1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
try:
from threading import Lock
except ImportError:
from dummy_threading import Lock
from cpython.pycapsule cimport PyCapsule_New
import numpy as np
cimport numpy as np
from .common cimport *
from .distributions cimport bitgen_t
from .entropy import random_entropy
__all__ = ['PCG32']
np.import_array()
cdef extern from "src/pcg32/pcg32.h":
cdef struct pcg_state_setseq_64:
uint64_t state
uint64_t inc
ctypedef pcg_state_setseq_64 pcg32_random_t
struct s_pcg32_state:
pcg32_random_t *pcg_state
ctypedef s_pcg32_state pcg32_state
uint64_t pcg32_next64(pcg32_state *state) nogil
uint32_t pcg32_next32(pcg32_state *state) nogil
double pcg32_next_double(pcg32_state *state) nogil
void pcg32_jump(pcg32_state *state)
void pcg32_advance_state(pcg32_state *state, uint64_t step)
void pcg32_set_seed(pcg32_state *state, uint64_t seed, uint64_t inc)
cdef uint64_t pcg32_uint64(void* st) nogil:
return pcg32_next64(<pcg32_state *>st)
cdef uint32_t pcg32_uint32(void *st) nogil:
return pcg32_next32(<pcg32_state *> st)
cdef double pcg32_double(void* st) nogil:
return pcg32_next_double(<pcg32_state *>st)
cdef uint64_t pcg32_raw(void* st) nogil:
return <uint64_t>pcg32_next32(<pcg32_state *> st)
cdef class PCG32:
u"""
PCG32(seed=None, inc=0)
Container for the PCG-32 pseudo-random number generator.
Parameters
----------
seed : {None, long}, optional
Random seed initializing the pseudo-random number generator.
Can be an integer in [0, 2**64] or ``None`` (the default).
If `seed` is ``None``, then ``PCG32`` will try to read data
from ``/dev/urandom`` (or the Windows analog) if available. If
unavailable, a 64-bit hash of the time and process ID is used.
inc : {None, int}, optional
Stream to return.
Can be an integer in [0, 2**64] or ``None`` (the default). If `inc` is
``None``, then 0 is used. Can be used with the same seed to
produce multiple streams using other values of inc.
Attributes
----------
lock: threading.Lock
Lock instance that is shared so that the same bit git generator can
be used in multiple Generators without corrupting the state. Code that
generates values from a bit generator should hold the bit generator's
lock.
Notes
-----
PCG-32 is a 64-bit implementation of O'Neill's permutation congruential
generator ([1]_, [2]_). PCG-32 has a period of :math:`2^{64}` and supports
advancing an arbitrary number of steps as well as :math:`2^{63}` streams.
``PCG32`` provides a capsule containing function pointers that produce
doubles, and unsigned 32 and 64- bit integers. These are not
directly consumable in Python and must be consumed by a ``Generator``
or similar object that supports low-level access.
Supports the method advance to advance the RNG an arbitrary number of
steps. The state of the PCG-32 PRNG is represented by 2 64-bit unsigned
integers.
See ``PCG64`` for a similar implementation with a smaller period.
**State and Seeding**
The ``PCG32`` state vector consists of 2 unsigned 64-bit values.
``PCG32`` is seeded using a single 64-bit unsigned integer.
In addition, a second 64-bit unsigned integer is used to set the stream.
**Parallel Features**
``PCG32`` can be used in parallel applications in one of two ways.
The preferable method is to use sub-streams, which are generated by using the
same value of ``seed`` and incrementing the second value, ``inc``.
>>> from numpy.random import Generator, PCG32
>>> rg = [Generator(PCG32(1234, i + 1)) for i in range(10)]
The alternative method is to call ``advance`` with a different value on
each instance to produce non-overlapping sequences.
>>> rg = [Generator(PCG32(1234, i + 1)) for i in range(10)]
>>> for i in range(10):
... rg[i].bit_generator.advance(i * 2**32)
**Compatibility Guarantee**
``PCG32`` makes a guarantee that a fixed seed and will always produce
the same random integer stream.
References
----------
.. [1] "PCG, A Family of Better Random Number Generators",
http://www.pcg-random.org/
.. [2] O'Neill, Melissa E. "PCG: A Family of Simple Fast Space-Efficient
Statistically Good Algorithms for Random Number Generation"
"""
cdef pcg32_state rng_state
cdef pcg32_random_t pcg32_random_state
cdef bitgen_t _bitgen
cdef public object capsule
cdef object _ctypes
cdef object _cffi
cdef public object lock
def __init__(self, seed=None, inc=0):
self.rng_state.pcg_state = &self.pcg32_random_state
self.seed(seed, inc)
self.lock = Lock()
self._bitgen.state = <void *>&self.rng_state
self._bitgen.next_uint64 = &pcg32_uint64
self._bitgen.next_uint32 = &pcg32_uint32
self._bitgen.next_double = &pcg32_double
self._bitgen.next_raw = &pcg32_raw
self._ctypes = None
self._cffi = None
cdef const char *name = "BitGenerator"
self.capsule = PyCapsule_New(<void *>&self._bitgen, name, NULL)
# Pickling support:
def __getstate__(self):
return self.state
def __setstate__(self, state):
self.state = state
def __reduce__(self):
from ._pickle import __bit_generator_ctor
return __bit_generator_ctor, (self.state['bit_generator'],), self.state
def random_raw(self, size=None, output=True):
"""
random_raw(self, size=None)
Return randoms as generated by the underlying BitGenerator
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
output : bool, optional
Output values. Used for performance testing since the generated
values are not returned.
Returns
-------
out : uint or ndarray
Drawn samples.
Notes
-----
This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.
"""
return random_raw(&self._bitgen, self.lock, size, output)
def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
return benchmark(&self._bitgen, self.lock, cnt, method)
def seed(self, seed=None, inc=0):
"""
seed(seed=None, inc=0)
Seed the generator.
This method is called at initialization. It can be called again to
re-seed the generator.
Parameters
----------
seed : int, optional
Seed for ``PCG64``. Integer between 0 and 2**64-1.
inc : int, optional
Increment to use for PCG stream. Integer between 0 and 2**64-1.
Raises
------
ValueError
If seed values are out of range for the PRNG.
"""
ub = 2 ** 64
if seed is None:
try:
seed = <np.ndarray>random_entropy(2)
except RuntimeError:
seed = <np.ndarray>random_entropy(2, 'fallback')
seed = seed.view(np.uint64).squeeze()
else:
err_msg = 'seed must be a scalar integer between 0 and ' \
'{ub}'.format(ub=ub)
if not np.isscalar(seed):
raise TypeError(err_msg)
if int(seed) != seed:
raise TypeError(err_msg)
if seed < 0 or seed > ub:
raise ValueError(err_msg)
if not np.isscalar(inc):
raise TypeError('inc must be a scalar integer between 0 '
'and {ub}'.format(ub=ub))
if inc < 0 or inc > ub or int(inc) != inc:
raise ValueError('inc must be a scalar integer between 0 '
'and {ub}'.format(ub=ub))
pcg32_set_seed(&self.rng_state, <uint64_t>seed, <uint64_t>inc)
cdef jump_inplace(self, iter):
"""
Jump state in-place
Not part of public API
Parameters
----------
iter : integer, positive
Number of times to jump the state of the rng.
Notes
-----
The step size is phi when divided by the period 2**64
"""
step = int(0x9e3779b97f4a7c16)
self.advance(iter * step)
def jumped(self, iter=1):
"""
jumped(iter=1)
Returns a new bit generator with the state jumped
Jumps the state as-if 11400714819323198486 random numbers
have been generated.
Parameters
----------
iter : integer, positive
Number of times to jump the state of the bit generator returned
Returns
-------
bit_generator : PCG32
New instance of generator jumped iter times
Notes
-----
The jump size is phi-1 when divided by the period 2**64
"""
cdef PCG32 bit_generator
bit_generator = self.__class__()
bit_generator.state = self.state
bit_generator.jump_inplace(iter)
return bit_generator
@property
def state(self):
"""
Get or set the PRNG state
Returns
-------
state : dict
Dictionary containing the information required to describe the
state of the PRNG
"""
return {'bit_generator': self.__class__.__name__,
'state': {'state': self.rng_state.pcg_state.state,
'inc': self.rng_state.pcg_state.inc}}
@state.setter
def state(self, value):
if not isinstance(value, dict):
raise TypeError('state must be a dict')
bitgen = value.get('bit_generator', '')
if bitgen != self.__class__.__name__:
raise ValueError('state must be for a {0} '
'PRNG'.format(self.__class__.__name__))
self.rng_state.pcg_state.state = value['state']['state']
self.rng_state.pcg_state.inc = value['state']['inc']
def advance(self, delta):
"""
advance(delta)
Advance the underlying RNG as-if delta draws have occurred.
Parameters
----------
delta : integer, positive
Number of draws to advance the RNG. Must be less than the
size state variable in the underlying RNG.
Returns
-------
self : PCG32
RNG advanced delta steps
Notes
-----
Advancing a RNG updates the underlying RNG state as-if a given
number of calls to the underlying RNG have been made. In general
there is not a one-to-one relationship between the number output
random values from a particular distribution and the number of
draws from the core RNG. This occurs for two reasons:
* The random values are simulated using a rejection-based method
and so, on average, more than one value from the underlying
RNG is required to generate an single draw.
* The number of bits required to generate a simulated value
differs from the number of bits generated by the underlying
RNG. For example, two 16-bit integer values can be simulated
from a single draw of a 32-bit RNG.
"""
delta = wrap_int(delta, 64)
pcg32_advance_state(&self.rng_state, <uint64_t>delta)
return self
@property
def ctypes(self):
"""
ctypes interface
Returns
-------
interface : namedtuple
Named tuple containing ctypes wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct
"""
if self._ctypes is None:
self._ctypes = prepare_ctypes(&self._bitgen)
return self._ctypes
@property
def cffi(self):
"""
CFFI interface
Returns
-------
interface : namedtuple
Named tuple containing CFFI wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct
"""
if self._cffi is not None:
return self._cffi
self._cffi = prepare_cffi(&self._bitgen)
return self._cffi
|