1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
from __future__ import division, absolute_import, print_function
from numpy.testing import TestCase, run_module_suite, assert_,\
assert_raises
from numpy import random
from numpy.compat import asbytes
import numpy as np
class TestBinomial(TestCase):
def test_n_zero(self):
# Tests the corner case of n == 0 for the binomial distribution.
# binomial(0, p) should be zero for any p in [0, 1].
# This test addresses issue #3480.
zeros = np.zeros(2, dtype='int')
for p in [0, .5, 1]:
assert_(random.binomial(0, p) == 0)
np.testing.assert_array_equal(random.binomial(zeros, p), zeros)
class TestMultinomial(TestCase):
def test_basic(self):
random.multinomial(100, [0.2, 0.8])
def test_zero_probability(self):
random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
def test_int_negative_interval(self):
assert_( -5 <= random.randint(-5,-1) < -1)
x = random.randint(-5,-1,5)
assert_(np.all(-5 <= x))
assert_(np.all(x < -1))
class TestSetState(TestCase):
def setUp(self):
self.seed = 1234567890
self.prng = random.RandomState(self.seed)
self.state = self.prng.get_state()
def test_basic(self):
old = self.prng.tomaxint(16)
self.prng.set_state(self.state)
new = self.prng.tomaxint(16)
assert_(np.all(old == new))
def test_gaussian_reset(self):
""" Make sure the cached every-other-Gaussian is reset.
"""
old = self.prng.standard_normal(size=3)
self.prng.set_state(self.state)
new = self.prng.standard_normal(size=3)
assert_(np.all(old == new))
def test_gaussian_reset_in_media_res(self):
""" When the state is saved with a cached Gaussian, make sure the cached
Gaussian is restored.
"""
self.prng.standard_normal()
state = self.prng.get_state()
old = self.prng.standard_normal(size=3)
self.prng.set_state(state)
new = self.prng.standard_normal(size=3)
assert_(np.all(old == new))
def test_backwards_compatibility(self):
""" Make sure we can accept old state tuples that do not have the cached
Gaussian value.
"""
old_state = self.state[:-2]
x1 = self.prng.standard_normal(size=16)
self.prng.set_state(old_state)
x2 = self.prng.standard_normal(size=16)
self.prng.set_state(self.state)
x3 = self.prng.standard_normal(size=16)
assert_(np.all(x1 == x2))
assert_(np.all(x1 == x3))
def test_negative_binomial(self):
""" Ensure that the negative binomial results take floating point
arguments without truncation.
"""
self.prng.negative_binomial(0.5, 0.5)
class TestRandomDist(TestCase):
""" Make sure the random distrobution return the correct value for a
given seed
"""
def setUp(self):
self.seed = 1234567890
def test_rand(self):
np.random.seed(self.seed)
actual = np.random.rand(3, 2)
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
[ 0.88868358904449662, 0.89165480011560816],
[ 0.4575674820298663 , 0.7781880808593471 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randn(self):
np.random.seed(self.seed)
actual = np.random.randn(3, 2)
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
[ 1.498988344300628 , -0.2286433324536169 ],
[ 2.031033998682787 , 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randint(self):
np.random.seed(self.seed)
actual = np.random.randint(-99, 99, size=(3,2))
desired = np.array([[ 31, 3],
[-52, 41],
[-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_integers(self):
np.random.seed(self.seed)
actual = np.random.random_integers(-99, 99, size=(3,2))
desired = np.array([[ 31, 3],
[-52, 41],
[-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_sample(self):
np.random.seed(self.seed)
actual = np.random.random_sample((3, 2))
desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
[ 0.88868358904449662, 0.89165480011560816],
[ 0.4575674820298663 , 0.7781880808593471 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_choice_uniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4)
desired = np.array([2, 3, 2, 3])
np.testing.assert_array_equal(actual, desired)
def test_choice_nonuniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
desired = np.array([1, 1, 2, 2])
np.testing.assert_array_equal(actual, desired)
def test_choice_uniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False)
desired = np.array([0, 1, 3])
np.testing.assert_array_equal(actual, desired)
def test_choice_nonuniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False,
p=[0.1, 0.3, 0.5, 0.1])
desired = np.array([2, 3, 1])
np.testing.assert_array_equal(actual, desired)
def test_choice_noninteger(self):
np.random.seed(self.seed)
actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
desired = np.array(['c', 'd', 'c', 'd'])
np.testing.assert_array_equal(actual, desired)
def test_choice_exceptions(self):
sample = np.random.choice
assert_raises(ValueError, sample, -1, 3)
assert_raises(ValueError, sample, 3., 3)
assert_raises(ValueError, sample, [[1,2],[3,4]], 3)
assert_raises(ValueError, sample, [], 3)
assert_raises(ValueError, sample, [1,2,3,4], 3,
p=[[0.25,0.25],[0.25,0.25]])
assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4,0.2])
assert_raises(ValueError, sample, [1,2], 3, p=[1.1,-0.1])
assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4])
assert_raises(ValueError, sample, [1,2,3], 4, replace=False)
assert_raises(ValueError, sample, [1,2,3], 2, replace=False,
p=[1,0,0])
def test_choice_return_shape(self):
p = [0.1,0.9]
# Check scalar
assert_(np.isscalar(np.random.choice(2, replace=True)))
assert_(np.isscalar(np.random.choice(2, replace=False)))
assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
assert_(np.isscalar(np.random.choice([1,2], replace=True)))
assert_(np.random.choice([None], replace=True) is None)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(np.random.choice(arr, replace=True) is a)
# Check 0-d array
s = tuple()
assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
assert_(not np.isscalar(np.random.choice([1,2], s, replace=True)))
assert_(np.random.choice([None], s, replace=True).ndim == 0)
a = np.array([1, 2])
arr = np.empty(1, dtype=object)
arr[0] = a
assert_(np.random.choice(arr, s, replace=True).item() is a)
# Check multi dimensional array
s = (2,3)
p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
assert_(np.random.choice(6, s, replace=True).shape, s)
assert_(np.random.choice(6, s, replace=False).shape, s)
assert_(np.random.choice(6, s, replace=True, p=p).shape, s)
assert_(np.random.choice(6, s, replace=False, p=p).shape, s)
assert_(np.random.choice(np.arange(6), s, replace=True).shape, s)
def test_bytes(self):
np.random.seed(self.seed)
actual = np.random.bytes(10)
desired = asbytes('\x82Ui\x9e\xff\x97+Wf\xa5')
np.testing.assert_equal(actual, desired)
def test_shuffle(self):
# Test lists, arrays, and multidimensional versions of both:
for conv in [lambda x: x,
np.asarray,
lambda x: [(i, i) for i in x],
lambda x: np.asarray([(i, i) for i in x])]:
np.random.seed(self.seed)
alist = conv([1,2,3,4,5,6,7,8,9,0])
np.random.shuffle(alist)
actual = alist
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
np.testing.assert_array_equal(actual, desired)
def test_beta(self):
np.random.seed(self.seed)
actual = np.random.beta(.1, .9, size=(3, 2))
desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],
[ 1.85366619058432324e-06, 4.19214516800110563e-03],
[ 1.58405155108498093e-04, 1.26252891949397652e-04]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_binomial(self):
np.random.seed(self.seed)
actual = np.random.binomial(100.123, .456, size=(3, 2))
desired = np.array([[37, 43],
[42, 48],
[46, 45]])
np.testing.assert_array_equal(actual, desired)
def test_chisquare(self):
np.random.seed(self.seed)
actual = np.random.chisquare(50, size=(3, 2))
desired = np.array([[ 63.87858175501090585, 68.68407748911370447],
[ 65.77116116901505904, 47.09686762438974483],
[ 72.3828403199695174 , 74.18408615260374006]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_dirichlet(self):
np.random.seed(self.seed)
alpha = np.array([51.72840233779265162, 39.74494232180943953])
actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],
[ 0.62345816822039413, 0.37654183177960598]],
[[ 0.55206000085785778, 0.44793999914214233],
[ 0.58964023305154301, 0.41035976694845688]],
[[ 0.59266909280647828, 0.40733090719352177],
[ 0.56974431743975207, 0.43025568256024799]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_exponential(self):
np.random.seed(self.seed)
actual = np.random.exponential(1.1234, size=(3, 2))
desired = np.array([[ 1.08342649775011624, 1.00607889924557314],
[ 2.46628830085216721, 2.49668106809923884],
[ 0.68717433461363442, 1.69175666993575979]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_f(self):
np.random.seed(self.seed)
actual = np.random.f(12, 77, size=(3, 2))
desired = np.array([[ 1.21975394418575878, 1.75135759791559775],
[ 1.44803115017146489, 1.22108959480396262],
[ 1.02176975757740629, 1.34431827623300415]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_gamma(self):
np.random.seed(self.seed)
actual = np.random.gamma(5, 3, size=(3, 2))
desired = np.array([[ 24.60509188649287182, 28.54993563207210627],
[ 26.13476110204064184, 12.56988482927716078],
[ 31.71863275789960568, 33.30143302795922011]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_geometric(self):
np.random.seed(self.seed)
actual = np.random.geometric(.123456789, size=(3, 2))
desired = np.array([[ 8, 7],
[17, 17],
[ 5, 12]])
np.testing.assert_array_equal(actual, desired)
def test_gumbel(self):
np.random.seed(self.seed)
actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))
desired = np.array([[ 0.19591898743416816, 0.34405539668096674],
[-1.4492522252274278 , -1.47374816298446865],
[ 1.10651090478803416, -0.69535848626236174]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_hypergeometric(self):
np.random.seed(self.seed)
actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
desired = np.array([[10, 10],
[10, 10],
[ 9, 9]])
np.testing.assert_array_equal(actual, desired)
# Test nbad = 0
actual = np.random.hypergeometric(5, 0, 3, size=4)
desired = np.array([3, 3, 3, 3])
np.testing.assert_array_equal(actual, desired)
actual = np.random.hypergeometric(15, 0, 12, size=4)
desired = np.array([12, 12, 12, 12])
np.testing.assert_array_equal(actual, desired)
# Test ngood = 0
actual = np.random.hypergeometric(0, 5, 3, size=4)
desired = np.array([0, 0, 0, 0])
np.testing.assert_array_equal(actual, desired)
actual = np.random.hypergeometric(0, 15, 12, size=4)
desired = np.array([0, 0, 0, 0])
np.testing.assert_array_equal(actual, desired)
def test_laplace(self):
np.random.seed(self.seed)
actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[ 0.66599721112760157, 0.52829452552221945],
[ 3.12791959514407125, 3.18202813572992005],
[-0.05391065675859356, 1.74901336242837324]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_logistic(self):
np.random.seed(self.seed)
actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],
[ 4.27818590694950185, 4.33897006346929714],
[-0.21682183359214885, 2.63373365386060332]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_lognormal(self):
np.random.seed(self.seed)
actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
desired = np.array([[ 16.50698631688883822, 36.54846706092654784],
[ 22.67886599981281748, 0.71617561058995771],
[ 65.72798501792723869, 86.84341601437161273]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_logseries(self):
np.random.seed(self.seed)
actual = np.random.logseries(p=.923456789, size=(3, 2))
desired = np.array([[ 2, 2],
[ 6, 17],
[ 3, 6]])
np.testing.assert_array_equal(actual, desired)
def test_multinomial(self):
np.random.seed(self.seed)
actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
desired = np.array([[[4, 3, 5, 4, 2, 2],
[5, 2, 8, 2, 2, 1]],
[[3, 4, 3, 6, 0, 4],
[2, 1, 4, 3, 6, 4]],
[[4, 4, 2, 5, 2, 3],
[4, 3, 4, 2, 3, 4]]])
np.testing.assert_array_equal(actual, desired)
def test_multivariate_normal(self):
np.random.seed(self.seed)
mean= (.123456789, 10)
cov = [[1,0],[1,0]]
size = (3, 2)
actual = np.random.multivariate_normal(mean, cov, size)
desired = np.array([[[ -1.47027513018564449, 10. ],
[ -1.65915081534845532, 10. ]],
[[ -2.29186329304599745, 10. ],
[ -1.77505606019580053, 10. ]],
[[ -0.54970369430044119, 10. ],
[ 0.29768848031692957, 10. ]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_negative_binomial(self):
np.random.seed(self.seed)
actual = np.random.negative_binomial(n = 100, p = .12345, size = (3, 2))
desired = np.array([[848, 841],
[892, 611],
[779, 647]])
np.testing.assert_array_equal(actual, desired)
def test_noncentral_chisquare(self):
np.random.seed(self.seed)
actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))
desired = np.array([[ 23.91905354498517511, 13.35324692733826346],
[ 31.22452661329736401, 16.60047399466177254],
[ 5.03461598262724586, 17.94973089023519464]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f(self):
np.random.seed(self.seed)
actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,
size = (3, 2))
desired = np.array([[ 1.40598099674926669, 0.34207973179285761],
[ 3.57715069265772545, 7.92632662577829805],
[ 0.43741599463544162, 1.1774208752428319 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_normal(self):
np.random.seed(self.seed)
actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))
desired = np.array([[ 2.80378370443726244, 3.59863924443872163],
[ 3.121433477601256 , -0.33382987590723379],
[ 4.18552478636557357, 4.46410668111310471]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_pareto(self):
np.random.seed(self.seed)
actual = np.random.pareto(a =.123456789, size = (3, 2))
desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],
[ 5.28287797029485181e+07, 6.57720981047328785e+07],
[ 1.40840323350391515e+02, 1.98390255135251704e+05]])
# For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
# matrix differs by 24 nulps. Discussion:
# http://mail.scipy.org/pipermail/numpy-discussion/2012-September/063801.html
# Consensus is that this is probably some gcc quirk that affects
# rounding but not in any important way, so we just use a looser
# tolerance on this test:
np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
def test_poisson(self):
np.random.seed(self.seed)
actual = np.random.poisson(lam = .123456789, size=(3, 2))
desired = np.array([[0, 0],
[1, 0],
[0, 0]])
np.testing.assert_array_equal(actual, desired)
def test_poisson_exceptions(self):
lambig = np.iinfo('l').max
lamneg = -1
assert_raises(ValueError, np.random.poisson, lamneg)
assert_raises(ValueError, np.random.poisson, [lamneg]*10)
assert_raises(ValueError, np.random.poisson, lambig)
assert_raises(ValueError, np.random.poisson, [lambig]*10)
def test_power(self):
np.random.seed(self.seed)
actual = np.random.power(a =.123456789, size = (3, 2))
desired = np.array([[ 0.02048932883240791, 0.01424192241128213],
[ 0.38446073748535298, 0.39499689943484395],
[ 0.00177699707563439, 0.13115505880863756]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_rayleigh(self):
np.random.seed(self.seed)
actual = np.random.rayleigh(scale = 10, size = (3, 2))
desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ],
[ 20.95413364294492098, 21.08285015800712614],
[ 11.06066537006854311, 17.35468505778271009]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_cauchy(self):
np.random.seed(self.seed)
actual = np.random.standard_cauchy(size = (3, 2))
desired = np.array([[ 0.77127660196445336, -6.55601161955910605],
[ 0.93582023391158309, -2.07479293013759447],
[-4.74601644297011926, 0.18338989290760804]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_exponential(self):
np.random.seed(self.seed)
actual = np.random.standard_exponential(size = (3, 2))
desired = np.array([[ 0.96441739162374596, 0.89556604882105506],
[ 2.1953785836319808 , 2.22243285392490542],
[ 0.6116915921431676 , 1.50592546727413201]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_gamma(self):
np.random.seed(self.seed)
actual = np.random.standard_gamma(shape = 3, size = (3, 2))
desired = np.array([[ 5.50841531318455058, 6.62953470301903103],
[ 5.93988484943779227, 2.31044849402133989],
[ 7.54838614231317084, 8.012756093271868 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_normal(self):
np.random.seed(self.seed)
actual = np.random.standard_normal(size = (3, 2))
desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
[ 1.498988344300628 , -0.2286433324536169 ],
[ 2.031033998682787 , 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_t(self):
np.random.seed(self.seed)
actual = np.random.standard_t(df = 10, size = (3, 2))
desired = np.array([[ 0.97140611862659965, -0.08830486548450577],
[ 1.36311143689505321, -0.55317463909867071],
[-0.18473749069684214, 0.61181537341755321]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_triangular(self):
np.random.seed(self.seed)
actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,
size = (3, 2))
desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],
[ 16.20131377335158263, 16.25692138747600524],
[ 11.20400690911820263, 14.4978144835829923 ]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_uniform(self):
np.random.seed(self.seed)
actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))
desired = np.array([[ 6.99097932346268003, 6.73801597444323974],
[ 9.50364421400426274, 9.53130618907631089],
[ 5.48995325769805476, 8.47493103280052118]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_vonmises(self):
np.random.seed(self.seed)
actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))
desired = np.array([[ 2.28567572673902042, 2.89163838442285037],
[ 0.38198375564286025, 2.57638023113890746],
[ 1.19153771588353052, 1.83509849681825354]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_wald(self):
np.random.seed(self.seed)
actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))
desired = np.array([[ 3.82935265715889983, 5.13125249184285526],
[ 0.35045403618358717, 1.50832396872003538],
[ 0.24124319895843183, 0.22031101461955038]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_weibull(self):
np.random.seed(self.seed)
actual = np.random.weibull(a = 1.23, size = (3, 2))
desired = np.array([[ 0.97097342648766727, 0.91422896443565516],
[ 1.89517770034962929, 1.91414357960479564],
[ 0.67057783752390987, 1.39494046635066793]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_zipf(self):
np.random.seed(self.seed)
actual = np.random.zipf(a = 1.23, size = (3, 2))
desired = np.array([[66, 29],
[ 1, 1],
[ 3, 13]])
np.testing.assert_array_equal(actual, desired)
if __name__ == "__main__":
run_module_suite()
|