  nogil
    void pcg32_jump(pcg32_state *state)
    void pcg32_advance_state(pcg32_state *state, uint64_t step)
    void pcg32_set_seed(pcg32_state *state, uint64_t seed, uint64_t inc)

cdef uint64_t pcg32_uint64(void* st) nogil:
    return pcg32_next64(<pcg32_state *>st)

cdef uint32_t pcg32_uint32(void *st) nogil:
    return pcg32_next32(<pcg32_state *> st)

cdef double pcg32_double(void* st) nogil:
    return pcg32_next_double(<pcg32_state *>st)

cdef uint64_t pcg32_raw(void* st) nogil:
    return <uint64_t>pcg32_next32(<pcg32_state *> st)


cdef class PCG32:
    u"""
    PCG32(seed=None, inc=0)

    Container for the PCG-32 pseudo-random number generator.

    Parameters
    ----------
    seed : {None, long}, optional
        Random seed initializing the pseudo-random number generator.
        Can be an integer in [0, 2**64] or ``None`` (the default).
        If `seed` is ``None``, then ``PCG32`` will try to read data
        from ``/dev/urandom`` (or the Windows analog) if available. If
        unavailable, a 64-bit hash of the time and process ID is used.
    inc : {None, int}, optional
        Stream to return.
        Can be an integer in [0, 2**64] or ``None`` (the default).  If `inc` is
        ``None``, then 0 is used.  Can be used with the same seed to
        produce multiple streams using other values of inc.

    Attributes
    ----------
    lock: threading.Lock
        Lock instance that is shared so that the same bit git generator can
        be used in multiple Generators without corrupting the state. Code that
        generates values from a bit generator should hold the bit generator's
        lock.

    Notes
    -----
    PCG-32 is a 64-bit implementation of O'Neill's permutation congruential
    generator ([1]_, [2]_). PCG-32 has a period of :math:`2^{64}` and supports
    advancing an arbitrary number of steps as well as :math:`2^{63}` streams.

    ``PCG32`` provides a capsule containing function pointers that produce
    doubles, and unsigned 32 and 64- bit integers. These are not
    directly consumable in Python and must be consumed by a ``Generator``
    or similar object that supports low-level access.

    Supports the method advance to advance the RNG an arbitrary number of
    steps. The state of the PCG-32 PRNG is represented by 2 64-bit unsigned
    integers.

    See ``PCG64`` for a similar implementation with a smaller period.

    **State and Seeding**

    The ``PCG32`` state vector consists of 2 unsigned 64-bit values.
    ``PCG32`` is seeded using a single 64-bit unsigned integer.
    In addition, a second 64-bit unsigned integer is used to set the stream.

    **Parallel Features**

    ``PCG32`` can be used in parallel applications in one of two ways.
    The preferable method is to use sub-streams, which are generated by using the
    same value of ``seed`` and incrementing the second value, ``inc``.

    >>> from numpy.random import Generator, PCG32
    >>> rg = [Generator(PCG32(1234, i + 1)) for i in range(10)]

    The alternative method is to call ``advance`` with a different value on
    each instance to produce non-overlapping sequences.

    >>> rg = [Generator(PCG32(1234, i + 1)) for i in range(10)]
    >>> for i in range(10):
    ...     rg[i].bit_generator.advance(i * 2**32)

    **Compatibility Guarantee**

    ``PCG32`` makes a guarantee that a fixed seed and will always produce
    the same random integer stream.

    References
    ----------
    .. [1] "PCG, A Family of Better Random Number Generators",
           http://www.pcg-random.org/
    .. [2] O'Neill, Melissa E. "PCG: A Family of Simple Fast Space-Efficient
           Statistically Good Algorithms for Random Number Generation"
    """
    cdef pcg32_state rng_state
    cdef pcg32_random_t pcg32_random_state
    cdef bitgen_t _bitgen
    cdef public object capsule
    cdef object _ctypes
    cdef object _cffi
    cdef public object lock

    def __init__(self, seed=None, inc=0):
        self.rng_state.pcg_state = &self.pcg32_random_state
        self.seed(seed, inc)
        self.lock = Lock()

        self._bitgen.state = <void *>&self.rng_state
        self._bitgen.next_uint64 = &pcg32_uint64
        self._bitgen.next_uint32 = &pcg32_uint32
        self._bitgen.next_double = &pcg32_double
        self._bitgen.next_raw = &pcg32_raw

        self._ctypes = None
        self._cffi = None

        cdef const char *name = "BitGenerator"
        self.capsule = PyCapsule_New(<void *>&self._bitgen, name, NULL)

    # Pickling support:
    def __getstate__(self):
        return self.state

    def __setstate__(self, state):
        self.state = state

    def __reduce__(self):
        from ._pickle import __bit_generator_ctor
        return __bit_generator_ctor, (self.state['bit_generator'],), self.state

    def random_raw(self, size=None, output=True):
        """
        random_raw(self, size=None)

        Return randoms as generated by the underlying BitGenerator

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        output : bool, optional
            Output values.  Used for performance testing since the generated
            values are not returned.

        Returns
        -------
        out : uint or ndarray
            Drawn samples.

        Notes
        -----
        This method directly exposes the the raw underlying pseudo-random
        number generator. All values are returned as unsigned 64-bit
        values irrespective of the number of bits produced by the PRNG.

        See the class docstring for the number of bits returned.
        """
        return random_raw(&self._bitgen, self.lock, size, output)

    def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
        return benchmark(&self._bitgen, self.lock, cnt, method)

    def seed(self, seed=None, inc=0):
        """
        seed(seed=None, inc=0)

        Seed the generator.

        This method is called at initialization. It can be called again to
        re-seed the generator.

        Parameters
        ----------
        seed : int, optional
            Seed for ``PCG64``. Integer between 0 and 2**64-1.
        inc : int, optional
            Increment to use for PCG stream. Integer between 0 and 2**64-1.

        Raises
        ------
        ValueError
            If seed values are out of range for the PRNG.
        """
        ub = 2 ** 64
        if seed is None:
            try:
                seed = <np.ndarray>random_entropy(2)
            except RuntimeError:
                seed = <np.ndarray>random_entropy(2, 'fallback')
            seed = seed.view(np.uint64).squeeze()
        else:
            err_msg = 'seed must be a scalar integer between 0 and ' \
                      '{ub}'.format(ub=ub)
            if not np.isscalar(seed):
                raise TypeError(err_msg)
            if int(seed) != seed:
                raise TypeError(err_msg)
            if seed < 0 or seed > ub:
                raise ValueError(err_msg)

        if not np.isscalar(inc):
            raise TypeError('inc must be a scalar integer between 0 '
                            'and {ub}'.format(ub=ub))
        if inc < 0 or inc > ub or int(inc) != inc:
            raise ValueError('inc must be a scalar integer between 0 '
                             'and {ub}'.format(ub=ub))

        pcg32_set_seed(&self.rng_state, <uint64_t>seed, <uint64_t>inc)

    cdef jump_inplace(self, iter):
        """
        Jump state in-place
        
        Not part of public API
        
        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the rng.
        
        Notes
        -----
        The step size is phi when divided by the period 2**64
        """
        step = int(0x9e3779b97f4a7c16)
        self.advance(iter * step)

    def jumped(self, iter=1):
        """
        jumped(iter=1)

        Returns a new bit generator with the state jumped

        Jumps the state as-if 11400714819323198486 random numbers
        have been generated.

        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the bit generator returned

        Returns
        -------
        bit_generator : PCG32
            New instance of generator jumped iter times

        Notes
        -----
        The jump size is phi-1 when divided by the period 2**64
        """
        cdef PCG32 bit_generator

        bit_generator = self.__class__()
        bit_generator.state = self.state
        bit_generator.jump_inplace(iter)

        return bit_generator

    @property
    def state(self):
        """
        Get or set the PRNG state

        Returns
        -------
        state : dict
            Dictionary containing the information required to describe the
            state of the PRNG
        """
        return {'bit_generator': self.__class__.__name__,
                'state': {'state': self.rng_state.pcg_state.state,
                          'inc': self.rng_state.pcg_state.inc}}

    @state.setter
    def state(self, value):
        if not isinstance(value, dict):
            raise TypeError('state must be a dict')
        bitgen = value.get('bit_generator', '')
        if bitgen != self.__class__.__name__:
            raise ValueError('state must be for a {0} '
                             'PRNG'.format(self.__class__.__name__))
        self.rng_state.pcg_state.state = value['state']['state']
        self.rng_state.pcg_state.inc = value['state']['inc']

    def advance(self, delta):
        """
        advance(delta)

        Advance the underlying RNG as-if delta draws have occurred.

        Parameters
        ----------
        delta : integer, positive
            Number of draws to advance the RNG. Must be less than the
            size state variable in the underlying RNG.

        Returns
        -------
        self : PCG32
            RNG advanced delta steps

        Notes
        -----
        Advancing a RNG updates the underlying RNG state as-if a given
        number of calls to the underlying RNG have been made. In general
        there is not a one-to-one relationship between the number output
        random values from a particular distribution and the number of
        draws from the core RNG.  This occurs for two reasons:

        * The random values are simulated using a rejection-based method
          and so, on average, more than one value from the underlying
          RNG is required to generate an single draw.
        * The number of bits required to generate a simulated value
          differs from the number of bits generated by the underlying
          RNG.  For example, two 16-bit integer values can be simulated
          from a single draw of a 32-bit RNG.
        """
        delta = wrap_int(delta, 64)
        pcg32_advance_state(&self.rng_state, <uint64_t>delta)
        return self

    @property
    def ctypes(self):
        """
        ctypes interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing ctypes wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * bitgen - pointer to the bit generator struct
        """
        if self._ctypes is None:
            self._ctypes = prepare_ctypes(&self._bitgen)

        return self._ctypes

    @property
    def cffi(self):
        """
        CFFI interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing CFFI wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * bitgen - pointer to the bit generator struct
        """
        if self._cffi is not None:
            return self._cffi
        self._cffi = prepare_cffi(&self._bitgen)
        return self._cffi