1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
/*
* This file contains generation code for distribution that have been modified
* since Generator was introduced. These are preserved using identical code
* to what was in NumPy 1.16 so that the stream of values generated by
* RandomState is not changed when there are changes that affect Generator.
*
* These functions should not be changed except if they contain code that
* cannot be compiled. They should not be changed for bug fixes, performance
* improvements that can change the values produced, or enhancements to precision.
*/
#include "include/legacy-distributions.h"
static inline double legacy_double(aug_bitgen_t *aug_state) {
return aug_state->bit_generator->next_double(aug_state->bit_generator->state);
}
double legacy_gauss(aug_bitgen_t *aug_state) {
if (aug_state->has_gauss) {
const double temp = aug_state->gauss;
aug_state->has_gauss = false;
aug_state->gauss = 0.0;
return temp;
} else {
double f, x1, x2, r2;
do {
x1 = 2.0 * legacy_double(aug_state) - 1.0;
x2 = 2.0 * legacy_double(aug_state) - 1.0;
r2 = x1 * x1 + x2 * x2;
} while (r2 >= 1.0 || r2 == 0.0);
/* Polar method, a more efficient version of the Box-Muller approach. */
f = sqrt(-2.0 * log(r2) / r2);
/* Keep for next call */
aug_state->gauss = f * x1;
aug_state->has_gauss = true;
return f * x2;
}
}
double legacy_standard_exponential(aug_bitgen_t *aug_state) {
/* We use -log(1-U) since U is [0, 1) */
return -log(1.0 - legacy_double(aug_state));
}
double legacy_standard_gamma(aug_bitgen_t *aug_state, double shape) {
double b, c;
double U, V, X, Y;
if (shape == 1.0) {
return legacy_standard_exponential(aug_state);
}
else if (shape == 0.0) {
return 0.0;
} else if (shape < 1.0) {
for (;;) {
U = legacy_double(aug_state);
V = legacy_standard_exponential(aug_state);
if (U <= 1.0 - shape) {
X = pow(U, 1. / shape);
if (X <= V) {
return X;
}
} else {
Y = -log((1 - U) / shape);
X = pow(1.0 - shape + shape * Y, 1. / shape);
if (X <= (V + Y)) {
return X;
}
}
}
} else {
b = shape - 1. / 3.;
c = 1. / sqrt(9 * b);
for (;;) {
do {
X = legacy_gauss(aug_state);
V = 1.0 + c * X;
} while (V <= 0.0);
V = V * V * V;
U = legacy_double(aug_state);
if (U < 1.0 - 0.0331 * (X * X) * (X * X))
return (b * V);
if (log(U) < 0.5 * X * X + b * (1. - V + log(V)))
return (b * V);
}
}
}
double legacy_gamma(aug_bitgen_t *aug_state, double shape, double scale) {
return scale * legacy_standard_gamma(aug_state, shape);
}
double legacy_pareto(aug_bitgen_t *aug_state, double a) {
return exp(legacy_standard_exponential(aug_state) / a) - 1;
}
double legacy_weibull(aug_bitgen_t *aug_state, double a) {
if (a == 0.0) {
return 0.0;
}
return pow(legacy_standard_exponential(aug_state), 1. / a);
}
double legacy_power(aug_bitgen_t *aug_state, double a) {
return pow(1 - exp(-legacy_standard_exponential(aug_state)), 1. / a);
}
double legacy_chisquare(aug_bitgen_t *aug_state, double df) {
return 2.0 * legacy_standard_gamma(aug_state, df / 2.0);
}
double legacy_rayleigh(bitgen_t *bitgen_state, double mode) {
return mode * sqrt(-2.0 * npy_log1p(-next_double(bitgen_state)));
}
double legacy_noncentral_chisquare(aug_bitgen_t *aug_state, double df,
double nonc) {
double out;
if (nonc == 0) {
return legacy_chisquare(aug_state, df);
}
if (1 < df) {
const double Chi2 = legacy_chisquare(aug_state, df - 1);
const double n = legacy_gauss(aug_state) + sqrt(nonc);
return Chi2 + n * n;
} else {
const long i = random_poisson(aug_state->bit_generator, nonc / 2.0);
out = legacy_chisquare(aug_state, df + 2 * i);
/* Insert nan guard here to avoid changing the stream */
if (npy_isnan(nonc)){
return NPY_NAN;
} else {
return out;
}
}
}
double legacy_noncentral_f(aug_bitgen_t *aug_state, double dfnum, double dfden,
double nonc) {
double t = legacy_noncentral_chisquare(aug_state, dfnum, nonc) * dfden;
return t / (legacy_chisquare(aug_state, dfden) * dfnum);
}
double legacy_wald(aug_bitgen_t *aug_state, double mean, double scale) {
double U, X, Y;
double mu_2l;
mu_2l = mean / (2 * scale);
Y = legacy_gauss(aug_state);
Y = mean * Y * Y;
X = mean + mu_2l * (Y - sqrt(4 * scale * Y + Y * Y));
U = legacy_double(aug_state);
if (U <= mean / (mean + X)) {
return X;
} else {
return mean * mean / X;
}
}
double legacy_normal(aug_bitgen_t *aug_state, double loc, double scale) {
return loc + scale * legacy_gauss(aug_state);
}
double legacy_lognormal(aug_bitgen_t *aug_state, double mean, double sigma) {
return exp(legacy_normal(aug_state, mean, sigma));
}
double legacy_standard_t(aug_bitgen_t *aug_state, double df) {
double num, denom;
num = legacy_gauss(aug_state);
denom = legacy_standard_gamma(aug_state, df / 2);
return sqrt(df / 2) * num / sqrt(denom);
}
int64_t legacy_negative_binomial(aug_bitgen_t *aug_state, double n, double p) {
double Y = legacy_gamma(aug_state, n, (1 - p) / p);
return (int64_t)random_poisson(aug_state->bit_generator, Y);
}
double legacy_standard_cauchy(aug_bitgen_t *aug_state) {
return legacy_gauss(aug_state) / legacy_gauss(aug_state);
}
double legacy_beta(aug_bitgen_t *aug_state, double a, double b) {
double Ga, Gb;
if ((a <= 1.0) && (b <= 1.0)) {
double U, V, X, Y;
/* Use Johnk's algorithm */
while (1) {
U = legacy_double(aug_state);
V = legacy_double(aug_state);
X = pow(U, 1.0 / a);
Y = pow(V, 1.0 / b);
if ((X + Y) <= 1.0) {
if (X + Y > 0) {
return X / (X + Y);
} else {
double logX = log(U) / a;
double logY = log(V) / b;
double logM = logX > logY ? logX : logY;
logX -= logM;
logY -= logM;
return exp(logX - log(exp(logX) + exp(logY)));
}
}
}
} else {
Ga = legacy_standard_gamma(aug_state, a);
Gb = legacy_standard_gamma(aug_state, b);
return Ga / (Ga + Gb);
}
}
double legacy_f(aug_bitgen_t *aug_state, double dfnum, double dfden) {
return ((legacy_chisquare(aug_state, dfnum) * dfden) /
(legacy_chisquare(aug_state, dfden) * dfnum));
}
double legacy_exponential(aug_bitgen_t *aug_state, double scale) {
return scale * legacy_standard_exponential(aug_state);
}
static RAND_INT_TYPE legacy_random_binomial_original(bitgen_t *bitgen_state,
double p,
RAND_INT_TYPE n,
binomial_t *binomial) {
double q;
if (p <= 0.5) {
if (p * n <= 30.0) {
return random_binomial_inversion(bitgen_state, n, p, binomial);
} else {
return random_binomial_btpe(bitgen_state, n, p, binomial);
}
} else {
q = 1.0 - p;
if (q * n <= 30.0) {
return n - random_binomial_inversion(bitgen_state, n, q, binomial);
} else {
return n - random_binomial_btpe(bitgen_state, n, q, binomial);
}
}
}
int64_t legacy_random_binomial(bitgen_t *bitgen_state, double p,
int64_t n, binomial_t *binomial) {
return (int64_t) legacy_random_binomial_original(bitgen_state, p,
(RAND_INT_TYPE) n,
binomial);
}
static RAND_INT_TYPE random_hypergeometric_hyp(bitgen_t *bitgen_state,
RAND_INT_TYPE good,
RAND_INT_TYPE bad,
RAND_INT_TYPE sample) {
RAND_INT_TYPE d1, k, z;
double d2, u, y;
d1 = bad + good - sample;
d2 = (double)MIN(bad, good);
y = d2;
k = sample;
while (y > 0.0) {
u = next_double(bitgen_state);
y -= (RAND_INT_TYPE)floor(u + y / (d1 + k));
k--;
if (k == 0)
break;
}
z = (RAND_INT_TYPE)(d2 - y);
if (good > bad)
z = sample - z;
return z;
}
/* D1 = 2*sqrt(2/e) */
/* D2 = 3 - 2*sqrt(3/e) */
#define D1 1.7155277699214135
#define D2 0.8989161620588988
static RAND_INT_TYPE random_hypergeometric_hrua(bitgen_t *bitgen_state,
RAND_INT_TYPE good,
RAND_INT_TYPE bad,
RAND_INT_TYPE sample) {
RAND_INT_TYPE mingoodbad, maxgoodbad, popsize, m, d9;
double d4, d5, d6, d7, d8, d10, d11;
RAND_INT_TYPE Z;
double T, W, X, Y;
mingoodbad = MIN(good, bad);
popsize = good + bad;
maxgoodbad = MAX(good, bad);
m = MIN(sample, popsize - sample);
d4 = ((double)mingoodbad) / popsize;
d5 = 1.0 - d4;
d6 = m * d4 + 0.5;
d7 = sqrt((double)(popsize - m) * sample * d4 * d5 / (popsize - 1) + 0.5);
d8 = D1 * d7 + D2;
d9 = (RAND_INT_TYPE)floor((double)(m + 1) * (mingoodbad + 1) / (popsize + 2));
d10 = (random_loggam(d9 + 1) + random_loggam(mingoodbad - d9 + 1) +
random_loggam(m - d9 + 1) + random_loggam(maxgoodbad - m + d9 + 1));
d11 = MIN(MIN(m, mingoodbad) + 1.0, floor(d6 + 16 * d7));
/* 16 for 16-decimal-digit precision in D1 and D2 */
while (1) {
X = next_double(bitgen_state);
Y = next_double(bitgen_state);
W = d6 + d8 * (Y - 0.5) / X;
/* fast rejection: */
if ((W < 0.0) || (W >= d11))
continue;
Z = (RAND_INT_TYPE)floor(W);
T = d10 - (random_loggam(Z + 1) + random_loggam(mingoodbad - Z + 1) +
random_loggam(m - Z + 1) + random_loggam(maxgoodbad - m + Z + 1));
/* fast acceptance: */
if ((X * (4.0 - X) - 3.0) <= T)
break;
/* fast rejection: */
if (X * (X - T) >= 1)
continue;
/* log(0.0) is ok here, since always accept */
if (2.0 * log(X) <= T)
break; /* acceptance */
}
/* this is a correction to HRUA* by Ivan Frohne in rv.py */
if (good > bad)
Z = m - Z;
/* another fix from rv.py to allow sample to exceed popsize/2 */
if (m < sample)
Z = good - Z;
return Z;
}
#undef D1
#undef D2
static RAND_INT_TYPE random_hypergeometric_original(bitgen_t *bitgen_state,
RAND_INT_TYPE good,
RAND_INT_TYPE bad,
RAND_INT_TYPE sample)
{
if (sample > 10) {
return random_hypergeometric_hrua(bitgen_state, good, bad, sample);
} else if (sample > 0) {
return random_hypergeometric_hyp(bitgen_state, good, bad, sample);
} else {
return 0;
}
}
/*
* This is a wrapper function that matches the expected template. In the legacy
* generator, all int types are long, so this accepts int64 and then converts
* them to longs. These values must be in bounds for long and this is checked
* outside this function
*
* The remaining are included for the return type only
*/
int64_t legacy_random_hypergeometric(bitgen_t *bitgen_state, int64_t good,
int64_t bad, int64_t sample) {
return (int64_t)random_hypergeometric_original(bitgen_state,
(RAND_INT_TYPE)good,
(RAND_INT_TYPE)bad,
(RAND_INT_TYPE)sample);
}
int64_t legacy_random_poisson(bitgen_t *bitgen_state, double lam) {
return (int64_t)random_poisson(bitgen_state, lam);
}
int64_t legacy_random_zipf(bitgen_t *bitgen_state, double a) {
return (int64_t)random_zipf(bitgen_state, a);
}
static long legacy_geometric_inversion(bitgen_t *bitgen_state, double p) {
return (long)ceil(npy_log1p(-next_double(bitgen_state)) / log(1 - p));
}
int64_t legacy_random_geometric(bitgen_t *bitgen_state, double p) {
if (p >= 0.333333333333333333333333) {
return (int64_t)random_geometric_search(bitgen_state, p);
} else {
return (int64_t)legacy_geometric_inversion(bitgen_state, p);
}
}
void legacy_random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n,
RAND_INT_TYPE *mnix, double *pix, npy_intp d,
binomial_t *binomial) {
return random_multinomial(bitgen_state, n, mnix, pix, d, binomial);
}
double legacy_vonmises(bitgen_t *bitgen_state, double mu, double kappa) {
double s;
double U, V, W, Y, Z;
double result, mod;
int neg;
if (npy_isnan(kappa)) {
return NPY_NAN;
}
if (kappa < 1e-8) {
return M_PI * (2 * next_double(bitgen_state) - 1);
} else {
/* with double precision rho is zero until 1.4e-8 */
if (kappa < 1e-5) {
/*
* second order taylor expansion around kappa = 0
* precise until relatively large kappas as second order is 0
*/
s = (1. / kappa + kappa);
} else {
/* Path for 1e-5 <= kappa <= 1e6 */
double r = 1 + sqrt(1 + 4 * kappa * kappa);
double rho = (r - sqrt(2 * r)) / (2 * kappa);
s = (1 + rho * rho) / (2 * rho);
}
while (1) {
U = next_double(bitgen_state);
Z = cos(M_PI * U);
W = (1 + s * Z) / (s + Z);
Y = kappa * (s - W);
V = next_double(bitgen_state);
/*
* V==0.0 is ok here since Y >= 0 always leads
* to accept, while Y < 0 always rejects
*/
if ((Y * (2 - Y) - V >= 0) || (log(Y / V) + 1 - Y >= 0)) {
break;
}
}
U = next_double(bitgen_state);
result = acos(W);
if (U < 0.5) {
result = -result;
}
result += mu;
neg = (result < 0);
mod = fabs(result);
mod = (fmod(mod + M_PI, 2 * M_PI) - M_PI);
if (neg) {
mod *= -1;
}
return mod;
}
}
int64_t legacy_logseries(bitgen_t *bitgen_state, double p) {
double q, r, U, V;
long result;
r = log(1.0 - p);
while (1) {
V = next_double(bitgen_state);
if (V >= p) {
return 1;
}
U = next_double(bitgen_state);
q = 1.0 - exp(r * U);
if (V <= q * q) {
result = (long)floor(1 + log(V) / log(q));
if ((result < 1) || (V == 0.0)) {
continue;
} else {
return (int64_t)result;
}
}
if (V >= q) {
return 1;
}
return 2;
}
}
|