1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
import operator
from libc.stdlib cimport malloc, free
from cpython.pycapsule cimport PyCapsule_New
try:
from threading import Lock
except ImportError:
from dummy_threading import Lock
import numpy as np
cimport numpy as np
from .common cimport *
from .distributions cimport brng_t
from .entropy import random_entropy
np.import_array()
DEF DSFMT_MEXP = 19937
DEF DSFMT_N = 191 # ((DSFMT_MEXP - 128) / 104 + 1)
DEF DSFMT_N_PLUS_1 = 192 # DSFMT_N + 1
DEF DSFMT_N64 = DSFMT_N * 2
cdef extern from "src/dsfmt/dSFMT.h":
union W128_T:
uint64_t u[2]
uint32_t u32[4]
double d[2]
ctypedef W128_T w128_t
struct DSFMT_T:
w128_t status[DSFMT_N_PLUS_1]
int idx
ctypedef DSFMT_T dsfmt_t
struct s_dsfmt_state:
dsfmt_t *state
int has_uint32
uint32_t uinteger
double *buffered_uniforms
int buffer_loc
ctypedef s_dsfmt_state dsfmt_state
double dsfmt_next_double(dsfmt_state *state) nogil
uint64_t dsfmt_next64(dsfmt_state *state) nogil
uint32_t dsfmt_next32(dsfmt_state *state) nogil
uint64_t dsfmt_next_raw(dsfmt_state *state) nogil
void dsfmt_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed)
void dsfmt_init_by_array(dsfmt_t *dsfmt, uint32_t init_key[], int key_length)
void dsfmt_jump(dsfmt_state *state)
cdef uint64_t dsfmt_uint64(void* st) nogil:
return dsfmt_next64(<dsfmt_state *>st)
cdef uint32_t dsfmt_uint32(void *st) nogil:
return dsfmt_next32(<dsfmt_state *> st)
cdef double dsfmt_double(void* st) nogil:
return dsfmt_next_double(<dsfmt_state *>st)
cdef uint64_t dsfmt_raw(void *st) nogil:
return dsfmt_next_raw(<dsfmt_state *>st)
cdef class DSFMT:
u"""
DSFMT(seed=None)
Container for the SIMD-based Mersenne Twister pseudo RNG.
Parameters
----------
seed : {None, int, array_like}, optional
Random seed initializing the pseudo-random number generator.
Can be an integer in [0, 2**32-1], array of integers in
[0, 2**32-1] or ``None`` (the default). If `seed` is ``None``,
then ``DSFMT`` will try to read entropy from ``/dev/urandom``
(or the Windows analog) if available to produce a 32-bit
seed. If unavailable, a 32-bit hash of the time and process
ID is used.
Notes
-----
``DSFMT`` directly provides generators for doubles, and unsigned 32 and 64-
bit integers [1]_ . These are not directly available and must be consumed
via a ``RandomGenerator`` object.
The Python stdlib module "random" also contains a Mersenne Twister
pseudo-random number generator.
**Parallel Features**
``DSFMT`` can be used in parallel applications by calling the method
``jump`` which advances the state as-if :math:`2^{128}` random numbers
have been generated [2]_. This allows the original sequence to be split
so that distinct segments can be used in each worker process. All
generators should be initialized with the same seed to ensure that the
segments come from the same sequence.
>>> from numpy.random.randomgen.entropy import random_entropy
>>> from numpy.random.randomgen import RandomGenerator, DSFMT
>>> seed = random_entropy()
>>> rs = [RandomGenerator(DSFMT(seed)) for _ in range(10)]
# Advance rs[i] by i jumps
>>> for i in range(10):
... rs[i].jump()
**State and Seeding**
The ``DSFMT`` state vector consists of a 384 element array of
64-bit unsigned integers plus a single integer value between 0 and 382
indicating the current position within the main array. The implementation
used here augments this with a 382 element array of doubles which are used
to efficiently access the random numbers produced by the dSFMT generator.
``DSFMT`` is seeded using either a single 32-bit unsigned integer
or a vector of 32-bit unsigned integers. In either case, the input seed is
used as an input (or inputs) for a hashing function, and the output of the
hashing function is used as the initial state. Using a single 32-bit value
for the seed can only initialize a small range of the possible initial
state values.
**Compatibility Guarantee**
``DSFMT`` does makes a guarantee that a fixed seed and will always
produce the same results.
References
----------
.. [1] Mutsuo Saito and Makoto Matsumoto, "SIMD-oriented Fast Mersenne
Twister: a 128-bit Pseudorandom Number Generator." Monte Carlo
and Quasi-Monte Carlo Methods 2006, Springer, pp. 607--622, 2008.
.. [2] Hiroshi Haramoto, Makoto Matsumoto, and Pierre L\'Ecuyer, "A Fast
Jump Ahead Algorithm for Linear Recurrences in a Polynomial Space",
Sequences and Their Applications - SETA, 290--298, 2008.
"""
cdef dsfmt_state *rng_state
cdef brng_t *_brng
cdef public object capsule
cdef public object _cffi
cdef public object _ctypes
cdef public object _generator
cdef public object lock
def __init__(self, seed=None):
self.rng_state = <dsfmt_state *>malloc(sizeof(dsfmt_state))
self.rng_state.state = <dsfmt_t *>PyArray_malloc_aligned(sizeof(dsfmt_t))
self.rng_state.buffered_uniforms = <double *>PyArray_calloc_aligned(DSFMT_N64, sizeof(double))
self.rng_state.buffer_loc = DSFMT_N64
self._brng = <brng_t *>malloc(sizeof(brng_t))
self.seed(seed)
self.lock = Lock()
self._brng.state = <void *>self.rng_state
self._brng.next_uint64 = &dsfmt_uint64
self._brng.next_uint32 = &dsfmt_uint32
self._brng.next_double = &dsfmt_double
self._brng.next_raw = &dsfmt_raw
cdef const char *name = "BasicRNG"
self.capsule = PyCapsule_New(<void *>self._brng, name, NULL)
self._cffi = None
self._ctypes = None
self._generator = None
# Pickling support:
def __getstate__(self):
return self.state
def __setstate__(self, state):
self.state = state
def __reduce__(self):
from ._pickle import __brng_ctor
return (__brng_ctor,
(self.state['brng'],),
self.state)
def __dealloc__(self):
PyArray_free_aligned(self.rng_state.state)
PyArray_free_aligned(self.rng_state.buffered_uniforms)
free(self.rng_state)
free(self._brng)
cdef _reset_state_variables(self):
self.rng_state.buffer_loc = DSFMT_N64
def random_raw(self, size=None, output=True):
"""
random_raw(self, size=None)
Return randoms as generated by the underlying BasicRNG
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
output : bool, optional
Output values. Used for performance testing since the generated
values are not returned.
Returns
-------
out : uint or ndarray
Drawn samples.
Notes
-----
This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.
"""
return random_raw(self._brng, self.lock, size, output)
def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
return benchmark(self._brng, self.lock, cnt, method)
def seed(self, seed=None):
"""
seed(seed=None)
Seed the generator.
Parameters
----------
seed : {None, int, array_like}, optional
Random seed initializing the pseudo-random number generator.
Can be an integer in [0, 2**32-1], array of integers in
[0, 2**32-1] or ``None`` (the default). If `seed` is ``None``,
then ``DSFMT`` will try to read entropy from ``/dev/urandom``
(or the Windows analog) if available to produce a 32-bit
seed. If unavailable, a 32-bit hash of the time and process
ID is used.
Raises
------
ValueError
If seed values are out of range for the PRNG.
"""
cdef np.ndarray obj
try:
if seed is None:
try:
seed = random_entropy(1)
except RuntimeError:
seed = random_entropy(1, 'fallback')
dsfmt_init_gen_rand(self.rng_state.state, seed)
else:
if hasattr(seed, 'squeeze'):
seed = seed.squeeze()
idx = operator.index(seed)
if idx > int(2**32 - 1) or idx < 0:
raise ValueError("Seed must be between 0 and 2**32 - 1")
dsfmt_init_gen_rand(self.rng_state.state, seed)
except TypeError:
obj = np.asarray(seed).astype(np.int64, casting='safe').ravel()
if ((obj > int(2**32 - 1)) | (obj < 0)).any():
raise ValueError("Seed must be between 0 and 2**32 - 1")
obj = obj.astype(np.uint32, casting='unsafe', order='C')
dsfmt_init_by_array(self.rng_state.state,
<uint32_t *>obj.data,
np.PyArray_DIM(obj, 0))
# Clear the buffer
self._reset_state_variables()
def jump(self, np.npy_intp iter=1):
"""
jump(iter=1)
Jumps the state as-if 2**128 random numbers have been generated.
Parameters
----------
iter : integer, positive
Number of times to jump the state of the brng.
Returns
-------
self : DSFMT
PRNG jumped iter times
"""
cdef np.npy_intp i
for i in range(iter):
dsfmt_jump(self.rng_state)
# Clear the buffer
self._reset_state_variables()
return self
@property
def state(self):
"""
Get or set the PRNG state
Returns
-------
state : dict
Dictionary containing the information required to describe the
state of the PRNG
"""
cdef Py_ssize_t i, j, loc = 0
cdef uint64_t[::1] state
cdef double[::1] buffered_uniforms
state = np.empty(2 *DSFMT_N_PLUS_1, dtype=np.uint64)
for i in range(DSFMT_N_PLUS_1):
for j in range(2):
state[loc] = self.rng_state.state.status[i].u[j]
loc += 1
buffered_uniforms = np.empty(DSFMT_N64, dtype=np.double)
for i in range(DSFMT_N64):
buffered_uniforms[i] = self.rng_state.buffered_uniforms[i]
return {'brng': self.__class__.__name__,
'state': {'state': np.asarray(state),
'idx': self.rng_state.state.idx},
'buffer_loc': self.rng_state.buffer_loc,
'buffered_uniforms': np.asarray(buffered_uniforms)}
@state.setter
def state(self, value):
cdef Py_ssize_t i, j, loc = 0
if not isinstance(value, dict):
raise TypeError('state must be a dict')
brng = value.get('brng', '')
if brng != self.__class__.__name__:
raise ValueError('state must be for a {0} '
'PRNG'.format(self.__class__.__name__))
state = value['state']['state']
for i in range(DSFMT_N_PLUS_1):
for j in range(2):
self.rng_state.state.status[i].u[j] = state[loc]
loc += 1
self.rng_state.state.idx = value['state']['idx']
buffered_uniforms = value['buffered_uniforms']
for i in range(DSFMT_N64):
self.rng_state.buffered_uniforms[i] = buffered_uniforms[i]
self.rng_state.buffer_loc = value['buffer_loc']
@property
def ctypes(self):
"""
ctypes interface
Returns
-------
interface : namedtuple
Named tuple containing ctypes wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* brng - pointer to the Basic RNG struct
"""
if self._ctypes is None:
self._ctypes = prepare_ctypes(self._brng)
return self._ctypes
@property
def cffi(self):
"""
CFFI interface
Returns
-------
interface : namedtuple
Named tuple containing CFFI wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* brng - pointer to the Basic RNG struct
"""
if self._cffi is not None:
return self._cffi
self._cffi = prepare_cffi(self._brng)
return self._cffi
@property
def generator(self):
"""
Return a RandomGenerator object
Returns
-------
gen : numpy.random.randomgen.generator.RandomGenerator
Random generator used this instance as the basic RNG
"""
if self._generator is None:
from .generator import RandomGenerator
self._generator = RandomGenerator(self)
return self._generator
|