summaryrefslogtreecommitdiff
path: root/numpy/random/threefry.pyx
blob: eb98bc0af056cd20a841909bf676f00e8d3ae14e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from cpython.pycapsule cimport PyCapsule_New

try:
    from threading import Lock
except ImportError:
    from dummy_threading import Lock

import numpy as np

from .common cimport *
from .distributions cimport bitgen_t
from .entropy import random_entropy, seed_by_array

__all__ = ['ThreeFry']

np.import_array()

DEF THREEFRY_BUFFER_SIZE=4

cdef extern from 'src/threefry/threefry.h':
    struct s_r123array4x64:
        uint64_t v[4]

    ctypedef s_r123array4x64 r123array4x64

    ctypedef r123array4x64 threefry4x64_key_t
    ctypedef r123array4x64 threefry4x64_ctr_t

    struct s_threefry_state:
        threefry4x64_ctr_t *ctr
        threefry4x64_key_t *key
        int buffer_pos
        uint64_t buffer[THREEFRY_BUFFER_SIZE]
        int has_uint32
        uint32_t uinteger

    ctypedef s_threefry_state threefry_state

    uint64_t threefry_next64(threefry_state *state)  nogil
    uint32_t threefry_next32(threefry_state *state)  nogil
    void threefry_jump(threefry_state *state)
    void threefry_advance(uint64_t *step, threefry_state *state)


cdef uint64_t threefry_uint64(void* st) nogil:
    return threefry_next64(<threefry_state *>st)

cdef uint32_t threefry_uint32(void *st) nogil:
    return threefry_next32(<threefry_state *> st)

cdef double threefry_double(void* st) nogil:
    return uint64_to_double(threefry_next64(<threefry_state *>st))

cdef class ThreeFry:
    """
    ThreeFry(seed=None, counter=None, key=None)

    Container for the ThreeFry (4x64) pseudo-random number generator.

    Parameters
    ----------
    seed : {None, int, array_like}, optional
        Random seed initializing the pseudo-random number generator.
        Can be an integer in [0, 2**64-1], array of integers in
        [0, 2**64-1] or ``None`` (the default). If `seed` is ``None``,
        data will be read from ``/dev/urandom`` (or the Windows analog)
        if available.  If unavailable, a hash of the time and process ID is
        used.
    counter : {None, int, array_like}, optional
        Counter to use in the ThreeFry state. Can be either
        a Python int in [0, 2**256) or a 4-element uint64 array.
        If not provided, the RNG is initialized at 0.
    key : {None, int, array_like}, optional
        Key to use in the ThreeFry state.  Unlike seed, which is run through
        another RNG before use, the value in key is directly set. Can be either
        a Python int in [0, 2**256) or a 4-element uint64 array.
        key and seed cannot both be used.

    Attributes
    ----------
    lock: threading.Lock
        Lock instance that is shared so that the same bit git generator can
        be used in multiple Generators without corrupting the state. Code that
        generates values from a bit generator should hold the bit generator's
        lock.

    Notes
    -----
    ThreeFry is a 64-bit PRNG that uses a counter-based design based on
    weaker (and faster) versions of cryptographic functions [1]_. Instances
    using different values of the key produce independent sequences.  ``ThreeFry``
    has a period of :math:`2^{256} - 1` and supports arbitrary advancing and
    jumping the sequence in increments of :math:`2^{128}`. These features allow
    multiple non-overlapping sequences to be generated.

    ``ThreeFry`` provides a capsule containing function pointers that produce
    doubles, and unsigned 32 and 64- bit integers. These are not
    directly consumable in Python and must be consumed by a ``Generator``
    or similar object that supports low-level access.

    See ``Philox`` for a closely related PRNG.

    **State and Seeding**

    The ``ThreeFry`` state vector consists of a 2 256-bit values encoded as
    4-element uint64 arrays. One is a counter which is incremented by 1 for
    every 4 64-bit randoms produced.  The second is a key which determined
    the sequence produced.  Using different keys produces independent
    sequences.

    ``ThreeFry`` is seeded using either a single 64-bit unsigned integer
    or a vector of 64-bit unsigned integers.  In either case, the seed is
    used as an input for a second random number generator,
    SplitMix64, and the output of this PRNG function is used as the initial state.
    Using a single 64-bit value for the seed can only initialize a small range of
    the possible initial state values.

    **Parallel Features**

    ``ThreeFry`` can be used in parallel applications by calling the ``jumped``
    method  to advances the state as-if :math:`2^{128}` random numbers have
    been generated. Alternatively, ``advance`` can be used to advance the
    counter for any positive step in [0, 2**256). When using ``jumped``, all
    generators should be chained to ensure that the segments come from the same
    sequence.

    >>> from numpy.random import Generator, ThreeFry
    >>> bit_generator = ThreeFry(1234)
    >>> rg = []
    >>> for _ in range(10):
    ...    rg.append(Generator(bit_generator))
    ...    # Chain the BitGenerators
    ...    bit_generator = bit_generator.jumped()

    Alternatively, ``ThreeFry`` can be used in parallel applications by using
    a sequence of distinct keys where each instance uses different key.

    >>> key = 2**196 + 2**132 + 2**65 + 2**33 + 2**17 + 2**9
    >>> rg = [Generator(ThreeFry(key=key+i)) for i in range(10)]

    **Compatibility Guarantee**

    ``ThreeFry`` makes a guarantee that a fixed seed and will always produce
    the same random integer stream.

    Examples
    --------
    >>> from numpy.random import Generator, ThreeFry
    >>> rg = Generator(ThreeFry(1234))
    >>> rg.standard_normal()
    0.123  # random

    References
    ----------
    .. [1] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw,
           "Parallel Random Numbers: As Easy as 1, 2, 3," Proceedings of
           the International Conference for High Performance Computing,
           Networking, Storage and Analysis (SC11), New York, NY: ACM, 2011.
    """
    cdef threefry_state rng_state
    cdef threefry4x64_ctr_t threefry_ctr
    cdef threefry4x64_key_t threefry_key
    cdef bitgen_t _bitgen
    cdef public object capsule
    cdef object _ctypes
    cdef object _cffi
    cdef public object lock

    def __init__(self, seed=None, counter=None, key=None):
        self.rng_state.ctr = &self.threefry_ctr
        self.rng_state.key = &self.threefry_key
        self.seed(seed, counter, key)
        self.lock = Lock()

        self._bitgen.state = <void *>&self.rng_state
        self._bitgen.next_uint64 = &threefry_uint64
        self._bitgen.next_uint32 = &threefry_uint32
        self._bitgen.next_double = &threefry_double
        self._bitgen.next_raw = &threefry_uint64

        self._ctypes = None
        self._cffi = None

        cdef const char *name = 'BitGenerator'
        self.capsule = PyCapsule_New(<void *>&self._bitgen, name, NULL)

    # Pickling support:
    def __getstate__(self):
        return self.state

    def __setstate__(self, state):
        self.state = state

    def __reduce__(self):
        from ._pickle import __bit_generator_ctor
        return __bit_generator_ctor, (self.state['bit_generator'],), self.state

    cdef _reset_state_variables(self):
        self.rng_state.has_uint32 = 0
        self.rng_state.uinteger = 0
        self.rng_state.buffer_pos = THREEFRY_BUFFER_SIZE
        for i in range(THREEFRY_BUFFER_SIZE):
            self.rng_state.buffer[i] = 0

    def random_raw(self, size=None, output=True):
        """
        random_raw(self, size=None)

        Return randoms as generated by the underlying BitGenerator

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        output : bool, optional
            Output values.  Used for performance testing since the generated
            values are not returned.

        Returns
        -------
        out : uint or ndarray
            Drawn samples.

        Notes
        -----
        This method directly exposes the the raw underlying pseudo-random
        number generator. All values are returned as unsigned 64-bit
        values irrespective of the number of bits produced by the PRNG.

        See the class docstring for the number of bits returned.
        """
        return random_raw(&self._bitgen, self.lock, size, output)

    def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
        return benchmark(&self._bitgen, self.lock, cnt, method)

    def seed(self, seed=None, counter=None, key=None):
        """
        seed(seed=None, counter=None, key=None)

        Seed the generator.

        This method is called when ``ThreeFry`` is initialized. It can be
        called again to re-seed the generator. For details, see
        ``ThreeFry``.

        Parameters
        ----------
        seed : int, optional
            Seed for ``ThreeFry``.
        counter : {None, int array}, optional
            Positive integer less than 2**256 containing the counter position
            or a 4 element array of uint64 containing the counter
        key : {None, int, array}, optional
            Positive integer less than 2**256 containing the key
            or a 4 element array of uint64 containing the key. key and
            seed cannot be simultaneously used.

        Raises
        ------
        ValueError
            If values are out of range for the PRNG.

        Notes
        -----
        The two representation of the counter and key are related through
        array[i] = (value // 2**(64*i)) % 2**64.
        """
        if seed is not None and key is not None:
            raise ValueError('seed and key cannot be both used')
        if key is None:
            if seed is None:
                try:
                    state = random_entropy(8)
                except RuntimeError:
                    state = random_entropy(8, 'fallback')
                state = state.view(np.uint64)
            else:
                state = seed_by_array(seed, 4)
            for i in range(4):
                self.rng_state.key.v[i] = state[i]
        else:
            key = int_to_array(key, 'key', 256, 64)
            for i in range(4):
                self.rng_state.key.v[i] = key[i]

        counter = 0 if counter is None else counter
        counter = int_to_array(counter, 'counter', 256, 64)
        for i in range(4):
            self.rng_state.ctr.v[i] = counter[i]

        self._reset_state_variables()

    @property
    def state(self):
        """
        Get or set the PRNG state

        Returns
        -------
        state : dict
            Dictionary containing the information required to describe the
            state of the PRNG
        """
        ctr = np.empty(4, dtype=np.uint64)
        key = np.empty(4, dtype=np.uint64)
        buffer = np.empty(THREEFRY_BUFFER_SIZE, dtype=np.uint64)
        for i in range(4):
            ctr[i] = self.rng_state.ctr.v[i]
            key[i] = self.rng_state.key.v[i]
        for i in range(THREEFRY_BUFFER_SIZE):
            buffer[i] = self.rng_state.buffer[i]
        state = {'counter': ctr, 'key': key}
        return {'bit_generator': self.__class__.__name__,
                'state': state,
                'buffer': buffer,
                'buffer_pos': self.rng_state.buffer_pos,
                'has_uint32': self.rng_state.has_uint32,
                'uinteger': self.rng_state.uinteger}

    @state.setter
    def state(self, value):
        if not isinstance(value, dict):
            raise TypeError('state must be a dict')
        bitgen = value.get('bit_generator', '')
        if bitgen != self.__class__.__name__:
            raise ValueError('state must be for a {0} '
                             'PRNG'.format(self.__class__.__name__))
        for i in range(4):
            self.rng_state.ctr.v[i] = <uint64_t>value['state']['counter'][i]
            self.rng_state.key.v[i] = <uint64_t>value['state']['key'][i]
        for i in range(THREEFRY_BUFFER_SIZE):
            self.rng_state.buffer[i] = <uint64_t>value['buffer'][i]
        self.rng_state.has_uint32 = value['has_uint32']
        self.rng_state.uinteger = value['uinteger']
        self.rng_state.buffer_pos = value['buffer_pos']

    cdef jump_inplace(self, iter):
        """
        Jump state in-place

        Not part of public API

        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the rng.
        """
        self.advance(iter * int(2**128))

    def jumped(self, jumps=1):
        """
        jumped(jumps=1)

        Returns a new bit generator with the state jumped

        The state of the returned big generator is jumped as-if
        2**(128 * jumps) random numbers have been generated.

        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the bit generator returned

        Returns
        -------
        bit_generator : ThreeFry
            New instance of generator jumped iter times
        """
        cdef ThreeFry bit_generator

        bit_generator = self.__class__()
        bit_generator.state = self.state
        bit_generator.jump_inplace(jumps)

        return bit_generator

    def advance(self, delta):
        """
        advance(delta)

        Advance the underlying RNG as-if delta draws have occurred.

        Parameters
        ----------
        delta : integer, positive
            Number of draws to advance the RNG. Must be less than the
            size state variable in the underlying RNG.

        Returns
        -------
        self : ThreeFry
            RNG advanced delta steps

        Notes
        -----
        Advancing a RNG updates the underlying RNG state as-if a given
        number of calls to the underlying RNG have been made. In general
        there is not a one-to-one relationship between the number output
        random values from a particular distribution and the number of
        draws from the core RNG.  This occurs for two reasons:

        * The random values are simulated using a rejection-based method
          and so, on average, more than one value from the underlying
          RNG is required to generate an single draw.
        * The number of bits required to generate a simulated value
          differs from the number of bits generated by the underlying
          RNG.  For example, two 16-bit integer values can be simulated
          from a single draw of a 32-bit RNG.

        Advancing the RNG state resets any pre-computed random numbers.
        This is required to ensure exact reproducibility.
        """
        delta = wrap_int(delta, 256)

        cdef np.ndarray delta_a
        delta_a = int_to_array(delta, 'step', 256, 64)
        threefry_advance(<uint64_t *>delta_a.data, &self.rng_state)
        self._reset_state_variables()
        return self

    @property
    def ctypes(self):
        """
        ctypes interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing ctypes wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * bitgen - pointer to the BitGenerator struct
        """
        if self._ctypes is None:
            self._ctypes = prepare_ctypes(&self._bitgen)

        return self._ctypes

    @property
    def cffi(self):
        """
        CFFI interface

        Returns
        -------
        interface : namedtuple
            Named tuple containing CFFI wrapper

            * state_address - Memory address of the state struct
            * state - pointer to the state struct
            * next_uint64 - function pointer to produce 64 bit integers
            * next_uint32 - function pointer to produce 32 bit integers
            * next_double - function pointer to produce doubles
            * bitgen - pointer to the BitGenerator struct
        """
        if self._cffi is not None:
            return self._cffi
        self._cffi = prepare_cffi(&self._bitgen)
        return self._cffi