1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
#include "legacy-distributions.h"
static NPY_INLINE double legacy_double(aug_bitgen_t *aug_state) {
return aug_state->bit_generator->next_double(aug_state->bit_generator->state);
}
double legacy_gauss(aug_bitgen_t *aug_state) {
if (aug_state->has_gauss) {
const double temp = aug_state->gauss;
aug_state->has_gauss = false;
aug_state->gauss = 0.0;
return temp;
} else {
double f, x1, x2, r2;
do {
x1 = 2.0 * legacy_double(aug_state) - 1.0;
x2 = 2.0 * legacy_double(aug_state) - 1.0;
r2 = x1 * x1 + x2 * x2;
} while (r2 >= 1.0 || r2 == 0.0);
/* Polar method, a more efficient version of the Box-Muller approach. */
f = sqrt(-2.0 * log(r2) / r2);
/* Keep for next call */
aug_state->gauss = f * x1;
aug_state->has_gauss = true;
return f * x2;
}
}
double legacy_standard_exponential(aug_bitgen_t *aug_state) {
/* We use -log(1-U) since U is [0, 1) */
return -log(1.0 - legacy_double(aug_state));
}
double legacy_standard_gamma(aug_bitgen_t *aug_state, double shape) {
double b, c;
double U, V, X, Y;
if (shape == 1.0) {
return legacy_standard_exponential(aug_state);
}
else if (shape == 0.0) {
return 0.0;
} else if (shape < 1.0) {
for (;;) {
U = legacy_double(aug_state);
V = legacy_standard_exponential(aug_state);
if (U <= 1.0 - shape) {
X = pow(U, 1. / shape);
if (X <= V) {
return X;
}
} else {
Y = -log((1 - U) / shape);
X = pow(1.0 - shape + shape * Y, 1. / shape);
if (X <= (V + Y)) {
return X;
}
}
}
} else {
b = shape - 1. / 3.;
c = 1. / sqrt(9 * b);
for (;;) {
do {
X = legacy_gauss(aug_state);
V = 1.0 + c * X;
} while (V <= 0.0);
V = V * V * V;
U = legacy_double(aug_state);
if (U < 1.0 - 0.0331 * (X * X) * (X * X))
return (b * V);
if (log(U) < 0.5 * X * X + b * (1. - V + log(V)))
return (b * V);
}
}
}
double legacy_gamma(aug_bitgen_t *aug_state, double shape, double scale) {
return scale * legacy_standard_gamma(aug_state, shape);
}
double legacy_pareto(aug_bitgen_t *aug_state, double a) {
return exp(legacy_standard_exponential(aug_state) / a) - 1;
}
double legacy_weibull(aug_bitgen_t *aug_state, double a) {
if (a == 0.0) {
return 0.0;
}
return pow(legacy_standard_exponential(aug_state), 1. / a);
}
double legacy_power(aug_bitgen_t *aug_state, double a) {
return pow(1 - exp(-legacy_standard_exponential(aug_state)), 1. / a);
}
double legacy_chisquare(aug_bitgen_t *aug_state, double df) {
return 2.0 * legacy_standard_gamma(aug_state, df / 2.0);
}
double legacy_noncentral_chisquare(aug_bitgen_t *aug_state, double df,
double nonc) {
double out;
if (nonc == 0) {
return legacy_chisquare(aug_state, df);
}
if (1 < df) {
const double Chi2 = legacy_chisquare(aug_state, df - 1);
const double n = legacy_gauss(aug_state) + sqrt(nonc);
return Chi2 + n * n;
} else {
const long i = random_poisson(aug_state->bit_generator, nonc / 2.0);
out = legacy_chisquare(aug_state, df + 2 * i);
/* Insert nan guard here to avoid changing the stream */
if (npy_isnan(nonc)){
return NPY_NAN;
} else {
return out;
}
}
}
double legacy_noncentral_f(aug_bitgen_t *aug_state, double dfnum, double dfden,
double nonc) {
double t = legacy_noncentral_chisquare(aug_state, dfnum, nonc) * dfden;
return t / (legacy_chisquare(aug_state, dfden) * dfnum);
}
double legacy_wald(aug_bitgen_t *aug_state, double mean, double scale) {
double U, X, Y;
double mu_2l;
mu_2l = mean / (2 * scale);
Y = legacy_gauss(aug_state);
Y = mean * Y * Y;
X = mean + mu_2l * (Y - sqrt(4 * scale * Y + Y * Y));
U = legacy_double(aug_state);
if (U <= mean / (mean + X)) {
return X;
} else {
return mean * mean / X;
}
}
double legacy_normal(aug_bitgen_t *aug_state, double loc, double scale) {
return loc + scale * legacy_gauss(aug_state);
}
double legacy_lognormal(aug_bitgen_t *aug_state, double mean, double sigma) {
return exp(legacy_normal(aug_state, mean, sigma));
}
double legacy_standard_t(aug_bitgen_t *aug_state, double df) {
double num, denom;
num = legacy_gauss(aug_state);
denom = legacy_standard_gamma(aug_state, df / 2);
return sqrt(df / 2) * num / sqrt(denom);
}
int64_t legacy_negative_binomial(aug_bitgen_t *aug_state, double n, double p) {
double Y = legacy_gamma(aug_state, n, (1 - p) / p);
return (int64_t)random_poisson(aug_state->bit_generator, Y);
}
double legacy_standard_cauchy(aug_bitgen_t *aug_state) {
return legacy_gauss(aug_state) / legacy_gauss(aug_state);
}
double legacy_beta(aug_bitgen_t *aug_state, double a, double b) {
double Ga, Gb;
if ((a <= 1.0) && (b <= 1.0)) {
double U, V, X, Y;
/* Use Johnk's algorithm */
while (1) {
U = legacy_double(aug_state);
V = legacy_double(aug_state);
X = pow(U, 1.0 / a);
Y = pow(V, 1.0 / b);
if ((X + Y) <= 1.0) {
if (X + Y > 0) {
return X / (X + Y);
} else {
double logX = log(U) / a;
double logY = log(V) / b;
double logM = logX > logY ? logX : logY;
logX -= logM;
logY -= logM;
return exp(logX - log(exp(logX) + exp(logY)));
}
}
}
} else {
Ga = legacy_standard_gamma(aug_state, a);
Gb = legacy_standard_gamma(aug_state, b);
return Ga / (Ga + Gb);
}
}
double legacy_f(aug_bitgen_t *aug_state, double dfnum, double dfden) {
return ((legacy_chisquare(aug_state, dfnum) * dfden) /
(legacy_chisquare(aug_state, dfden) * dfnum));
}
double legacy_exponential(aug_bitgen_t *aug_state, double scale) {
return scale * legacy_standard_exponential(aug_state);
}
/*
* This is a wrapper function that matches the expected template. In the legacy
* generator, all int types are long, so this accepts int64 and then converts
* them to longs. These values must be in bounds for long and this is checked
* outside this function
*
* The remaining are included for the return type only
*/
int64_t legacy_random_hypergeometric(bitgen_t *bitgen_state, int64_t good,
int64_t bad, int64_t sample) {
return (int64_t)random_hypergeometric(bitgen_state, (RAND_INT_TYPE)good,
(RAND_INT_TYPE)bad,
(RAND_INT_TYPE)sample);
}
int64_t legacy_random_logseries(bitgen_t *bitgen_state, double p) {
return (int64_t)random_logseries(bitgen_state, p);
}
int64_t legacy_random_poisson(bitgen_t *bitgen_state, double lam) {
return (int64_t)random_poisson(bitgen_state, lam);
}
int64_t legacy_random_zipf(bitgen_t *bitgen_state, double a) {
return (int64_t)random_zipf(bitgen_state, a);
}
int64_t legacy_random_geometric(bitgen_t *bitgen_state, double p) {
return (int64_t)random_geometric(bitgen_state, p);
}
void legacy_random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n,
RAND_INT_TYPE *mnix, double *pix, npy_intp d,
binomial_t *binomial) {
return random_multinomial(bitgen_state, n, mnix, pix, d, binomial);
}
|